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FIG. 3. Diffractive φ meson production within the vector-meson-dominance model through
Pomeron exchange.
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FIG. 4. Quark picture for the Pomeron exchange model of φ photoproduction. The

four-momenta of the quarks q1,2,3 are given in parentheses.
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Jq =
1
2

lim
t→0

∫ 1

−1
dx x [Hq(x, ξ, t) + Eq(x, ξ, t)]

Jg =
1
2

lim
t→0

∫ 1

0
dx [Hg(x, ξ, t) + Eg(x, ξ, t)]

at leading twist:                H E H̃ Ẽ

exclusive meson production
factorization in collinear approximation -Collins, Frankfurt, Strikman (1997)-

A ∝ F (x, ξ, t; µ2) ⊗ K(x, ξ, z; log(Q2/µ2) ⊗ Φ(z; µ2)

t

−2ξ

x + ξ x − ξ

at leading-twist: H, E, eH, eE
H and eH conserve the nucleon helicity

E and eE describe the nucleon helicity flip

quantum numbers of final state selects different GPDs

vector mesons (γ∗
L → ρL, ωL, φL): H, E

pseudoscalar mesons (γ∗
L → π, η): eH, eE

factorization for σL (and ρL, ωL, φL ) only

σL − σT suppressed by 1/Q

σT suppressed by 1/Q2

-Ami Rostomyan- – p. 2
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given channel probes specific GPD flavor 
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H̃ Ẽ
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at leading twist: 
higher twist:            HT

vector mesons 
at leading twist: 
higher twist:            

H E
H̃ Ẽ
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form factor at high Q2, whose asymptotic behavior is gov-
erned by a hard scattering mechanism closely related to
high–Q2 exclusive meson production (see Refs. [4, 7] for
reviews). In fact, the charged pion/kaon production am-
plitude contains a “pole term” governed by the pion/kaon
form factor (see Sec. V), and the findings about finite–
size effects in the pion form factor directly impact on the
GPD–based description of meson production.

In theoretical calculations of meson production cross
sections based on QCD factorization one faces several
questions: (a) how to model the GPDs; (b) how to
treat the hard scattering process (choice of scale in αs,
higher–order corrections); (c) how to consistently com-
bine contributions from meson production in small–size
and large–size configurations. While in theory these are
distinct questions which can be discussed separately, in
practice the issues are closely related, implying that the
approximations made in the treatment of one will gener-
ally influence the conclusions one draws about the others.
The situation is reasonably well under control in vec-
tor meson production at collider energies (HERA, EIC),
where the dominant gluon GPD can be reconstructed at
t = 0 from the usual gluon density in a well–controlled
approximation, and the finite size of the produced me-
son (intrinsic transverse momentum) can be incorporated
phenomenologically in the dipole picture in space–time,
justified by the large coherence length of the process,
lcoh ∼ 1/(2MNxB) " 1 fm [8]. (Another approach to
finite–size effects at small xB , based on intrinsic trans-
verse momentum, was pursued in Ref. [9].) In the kine-
matics of fixed–target experiments (HERMES, JLab) the
situation is generally more complicated. Present model
calculations of absolute meson production cross sections
in this region show considerable uncertainty (see e.g.
Refs. [10, 11]). Progress can be expected from further
theoretical studies of the reaction mechanism (space–
time picture, real vs. imaginary part of the amplitude), as
well as from fully differential cross section measurements
(t– and W–dependences for given Q2; L/T separation
and other response functions, polarization observables)
with JLab 12 GeV.

Given the present uncertainties in GPD–based calcu-
lations of absolute meson production cross sections, a
reasonable approach is to concentrate on the analysis of
cross section ratios in which these uncertainties cancel at
least to some extent. Such “ratio observables” can be
used either to test certain qualitative predictions of the
approach to the point–like regime, or to extract specific
information about the GPDs. Examples are:

• The t–dependence of the cross section and its
change with Q2, which measures the transverse size
of the interaction region and the t–dependence of
the GPDs;

• Target and recoil polarization asymmetries, which
can be used to separate the nucleon helicity com-
ponents of the GPDs;

• Beam single–spin and beam + target double–spin

ρ0p 1√
2
[2u + d] + 1√

2
[2ū + d̄] + 9

4
g

ωp 1√
2
[2u − d] + 1√

2
[2ū − d̄] + 3

4
g

φp −[s + s̄] + 3

4
g

ρ+n 2[u − d] − [ū − d̄]

K∗+Λ −
2√
6
[2u − d − s]

+ 1√
6
[2ū − d̄ − s̄]

K∗+Σ0
−

2√
2
[d − s] + 1√

2
[d̄ − s̄]

K∗0Σ+ [d − s] + [d̄ − s̄]

π+n 2[∆u − ∆d] + [∆ū − ∆d̄]

π0p 1√
2
[2∆u + ∆d] − 1√

2
[2∆ū + ∆d̄]

K+Λ −
2√
6
[2∆u − ∆d − ∆s]

−
1√
6
[2∆ū − ∆d̄ − ∆s̄]

K+Σ0
−

2√
2
[∆d − ∆s] − 1√

2
[∆d̄ − ∆s̄]

K0Σ+ [∆d − ∆s] − [∆d̄ − ∆s̄]

TABLE I: Spin/flavor combination of GPDs entering in the
amplitudes of hard exclusive vector (top) and pseudoscalar
(bottom) meson production with proton target, γ∗p → MN ′,
assuming SU(3) flavor symmetry [2, 3, 11]. The p → N ′ tran-
sition GPDs have been converted to flavor–diagonal GPDs in
the proton using relations such as Eq. (4). Vector meson pro-
duction probes the “unpolarized” GPDs H and E (denoted
symbolically by u, d, s, g), pseudoscalar meson production the
“polarized” GPDs H̃ and Ẽ (denoted by ∆u,∆d, ∆s).

asymmetries, which probe asymptotically sublead-
ing amplitudes with transverse (T ) virtual pho-
ton polarization and offer clues about the reaction
mechanism in this sector;

• Ratios of cross sections of similar channels, e.g.
K∗+/ρ+, K0/π0, etc., which test the flavor struc-
ture of the nucleon GPDs.

Specific examples of the use of such observables in strange
meson production will be described below.

