Diffractive Slope Extraction of Exclusive ρ_L^0 and ρ_T^0 at HERMES

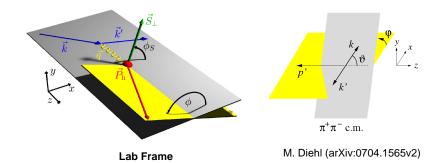
B. Ball¹, A. Airapetian², B. Marianski³

¹University of Michigan, ²Justus-Liebig University, ³Andrzej Soltan Institute for Nuclear Studies

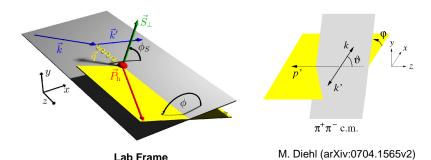
October 25, 2008, APS-DNP Fall Meeting

Motivation

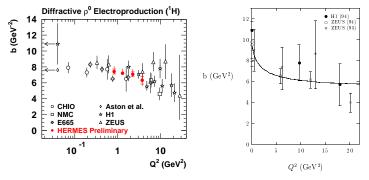
- Observing ρ^0 electroproduction ($ep \rightarrow e'p'\rho^0$) through decay channel $\rho^0 \rightarrow \pi^+\pi^-$.
- ho^0 meson shrinks at higher values of Q^2 .
 - Effect known as shrinkage and is a precondition for color transparency, or the ability to scatter off small targets with reduction of color interaction.
- Transverse size of ρ^0 reflected in cross-sectional slope parameter b.
- b fairly well understood.
- Very little known about dependence on helicity of ρ^0 .



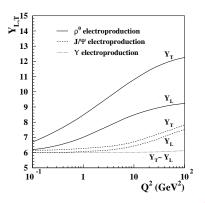
- Q² is the absolute value of the magnitude of the four-momentum of the virtual photon involved in the ep collision.
- -t' is the momentum transfer above the minimum required for the reaction to take place.
- lacksquare is the virtual photon polarization parameter.



- $lack \phi$ is the angle between the scattering plane and the production plane.
- $lackbox{}{\hspace{-0.1cm}$
- φ and ϑ spherical angles between the forward direction of π^+ and forward direction of ρ^0 in the ρ^0 rest frame.



- World data with old Hermes results from M. Tytgat, "Diffractive Production of ρ^0 and ω Vector Mesons at Hermes", PhD. thesis, University Gent, Belgium (2001).
 - Agreement with other experiments very good.
- Theoretical curve matches experimental results (I. Royen and J.-R. Cudell, hep-ph/9807294).
- Going one step further in the analysis: L–T separation.



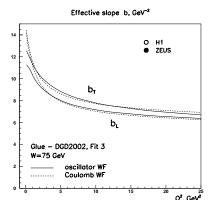
Theoretical curve of $Y_{L/T}$ from Kopeliovich et al. (B.Z. Kopeliovich, J. Nemchik, and Ivan Schmidt, hep-ph/0703118)

■
$$b_{L/T}(Q^2) \propto b_N + const \frac{Y_{L/T}^2}{Q^2 + m_V^2}$$

- lacksquare b_N contribution from nucleon
- $ightharpoonup Y_{L/T}$ relates the size of the $q\bar{q}$ pair to Q^2
- Several specific values computed in the paper

$$b_T - b_L = 0.7 \text{ GeV}^{-2} \text{ at } Q^2 = 0.7 \text{ GeV}^2$$

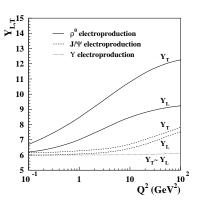
$$b_T - b_I = 0.4 \text{ GeV}^{-2} \text{ at } Q^2 = 5 \text{ GeV}^2$$

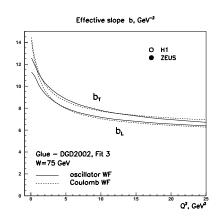


Theoretical curve of b_T and b_L from Ivanov (I. Ivanov Ph.D. Dissertation, Bonn 2002. hep-ph/0303053)

- Coulomb wave function has $b_T b_L = 0$ at low Q².
- Oscillator wave function has $b_T b_L = 0$ at high Q^2 .
- Legend has ZEUS and H1 points, but none on graph
 - No results from any experiment as of yet.
- HERMES kinematics range: 0.5 GeV² < Q² < 7.0 GeV²

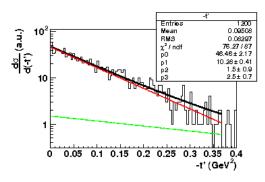
Comparison of theories





- **Exact values disputed, but in general** $|b_L b_T| \approx 1 \text{ GeV}^{-2}$.
- Dispute over $b_L <> b_T$.
- Shrinkage seen for both $b_{L/T}$.