An important theoretical tool in describing the elec-
troproduction of strange mesons is SU(3) flavor symme-
try, which has been extensively tested and used in the
analysis of strong reactions and weak decays of strange
particles (see Ref. [12] for a recent review). SU(3) sym-
metry allows one to relate the nucleon to octet hyperon
transition matrix element of a quark bilinear operator to
a linear combination of diagonal matrix elements in the
proton, e.g.

〈Λ|s̄u|p〉 = −
1√
6

[

2〈p|ūu|p〉 − 〈p|d̄d|p〉 − 〈p|s̄s|p〉
]

;

(4)
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π0p 1√
2
[2∆u + ∆d] − 1√

2
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SU(3):
✦ relate nucleon to octet hyperon 
✦ relate               transition GPDs to p→ p′p→ N



✦ constraints on the t-behavior of valence quark and gluon GPDs

✦  t-behavior of sea quarks is unknown
✦ same t-dependence for quarks and gluons
➡ measure the t-dependence of cross section (e.g.                    )

and H̃ q̄(x, ξ, t) = H̃q(−x, ξ, t), so that for x > 0 we have simple forward limits

Hq(x, 0, 0) = q(x), H q̄(x, 0, 0) = q̄(x), H̃q(x, 0, 0) = ∆q(x), H̃ q̄(x, 0, 0) = ∆q̄(x) (12)

in terms of the unpolarized and polarized quark and antiquark densities in the proton. For gluons
we have Hg(x, 0, 0) = xg(x), which is the origin of the additional factors x−1 in the entries for ρ0,
ω, φ. In addition to the replacements in Table 1 one has of course to take the appropriate meson
distribution amplitude and meson decay constants in (8). For the latter we will take fπ = 131MeV,
fK = 160MeV, and

fρ = 209MeV, fω = 187MeV, fφ = 221MeV, fK∗ = 218MeV (13)

from [18].
For αs in (8) we will take the one-loop running coupling at the scale Q2, with three active quark

flavors and ΛQCD = 200MeV. This gives αs = 0.34 at Q2 = 2.5GeV2, where we will show most of
our numerical results. We will not attempt more refined choices of renormalization scale, as were for
instance explored in [19], since our principal use of the leading-order calculation will be to describe
the relative size of cross sections for different exclusive channels.

3 Modeling the generalized parton distributions

For the calculation of exclusive cross sections we use simple models of GPDs. They have been
developed in [20, 4] and been used in most phenomenological analyses so far. Our aim here is not
to improve on these models, but instead to see by how much predictions can vary within the given
framework. We take a factorizing t dependence for H and H̃,

Hq(x, ξ, t) = Hq(x, ξ)F p
1 (t), Hg(x, ξ, t) = Hg(x, ξ)F p

1 (t),

H̃q(x, ξ, t) = H̃q(x, ξ)GA(t)/GA(0), (14)

where F p
1 (t) is the electromagnetic Dirac form factor of the proton and GA(t) the isovector axial form

factor of the nucleon. A more refined version of the model would take different combinations of the
proton and neutron form factors for Hu and Hd, but for the low values of t dominating integrated
cross sections, Fn

1 (t) is much smaller than F p
1 (t) and we simply neglect it. In this sense (14) is

consistent with the sum rule for the first moment
∫

dxHq(x, ξ, t). The ansatz for H̃q is consistent
with the sum rule for

∫

dx H̃q(x, ξ, t) to the extent that the (unknown) isoscalar axial form factor
has the same t dependence as the isovector one. In our numerical evaluations we take the familiar
parameterizations

F p
1 (t) =

4m2
p − 2.8t

4m2
p − t

1

[1 − t/(0.71GeV2)]2
,

GA(t)

GA(0)
=

1

[1 − t/(1.05GeV2)]2
. (15)

We note that for the gluon distribution Hg there is no reason a priori to take the electromagnetic form
factor F p

1 (t) in the ansatz (14). It turns out, however, that F p
1 (t) is well approximated by a dipole

form F p
1 (t) = [1− t/(0.98GeV2)]−2 for t up to about 3GeV2 [21] and thus close to the two-gluon form

factor advocated in [22].
It is rather certain that the ansatz (14) is too simple and can at best reflect the correct t dependence

in a limited range of x and ξ [4, 21, 23]. For x and ξ in the valence region, say above 0.2, the
decrease of GPDs with t is most likely less steep than the one of F p

1 (t) and GA(t). Whereas there are
phenomenological constraints of the t behavior of valence quark GPDs [21] and for gluons at small x
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trends of this slope, b, for all mesons channels, which can be interpreted in simple and intuitive terms in
the following way:

• b increases with W : the size of the nucleon increases as one probes the high W values (i.e. the sea
quarks), which could mean that the sea quarks tend to extend to the periphery of the nucleon.

• b decreases with Q2: as we go to large Q2, the resolution of the probe increases and we tend to see
smaller and smaller objects.
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Figure 5: The slope b as a function of W (on the top) and as a function of Q2 (on the bottom) for the
ρ0, ω, φ and ρ+ channels.

4 Summary

We have presented (preliminary) first ever measurement of cross sections for the exclusive electroproduc-
tion of ρ+ on the proton using the CLAS detector at JLab. These cross sections can be interpreted with
two approaches:

• hadronic approach: the JML model describes well most of the features of the ρ+ cross sections up
to Q2

∼ 4.5 GeV2.

• partonic approach: GPD models fail to describe longitudinal ρ+ cross sections especially for low
W .

We also found the same trends of the variation of the t slope as a function of W and as a function of Q2

for all ρ+, ρ0, ω and φ channels.

5
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FIG. 15: (Color online) Total cross sections as a function of
Q2 for our data (red full circles), previous JLab data (open
circles) [22], Cornell data (stars) for W between 2 and 3.7
GeV [21], HERMES data (triangles) for W between 4 and
6 GeV [23], and HERA data (squares) at high W [26]. The
curves show the predictions of the JML model at W=2.9, 2.45
and 2.1 GeV (top to bottom).

[20, 21, 22, 23, 26] in Fig. 15. The one overlap point at
Q2 = 1.5 GeV 2 is in good agreement with the previous
CLAS measurement [22]. The data sets span the range
from threshold at W=2 GeV up to HERA energies.

The data sets have a similar trend as a function of
Q2 and increase monotonically as a function of W . The
three curves using the JML model at W = 2.1, 2.45 and
2.9 GeV are also plotted for Q2 greater than 1.5 GeV2.
The calculation for W=2.45 GeV, which is close to the
average of our data, seems to overestimate our data by
about a factor of two, although it does reproduce the
existing Cornell data from Ref. [21]. The Cornell data
has a much wider acceptance range in W between 2.0
and 3.7 GeV, so in fact it could be representative of the
cross section at higher W . The new data from CLAS,
together with the existing world data, in particular the
data from HERA, indicate that the qualitative behavior
as a function of Q2 does not change between threshold
and a W of about 100 GeV.

Of interest is the applicability of factorization and the
formalism of GPDs to meson production in general, and
φ production in particular. QCD factorization makes
certain asymptotic predictions about the cross section,
namely that the longitudinal part of the cross section,
σL, becomes dominant as Q2 increases, and that the dif-
ferential cross section will scale as 1/(Q2)3 at fixed t and
xB . For a slow variation of the cross section over the
range of xB of the data (0.2–0.5), this prediction can be
compared to the Q2 dependence integrated over W and
t, although quantitative estimates are modified by power
corrections as well as kinematics near threshold. On the
other hand, the VDM model predicts the cross section to
scale as 1/(Q2 + M2

φ)n with n = 2. The Q2 range of our

)2(GeV2Q
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b
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30  n)2
"+M21/(Q

0.33 ±n = 2.49

FIG. 16: (Color online) Fit to the cross section as a function
of Q2 distribution to determine scaling using data from the
present experiment and CLAS data from Ref. [22].

data is limited, but in combination with previous CLAS
data at lower Q2 [22] (see Fig. 16) we can determine the
scaling exponent of 1/(Q2 + M2

φ)n to be n = 2.49± 0.33.
Present theoretical calculations of the φ production

cross section based on GPD models suffer from consid-
erable quantitative uncertainties when applied to fixed–
target energies. At HERA energies the approach taken
in Ref. [40], which relies on the equivalence of leading-
order QCD factorization with the dipole picture of high–
energy scattering, gives a good description of the abso-
lute cross section, as well as of subtle features such as the
change of the W– and t–dependence with Q2. Essential
for the success of this approach is the fact that the effec-
tive scale of the gluon GPD, Q2

eff, is considerably smaller
than the external photon virtuality, Q2, as has been con-
firmed by detailed quantitative studies [41]. The same
is expected in vector meson production at fixed–target
energies; however, implementing it in a consistent man-
ner in these kinematics has so far proven to be difficult.
Leading-twist, leading-order QCD calculations of the φ
production cross section at JLab and HERMES energies
done with the assumption that Q2

eff = Q2 [7] overestimate
the measured cross section by a factor 5–10 and predict
too steep an energy dependence. A satisfactory solution
to this problem likely requires a comprehensive approach
that combines contributions from small–size (∼ 1/Q)
and hadronic–size configurations in the virtual photon
at moderate coherence lengths (cτ ! 1 fm), and possi-
bly higher–order (NLO) QCD corrections. We note that
a modified perturbative approach [8] which includes the
intrinsic transverse momentum in the meson wave func-
tion has been fairly successful in reproducing the mea-
sured cross sections down to relatively low Q2 and W .

The four-momentum transfer distribution probes the
size of the interaction volume. At high energies, the
exponential slope (see Fig.11) is directly related to the
transverse size bφ ∼ 1

3
R2

int in analogy to the classical

✦ similar trend as a function of Q2

✦ monotonically increase with W
✦ Regge model calculation 
    W = 2.1, 2.45, 2.9 GeV

- Laget (2003) - 
➡ overestimate the CLAS data 15
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FIG. 19: (Color online) R = σL/σT vs. Q2 for our data (solid
circles), previous CLAS result (open circle), HERMES results
(triangles) Cornell data (stars), ZEUS data (open diamonds)
and HERA data (squares). The two determinations from the
present analysis are separated for ease of viewing about the
actual Q2 value of 2.21 GeV2.

GeV2, and 2.0 ≤ W ≤ 3.0 GeV. This data set dou-
bles the range of Q2 previously reported at JLab energies
[22], accruing approximately four times the luminosity re-
quired for sensitivity to smaller cross sections. We have
presented distributions as a function of the momentum
transfer −t, the azimuthal angle Φ between the electron
and hadron scattering planes, as well as angular decay
distributions in the rest frame of the φ-meson.

We have analyzed the angular distributions under the
assumption of SCHC to extract the ratio of longitudinal
to transverse cross sections of R = 0.85 ± 0.24, which is
consistent with the world trend. The longitudinal com-
ponent is comparable to the transverse one, which sug-

gests that we have not yet reached the asymptotic regime
where QCD factorization can be applied without sub-
stantial corrections.

The cross sections have a weak dependence on −t,
which indicates that at this Q2, the photons couple to
configurations of substantially smaller size than the tar-
get. Our data provide a very precise measurement of the
exponential slope bφ at small c∆τ ∼ 0.5 fm, which shows
that we are probing very small distances, approaching
about one third the size of the proton itself. A natu-
ral explanation is that φ production is dominated by the
scattering of small size ss virtual pairs off the target.
This conclusion is supported by the good agreement be-
tween our data and the extension of the JML model from
the real photon point (where it has been calibrated) to
the virtual photon sector. It describes the interaction
between this ss pair and the nucleon by the exchange of
two dressed gluons. We conclude that these constituent
degrees of freedom are appropriate for the description of
φ-meson production at low W and Q2 ∼ 2-3 GeV2.
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✦ applicability of GPD formalism at low
    W data? probe of gluon field in the nucleon
✦ longitudinal cross section is not dominant 
     in low-W kinematics
✦ modified perturbative approach might
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Figure 2: Shematic representations of the Reggeon t-channel exchange (left) and of the handbag diagram
(right) for exclusive vector meson electroproduction.
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Figure 3: PRELIMINARY total cross section as a function of W at fixed Q2, for the reaction γ∗p → nρ+.
The red curves are the result of the JML model. Units are arbitrary on the y axis as the results are still
preliminary.

3.2 The GPD “partonic” approach

The formalism of GPDs is valid in the so-called Bjorken regime, i.e. Q2, ν → ∞ with xB = Q2

2Mν
finite.