Extraction Method



- Sample histogram of *b* extraction (*b* is p1).
 - Black curve is full fit.
 - Red curve is signal.
 - Green curve is background.
- *b* for unpolarized ρ^0 : $\frac{d\sigma}{d(-t')} = Ae^{-b(-t')}$.

- Use M. Diehl formalism (arXiv:0704.1565v2) for base angular distributions: cross section parameterized by $W_{XY}()$
 - $W_{XY}(\phi, \varphi, \vartheta) = \frac{3}{4\pi} [\cos^2(\vartheta) W_{XY}^{LL}(\phi) + \sqrt{2}\cos(\vartheta)\sin(\vartheta) W_{XY}^{LT}(\phi, \varphi) + \sin^2(\vartheta) W_{XY}^{TT}(\phi, \varphi)]$
 - X, Y = Ù, L
 - Additional dependencies for X, Y = T on ϕ_S

$$W_{UU}^{LL}(\phi) = (u_{++}^{00} + \epsilon u_{00}^{00}) - 2\cos(\phi)\sqrt{\epsilon(1+\epsilon)} \text{Re}(u_{0+}^{00}) - \cos(2\phi)\epsilon u_{-+}^{00}$$

$$\begin{array}{l} \blacksquare \ \ W^{LT}_{UU}(\phi,\varphi) = \cos(\phi+\varphi)\sqrt{\epsilon(1+\epsilon)}\mathrm{Re}(u^{0+}_{0+}-u^{-0}_{0+}) - \\ \cos(\varphi)\mathrm{Re}(u^{0+}_{++}-u^{-0}_{++}+2\epsilon u^{0+}_{00}) + \cos(2\phi+\varphi)\epsilon\mathrm{Re}(u^{0+}_{-+}) - \\ \cos(\phi-\varphi)\sqrt{\epsilon(1+\epsilon)}\mathrm{Re}(u^{0-}_{0+}-u^{+0}_{0+}) + \cos(2\phi-\varphi)\epsilon\mathrm{Re}(u^{+0}_{-+}) \end{array}$$

$$\begin{aligned} & \mathbf{W}_{UU}^{TU}(\phi,\varphi) = \frac{1}{2}(\mathbf{u}_{++}^{++} + \mathbf{u}_{-+}^{++} + 2\epsilon \mathbf{u}_{00}^{++}) + \frac{1}{2}\cos(2\phi + 2\varphi)\epsilon \mathbf{u}_{-+}^{-+} - \cos(\phi)\sqrt{\epsilon(1+\epsilon)}\mathrm{Re}(\mathbf{u}_{0+}^{++} + \mathbf{u}_{0-}^{--}) + \cos(\phi + 2\varphi)\sqrt{\epsilon(1+\epsilon)}\mathrm{Re}(\mathbf{u}_{0+}^{-+}) - \cos(2\varphi)\mathrm{Re}(\mathbf{u}_{-+}^{-+} + \epsilon \mathbf{u}_{00}^{-+}) - \cos(2\phi)\epsilon\mathrm{Re}(\mathbf{u}_{-+}^{++}) + \cos(\phi - 2\varphi)\sqrt{\epsilon(1+\epsilon)}\mathrm{Re}(\mathbf{u}_{0+}^{+-}) + \frac{1}{2}\cos(2\phi - 2\varphi)\epsilon \mathbf{u}_{-+}^{+-} \end{aligned}$$

- etc.
- **u** $_{CD}^{AB}$ are SDME's where A, B, C, D = +, -, 0

- We chose to modify angular distributions by $e^{-b_{L/T}(-t')}$ in appropriate places.
 - $W_{XY}(-t', \phi, \varphi, \vartheta) = \frac{3}{4\pi} [e^{-b_L(-t')} \cos^2(\vartheta) W_{XY}^{LL}(\phi) + e^{-b_{interference}(-t')} \sqrt{2} \cos(\vartheta) \sin(\vartheta) W_{XY}^{LT}(\phi, \varphi) + e^{-b_T(-t')} \sin^2(\vartheta) W_{XY}^{TT}(\phi, \varphi)]$
 - $b_{interference}$ chosen to be $\frac{b_L + b_T}{2}$
- A WORD OF CAUTION: Simply using the ϑ angular distributions is not sufficient to correctly characterize the distributions in order to extract $b_{L/T}$.

 - \blacksquare $A_{L/T}$ proportionality constants.

- Results have not been released yet.
- Current status:
 - All data sets prepared for extraction.
 - Monte Carlos generated to test extraction procedure.
 - Systematic studies chosen.
 - Working on fitting programs.
 - Maximum Likelihood fit method in Minuit.