It was proven [4] that the dominant process for exclusive meson electroproduction, in the Bjorken limit,
is given by the so-called handbag diagram represented in Fig. 2. The handbag diagram is based on the
notion of factorization in leading-order/leading-twist pQCD between a hard scattering process, exactly
calculable in pQCD, and a nonperturbative nucleon structure part that is parametrized by the GPDs.

3

✦  decrease of total cross section with W
 Regge model    
- Laget (2003) - 

✦  exchange of       and   
✦   good description in all  ranges

ρ+ π+

CLAS preliminary data
- Fradi (2010) hep-ex/10101198 - 
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For mesons, the factorization of the handbag diagram is only valid for the longitudinal part of the cross
section. In the following we discuss the two particular GK [5] and VGG [6] GPD-based calculations that
provide quantitative results for the longitudinal part of the exclusive meson cross sections.

Figure 4 shows longitudinal cross section of γ∗p → nρ+ as a function of W and for fixed Q2. The
results of the calculations of the GK and VGG model are shown, respectively, with the red and the blue
curves. We see that both models fail to reproduce the data. This discrepancy can reach an order of
magnitude at the lowest W values. The trend of these particular GPD calculations is to decrease as W
decreases, whereas the data increase. The same behavior was observed, in the low W region, for the
exclusive electroproduction of the ρ0 [7].
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Figure 4: PRELIMINARY longitudinal cross section as a function of W at fixed Q2, for the reaction
γ∗p → nρ+. The red and the blue curves are the results of the GK and VGG models. Units are arbitrary
on the y axis as the results are still preliminary.

One can conclude that either the GPD formalism is not valid for our Q2 coverage (due to important
higher twist contributions for instance) or there is a fundamental contribution, which is missing in the
way the GPDs are parametrized in the GK and VGG models.

3.3 Comparison of the t slope for the ρ+, ρ0, ω and φ channels

The CLAS collaboration has measured the largest ever set of data for the exclusive electroproduction on
the proton of the vector mesons ρ0 [7], ω [8] and φ [9].

Figure 5 shows the slope of the differential cross section dσ/dt for the ρ+, ρ0, ω and φ channels as
a function of W (in the top part) and as a function of Q2 (in the bottom part). One can see the same

4

✦  decrease of longitudinal cross section with W
✦  GK GPD model 
                     - Goloskokov Kroll  (2005) -
✦  VGG GPD model 
                      - Vanderhaeghen, Guichon, Guidal (1999) 
✦  models do not describe the data
‣ GPD formalism is not applicable 
‣ missing contribution is GPD parameterizations

CLAS preliminary data
- Fradi (2010) hep-ex/10101198 - 
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cross section ratios
✦ cross sections change significantly when varying the nonperturbative input:
     MRST % CTEQ
‣ unpolarized gluon densities at low scales
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Figure 5: Leading-twist cross section for γ∗
L p → ρ0p at Q2 = 2.5GeV2. Shown are the individual

contributions from quark and gluon distributions and their coherent sum. The parton densities in
the double distribution model are taken at scale µ2 = 1.2GeV2 for the upper and at µ2 = 2.5GeV2

for the lower plots.

gluon is larger for x<∼ 10−1 and smaller for x>∼ 10−1. The u quark distribution is quite similar in the
two sets for x>∼ 10−2, whereas the s quark is significantly smaller for CTEQ6. The distributions for
d, ū, d̄ are quite similar for x>∼ 10−1 and larger for CTEQ6 at smaller x. The LO parameterization
of Alekhin [40] has significantly larger u and ū distributions and a smaller gluon than the two other
sets. At µ2 = 1.2GeV2 it has however almost no strange quarks in the proton, which we do not
consider physically very plausible and which is in clear contrast with the results of CTEQ6, where a
dedicated analysis of data constraining the strangeness distribution was performed. Since our study
is crucially dependent on the flavor structure of parton distributions, we have therefore not used [40].
Comparing the different parton sets at the higher scale µ2 = 2.5GeV2 we find a very similar picture.

In the double distribution model of GPDs we take the profile parameter b = 2 for both quark
and gluon distributions. For all mesons we take the asymptotic shape of the distribution amplitude,
given that no direct experimental information is available for them. Theoretical estimates do not give
stronger deviations from the asymptotic form than those we discussed for pseudoscalar mesons, see
e.g. the compilation in [18]. In Fig. 5 we show the individual contributions from quark and gluon
distributions to the ρ0 cross section as well as their coherent sum. The clear difference between the
CTEQ6 and MRST2001 result reflects the current uncertainty on the usual parton densities at low

12

✦ next-to leading order corrections
✦ substantial power corrections 
➡  cross section ratios for similar channels
➡ cancelation of theoretical uncertainties 

5

Note that the theoretical prediction for the ratio Eq. (8)
is independent of the form of the DA of the produced φ
meson and the details of the treatment of the hard scat-
tering process. The GPDs here are taken at an effective
scale Q2

eff < Q2, determined by the effective transverse
size of the ss̄ pair in the production process. The ratio
Eq. (8) can be used to constrain the t–dependence of the
gluon GPDs, and thus the transverse spatial distribution
of gluons in the nucleon, in a largely model–independent
manner, free of the uncertainties of present absolute cross
section calculations in the GPD approach.

At xB ! 0.1 the φ production cross section is mostly
due to the proton helicity–conserving amplitude Hg [the
contribution of the proton helicity–flip amplitude Eg in
Eq. (9) is suppressed], and the amplitude Hg is domi-
nated by its imaginary part, in which the gluon GPD
is sampled at x = ξ ≈ xB/2. In this kinematic region
Eq. (8) takes the simple form

dσL/dt (t)

dσL/dt (t = 0)
=

H2
g (x = ξ, ξ, t)

H2
g (x = ξ, ξ, t = 0)

, (11)

and the t–dependence of the cross section can directly
be interpreted in terms of the t–dependence of the gluon
GPD. In this approximation the data for J/ψ, φ and ρ0

production were analyzed in Refs. [5, 21]. The phe-
nomenological interpretation of the data in this region
and our theoretical understanding of the t–dependence
of the gluon GPD and its change with x are summarized
in Ref. [5].

At xB
>∼ 10−1, the analysis of the ratio Eq. (8) should

include the helicity–flip gluon GPD Eg and the presence
of a possibly sizable real part of the leading–twist am-
plitudes. In particular, a real part of the amplitude can
arise from the D–term in the gluon GPDs, which is not
constrained by the forward limit, and whose magnitude is
largely unknown [19]. We note that a sizable gluonic D–
term would influence also the leading–twist predictions
for ρ0 production (see Ref. [20] for a discussion of the
preliminary CLAS data).

Figure 3 shows the t–dependence of the φ produc-
tion cross section measured in the JLab CLAS experi-
ment [16] (new data were presented recently in Ref. [17]).
The curve shows a fit by a t–dependence of the form
dσ/dt ∝ (1 − t/1.0 GeV2)−4, corresponding to a dipole
form of the t–dependence of Hg in the simplified expres-
sion Eq. (11). This form is theoretically motivated by
the analogy of the large–x two–gluon form factor with
the nucleon axial form factor [21] and describes well the
J/ψ photoproduction data from the FNAL E401 / E458
experiments at higher energies and a larger scale Q2

eff [22].
One sees that it fits well the t–dependence of the CLAS
data for |t| <∼ 1 GeV2. This is very encouraging, and sup-
ports the universal ∆2

⊥
dependence of these processes im-

plied by the approach to the pointlike regime (assuming
the two probe comparable x–values in the gluon GPD).

In the leading–twist approximation, the Fourier trans-
form of the ∆⊥–dependence of the cross section ratio
Eq. (5) is related to the impact parameter dependence of

describes also

high!energy

[FNAL 82 Binkley et al.]

J/ ! data

FIG. 3: The differential cross section of exclusive φ meson
production, γ∗p → φp, as a function of t, as measured by
JLab CLAS [16]. The curve shows a fit by a t–dependence
of the form dσ/dt ∝ (1 − t/1.0 GeV2)−4, corresponding to
a dipole form of the t–dependence of the gluon GPD, which
describes well the J/ψ photoproduction data from the FNAL
E401 / E458 experiments [22].

the GPDs [23, 24]. Provided that Q2 is sufficiently large
to ensure dominance of point–like meson configurations,
this can be used to take transverse images of the relevant
partonic configurations in the target in these processes.
The interpretation of these images is particularly sim-
ple at xB ! 0.1, where one can approximate the gluon
GPDs by the “diagonal” one (ξ = 0), and the coordi-
nate variable b measures the distance of the active quark
from a fixed (x–independent) transverse center of the nu-
cleon. A more general interpretation, valid in the case
ξ &= 0 relevant to JLab experiments, has been described
in Ref. [24]. Generally, one expects the transverse size of
the relevant partonic configurations in meson production
to decrease with increasing xB (see also the discussion in
Refs. [5, 21]). Preliminary results on the xB–dependence
of the t–slope in ρ0 production have recently been re-
ported by the CLAS Collaboration at JLab [20].

Another interesting observable is the ratio of the φ
to the ρ0 and ω production cross sections. If all vector
meson production amplitudes were dominated by gluon
exchange, the cross section ratio would be independent
of xB ,

σL(γ∗p → φp)

σL(γ∗p → ρ0p)
= const. (gluon exch.) (12)

Any xB dependence of the ratio therefore indicates the
presence of quark exchange. This test would be particu-
larly instructive at moderately small xB (10−2 <∼ xB

<∼
10−1), where the amplitudes are expected to be largely

7

(where it induces an asymmetry of the meson distribu-
tion amplitude) as well as in the GPDs. We note that,
as in φ and ρ0 production, the cross section for longitu-
dinal photon polarization can be isolated by measuring
the K∗ → Kπ decay and relying on s–channel helicity
conservation.

Measurements of recoil polarization in γ∗
Lp → K∗+Λ

could also be done with a polarized target. This combi-
nation in principle would allow one to measure the cross
sections corresponding to individual helicity amplitudes,
making it possible to separate H and E without relying
on interference effects.

Another interesting observable is the ratio of ρ+n and
K∗+Λ production cross sections. The ρ+n channel in-
volves nonsinglet quark exchange only, and GPD–based
calculations of the cross section are free from the un-
certainties in the relative strength of gluon and singlet
quark exchange affecting the ρ0p channel [10, 11]. While
not fully model–independent, one can expect the ra-
tio of ρ+n and K∗+Λ production cross sections to be
more reliably described by GPD–based calculations in
the leading–twist approximation than the absolute cross
sections.

A rough estimate of the expected K∗+Λ/ρ+n cross sec-
tion ratio can be obtained if we neglect the differences
in the final–state masses, use the flavor structure of the
production amplitudes as given by SU(3) symmetry (see
Table I), assume that Hu = 2Hd and Eu = 2Ed, and
neglect the contributions from Hs and Es. With these
approximations we obtain

σL(γ∗p → K∗+Λ)

σL(γ∗p → ρ+n)
≈

3

2
, (18)

showing that both are of the same order. More detailed
calculations have been reported in Ref. [11].

Experiments aiming to study K∗Λ production must
take into account that the cross section for the K∗Σ0

channel is likely to be of comparable magnitude. It will
be necessary to separate the two channels, as the Σ0 de-
cays to Λ via emission of a low–energy photon. This
caveat applies also to KΛ and K∗Σ0 production as dis-
cussed in Sec. V.

V. STRANGENESS POLARIZATION IN KΛ
AND KΣ PRODUCTION

Pseudoscalar meson production at high Q2 probes the
“polarized” GPDs H̃ and Ẽ, whose first moments are
given by the axial and pseudoscalar form factors of the
axial vector current operator. At zero momentum trans-
fer the GPD H̃ coincides with the usual polarized quark
densities in the nucleon. In this sense, pseudoscalar me-
son production experiments can probe the spin structure
of the nucleon without using target polarization [28, 29].

A special feature of the pseudoscalar GPD Ẽ is that it
contains a term corresponding to t–channel exchange of
pseudoscalar mesons (see Fig. 4), analogous to the “pole

n, p

!, ",
0
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+
##,
0

KK,
+ 0

$%
L
(Q
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+
K

+
#

(b)

p

(a)

GPD

hard

hard

FIG. 4: (a) QCD factorization in pseudoscalar meson produc-
tion. (b) “Pole” contribution to the GPD Ẽ in π+ and K+

production. This contribution to the amplitude is equivalent
to the virtual photon scattering from a π+/K+ emitted by
the proton.

term” in the pseudoscalar form factor [28, 29]. In the
context of meson production this term corresponds to
the process in which a π+ or K+ is emitted by the nu-
cleon (with |t| ∼ M2

π, M2
K) and interacts with the elec-

tromagnetic probe as a whole, via its EM form factor;
in fact, this process is the basis of measurements of the
π+ and K+ form factor in electroproduction from the
nucleon. Calculations based on the chiral quark–soliton
model of the nucleon [30] show that the π+ pole term
dominates the isovector GPD Ẽ at small t and is largely
responsible for the π+ electroproduction cross section at
|t| ∼ M2

π. The K+ pole term in the p → Λ GPD is less
prominent (because the pole at t = M2

K is further re-
moved from the physical region t < tmin < 0), but it still
contributes significantly to the K+ production cross sec-
tion [11]. From the point of view of SU(3) symmetry the
pole term represents a strong symmetry–breaking effect,
as its strength depends on the pole position determined
by the π/K mass, and unbroken symmetry would imply
Mπ = MK .

In order to access the spin structure of the nucleon as
encoded in the GPD H̃ , and to be able to apply SU(3)
symmetry, one needs to separate the “pole” and “non–
pole” contributions in pseudoscalar meson production.
In the case of pion production this is in principle possi-
ble by comparing the π+n channel with π0p, where the
pole contribution is exactly zero because the π0 is a C–
parity eigenstate and does not have a single–photon cou-
pling. However, the two channels involve the isoscalar

- Diehl, Kugler, Schaefer, Weiss (2005) - 
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ρ0: transverse target-spin asymmetry
theoretically at leading order in 1/Q

(γ∗
L → ρ0

L):

A
sin(φ−φs)
UT =

Im n00
00

u00
00

asymmetry in terms of GPDs

A
sin(φ−φs)
UT ∝

E

H
∝

Eq + Eg

Hq + Hg

experimentally:

Aγ∗

UT (φ, φs) =
Im

`
n00

++ + εn00
00

´

u00
++ + εu00

00

u00
++ and n00

++ are expected to be

negligible

similarly, γ∗
T → ρ0

T :

Aγ∗

UT (φ, φs) =
Im (n++

+++n−−

++ + 2εn++
00 )

u++
+++u−−

++ + 2εu++
00
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✦ cross section asymmetry with respect to transverse target polarization

✦ depends linearly on the helicity-flip GPD E
✦ no kinematic suppression of GPD E with respect to GPD H
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gluon–dominated but singlet quark exchange still makes
a noticeable contribution [18]. In the valence quark re-
gion (xB ∼ 0.2− 0.5), where quark exchange is expected
to be large, the interpretation of a nontrivial xB depen-
dence of the ratio is more model–dependent, as the dif-
ferent quark distributions could in principle “conspire”
to produce a similar xB–dependence as gluon exchange
over a limited range. Still, the ratio is a good observable
for testing the relative importance of singlet quark and
gluon exchange at JLab energies. An interesting cross–
check would be to analyze also the ratio of ρ+n to ρ0p
production cross sections; the former is due to nonsinglet
quark exchange only, the latter involves both quark and
gluon exchange.

Electroproduction of φ mesons could also be used to
probe the light–quark component (ūu, d̄d) of the φ meson,
which arises due to ωφ and ρφ mixing. Specifically, φ
meson production with p → ∆0 transition,

γ∗p → φ∆0, (13)

requires I = 1 and thus light–quark exchange in the t–
channel, and couples primarily to the light–quark com-
ponent of the φ. In this example the ∆0 acts as a “filter”
for the quantum numbers transferred to the produced
meson. The analysis of this process could also incorpo-
rate information on isospin violation in the φ meson from
the φ → ωπ0 decay measured recently in e+e− annihila-
tion [25, 26].

IV. HELICITY–FLIP GPD E FROM RECOIL
POLARIZATION IN K∗Λ PRODUCTION

The “unpolarized” quark GPDs in the nucleon come in
the form of two functions, H and E, corresponding to the
Dirac and Pauli form factors in the matrix element of the
vector current, and related to the possibility of helicity–
conserving and helicity–flipping transitions between the
nucleon states. The Pauli form factor–type GPD E is of
special significance for nucleon structure. Contrary to the
Dirac form factor–type GPD H , which at zero momen-
tum transfer coincides with the usual unpolarized quark
density, the x–dependence of E is essentially unknown.
Only its first moment can be inferred from the nucleon’s
anomalous magnetic moment, and it shows that the dis-
tribution is sizable and likely to play a significant role in
hard exclusive amplitudes. In the impact parameter rep-
resentation, the function E describes the distortion of the
quarks’ longitudinal motion by transverse polarization of
the nucleon state [23]. It is also needed as an ingredient
to the angular momentum sum rule [27].

Extracting information about the Pauli form–factor
type GPD E from experimental data presents a ma-
jor challenge. In the N(e, e′γ)N cross section due to
DVCS and Bethe–Heitler interference the contribution
of E is suppressed for a proton target, and only experi-
ments with neutron (i.e., nuclear) targets offer reasonable
sensitivity. More direct access to E is possible through

leading–twist polarization observables in vector meson
production. The transverse target spin dependence of
the γ∗

Lp → ρ0
Lp cross section is caused by the interfer-

ence of nucleon helicity–flip and nonflip amplitudes and
given by a term linear in the GPD E [2]. The same term
can be accessed by measuring the polarization of the re-
coiling baryon in scattering from an unpolarized target.
Such measurements are possible in γ∗

Lp → K∗+Λ, taking
advantage of the “self–analyzing” nature of the Λ — the
fact that the orientation of the Λ → pπ− decay plane is
almost perfectly correlated with the Λ spin. Such mea-
surements have been widely discussed in connection with
semi–inclusive particle production.

More precisely, the differential cross sections for the
production of longitudinally polarized vector mesons,
γ∗

L(q) + N(p) → VL(q′) + N ′(p′), are of the form

σL(target pol.) = σ0 + (nS)σ1, (14)

σL(recoil pol.) = σ0 + (nS′)σ′

1, (15)

where S and S′ are the target and recoil spin vectors, and
n = q′ × q/|q′ × q| is a transverse vector normal to the
scattering plane. The general amplitude structure of the
process implies that σ′

1 = σ1 for production of natural
parity (1−) vector mesons (ρ, K∗). In the leading–twist
approximation, the relative polarization asymmetries are
given by (cf. Refs. [2, 3])

σ1

σ0

=
σ′

1

σ0

(16)

=
|∆⊥| Im(E∗H)

(1 − ξ2)|H|2 − (ξ2 + t/4M2)|E|2 − 2ξ2Re(E∗H)
,

where H and E are the complex leading–twist amplitudes
proportional to the GPDs, as defined in Ref. [3] [see also
Eq. (10)]. In order to extract this cross section ratio
from recoil polarization data one defines the angle, β, of
the recoil spin relative to the scattering plane, (nS′) =
|S′| sinβ (with sign as specified by the above definition
of n), and calculates the angular asymmetry of the cross
section

A(recoil pol.) ≡

∫ π/2

0

dβ σL(β) −
∫ 0

−π/2

dβ σL(β)

∫ π/2

0

dβ σL(β) +

∫ 0

−π/2

dβ σL(β)

=
2|S′|σ1

πσ0

. (17)

When measuring the asymmetry Eq. (17) in γ∗
Lp →

K∗+Λ, the GPDs probed [cf. Eq. (16)] are the p → Λ
transition GPDs. They are of interest in themselves, con-
taining useful information about hyperon structure. Al-
ternatively, one can use SU(3) symmetry to relate them
to the flavor–diagonal GPDs in the proton, Eq. (4), and
in this way extract information about the elusive pro-
ton GPD E. Such analysis should eventually include
SU(3) breaking both in the meson distribution amplitude

A
γ∗p→ρ0

Lp
target pol.

✦ L/T separation using the angular
     distribution
✦ leading twist contribution: 
compatible with 0 overall value

✦ implies that the Eg is small

A
γ∗p→ρ0

Lp
target pol. = −0.033± 0.058

A
γ∗p→ρ0

Lp
target pol. ∝

E

H
∝ Eq + Eg

Hq + Hg
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✦ no kinematic suppression of GPD E with respect to GPD H
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gluon–dominated but singlet quark exchange still makes
a noticeable contribution [18]. In the valence quark re-
gion (xB ∼ 0.2− 0.5), where quark exchange is expected
to be large, the interpretation of a nontrivial xB depen-
dence of the ratio is more model–dependent, as the dif-
ferent quark distributions could in principle “conspire”
to produce a similar xB–dependence as gluon exchange
over a limited range. Still, the ratio is a good observable
for testing the relative importance of singlet quark and
gluon exchange at JLab energies. An interesting cross–
check would be to analyze also the ratio of ρ+n to ρ0p
production cross sections; the former is due to nonsinglet
quark exchange only, the latter involves both quark and
gluon exchange.

Electroproduction of φ mesons could also be used to
probe the light–quark component (ūu, d̄d) of the φ meson,
which arises due to ωφ and ρφ mixing. Specifically, φ
meson production with p → ∆0 transition,

γ∗p → φ∆0, (13)

requires I = 1 and thus light–quark exchange in the t–
channel, and couples primarily to the light–quark com-
ponent of the φ. In this example the ∆0 acts as a “filter”
for the quantum numbers transferred to the produced
meson. The analysis of this process could also incorpo-
rate information on isospin violation in the φ meson from
the φ → ωπ0 decay measured recently in e+e− annihila-
tion [25, 26].

IV. HELICITY–FLIP GPD E FROM RECOIL
POLARIZATION IN K∗Λ PRODUCTION

The “unpolarized” quark GPDs in the nucleon come in
the form of two functions, H and E, corresponding to the
Dirac and Pauli form factors in the matrix element of the
vector current, and related to the possibility of helicity–
conserving and helicity–flipping transitions between the
nucleon states. The Pauli form factor–type GPD E is of
special significance for nucleon structure. Contrary to the
Dirac form factor–type GPD H , which at zero momen-
tum transfer coincides with the usual unpolarized quark
density, the x–dependence of E is essentially unknown.
Only its first moment can be inferred from the nucleon’s
anomalous magnetic moment, and it shows that the dis-
tribution is sizable and likely to play a significant role in
hard exclusive amplitudes. In the impact parameter rep-
resentation, the function E describes the distortion of the
quarks’ longitudinal motion by transverse polarization of
the nucleon state [23]. It is also needed as an ingredient
to the angular momentum sum rule [27].

Extracting information about the Pauli form–factor
type GPD E from experimental data presents a ma-
jor challenge. In the N(e, e′γ)N cross section due to
DVCS and Bethe–Heitler interference the contribution
of E is suppressed for a proton target, and only experi-
ments with neutron (i.e., nuclear) targets offer reasonable
sensitivity. More direct access to E is possible through

leading–twist polarization observables in vector meson
production. The transverse target spin dependence of
the γ∗

Lp → ρ0
Lp cross section is caused by the interfer-

ence of nucleon helicity–flip and nonflip amplitudes and
given by a term linear in the GPD E [2]. The same term
can be accessed by measuring the polarization of the re-
coiling baryon in scattering from an unpolarized target.
Such measurements are possible in γ∗

Lp → K∗+Λ, taking
advantage of the “self–analyzing” nature of the Λ — the
fact that the orientation of the Λ → pπ− decay plane is
almost perfectly correlated with the Λ spin. Such mea-
surements have been widely discussed in connection with
semi–inclusive particle production.

More precisely, the differential cross sections for the
production of longitudinally polarized vector mesons,
γ∗

L(q) + N(p) → VL(q′) + N ′(p′), are of the form

σL(target pol.) = σ0 + (nS)σ1, (14)

σL(recoil pol.) = σ0 + (nS′)σ′

1, (15)

where S and S′ are the target and recoil spin vectors, and
n = q′ × q/|q′ × q| is a transverse vector normal to the
scattering plane. The general amplitude structure of the
process implies that σ′

1 = σ1 for production of natural
parity (1−) vector mesons (ρ, K∗). In the leading–twist
approximation, the relative polarization asymmetries are
given by (cf. Refs. [2, 3])

σ1

σ0

=
σ′

1

σ0

(16)

=
|∆⊥| Im(E∗H)

(1 − ξ2)|H|2 − (ξ2 + t/4M2)|E|2 − 2ξ2Re(E∗H)
,

where H and E are the complex leading–twist amplitudes
proportional to the GPDs, as defined in Ref. [3] [see also
Eq. (10)]. In order to extract this cross section ratio
from recoil polarization data one defines the angle, β, of
the recoil spin relative to the scattering plane, (nS′) =
|S′| sinβ (with sign as specified by the above definition
of n), and calculates the angular asymmetry of the cross
section

A(recoil pol.) ≡

∫ π/2

0

dβ σL(β) −
∫ 0

−π/2

dβ σL(β)

∫ π/2

0

dβ σL(β) +

∫ 0

−π/2

dβ σL(β)

=
2|S′|σ1

πσ0

. (17)

When measuring the asymmetry Eq. (17) in γ∗
Lp →

K∗+Λ, the GPDs probed [cf. Eq. (16)] are the p → Λ
transition GPDs. They are of interest in themselves, con-
taining useful information about hyperon structure. Al-
ternatively, one can use SU(3) symmetry to relate them
to the flavor–diagonal GPDs in the proton, Eq. (4), and
in this way extract information about the elusive pro-
ton GPD E. Such analysis should eventually include
SU(3) breaking both in the meson distribution amplitude

A
γ∗p→ρ0

Lp
target pol.

✦ no L/T separation yet
✦ compatible with 0 overall value
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gluon–dominated but singlet quark exchange still makes
a noticeable contribution [18]. In the valence quark re-
gion (xB ∼ 0.2− 0.5), where quark exchange is expected
to be large, the interpretation of a nontrivial xB depen-
dence of the ratio is more model–dependent, as the dif-
ferent quark distributions could in principle “conspire”
to produce a similar xB–dependence as gluon exchange
over a limited range. Still, the ratio is a good observable
for testing the relative importance of singlet quark and
gluon exchange at JLab energies. An interesting cross–
check would be to analyze also the ratio of ρ+n to ρ0p
production cross sections; the former is due to nonsinglet
quark exchange only, the latter involves both quark and
gluon exchange.

Electroproduction of φ mesons could also be used to
probe the light–quark component (ūu, d̄d) of the φ meson,
which arises due to ωφ and ρφ mixing. Specifically, φ
meson production with p → ∆0 transition,

γ∗p → φ∆0, (13)

requires I = 1 and thus light–quark exchange in the t–
channel, and couples primarily to the light–quark com-
ponent of the φ. In this example the ∆0 acts as a “filter”
for the quantum numbers transferred to the produced
meson. The analysis of this process could also incorpo-
rate information on isospin violation in the φ meson from
the φ → ωπ0 decay measured recently in e+e− annihila-
tion [25, 26].

IV. HELICITY–FLIP GPD E FROM RECOIL
POLARIZATION IN K∗Λ PRODUCTION

The “unpolarized” quark GPDs in the nucleon come in
the form of two functions, H and E, corresponding to the
Dirac and Pauli form factors in the matrix element of the
vector current, and related to the possibility of helicity–
conserving and helicity–flipping transitions between the
nucleon states. The Pauli form factor–type GPD E is of
special significance for nucleon structure. Contrary to the
Dirac form factor–type GPD H , which at zero momen-
tum transfer coincides with the usual unpolarized quark
density, the x–dependence of E is essentially unknown.
Only its first moment can be inferred from the nucleon’s
anomalous magnetic moment, and it shows that the dis-
tribution is sizable and likely to play a significant role in
hard exclusive amplitudes. In the impact parameter rep-
resentation, the function E describes the distortion of the
quarks’ longitudinal motion by transverse polarization of
the nucleon state [23]. It is also needed as an ingredient
to the angular momentum sum rule [27].

Extracting information about the Pauli form–factor
type GPD E from experimental data presents a ma-
jor challenge. In the N(e, e′γ)N cross section due to
DVCS and Bethe–Heitler interference the contribution
of E is suppressed for a proton target, and only experi-
ments with neutron (i.e., nuclear) targets offer reasonable
sensitivity. More direct access to E is possible through

leading–twist polarization observables in vector meson
production. The transverse target spin dependence of
the γ∗

Lp → ρ0
Lp cross section is caused by the interfer-

ence of nucleon helicity–flip and nonflip amplitudes and
given by a term linear in the GPD E [2]. The same term
can be accessed by measuring the polarization of the re-
coiling baryon in scattering from an unpolarized target.
Such measurements are possible in γ∗

Lp → K∗+Λ, taking
advantage of the “self–analyzing” nature of the Λ — the
fact that the orientation of the Λ → pπ− decay plane is
almost perfectly correlated with the Λ spin. Such mea-
surements have been widely discussed in connection with
semi–inclusive particle production.

More precisely, the differential cross sections for the
production of longitudinally polarized vector mesons,
γ∗

L(q) + N(p) → VL(q′) + N ′(p′), are of the form

σL(target pol.) = σ0 + (nS)σ1, (14)

σL(recoil pol.) = σ0 + (nS′)σ′

1, (15)

where S and S′ are the target and recoil spin vectors, and
n = q′ × q/|q′ × q| is a transverse vector normal to the
scattering plane. The general amplitude structure of the
process implies that σ′

1 = σ1 for production of natural
parity (1−) vector mesons (ρ, K∗). In the leading–twist
approximation, the relative polarization asymmetries are
given by (cf. Refs. [2, 3])

σ1

σ0

=
σ′

1

σ0

(16)

=
|∆⊥| Im(E∗H)

(1 − ξ2)|H|2 − (ξ2 + t/4M2)|E|2 − 2ξ2Re(E∗H)
,

where H and E are the complex leading–twist amplitudes
proportional to the GPDs, as defined in Ref. [3] [see also
Eq. (10)]. In order to extract this cross section ratio
from recoil polarization data one defines the angle, β, of
the recoil spin relative to the scattering plane, (nS′) =
|S′| sinβ (with sign as specified by the above definition
of n), and calculates the angular asymmetry of the cross
section

A(recoil pol.) ≡

∫ π/2

0

dβ σL(β) −
∫ 0

−π/2

dβ σL(β)

∫ π/2

0

dβ σL(β) +

∫ 0

−π/2

dβ σL(β)

=
2|S′|σ1

πσ0

. (17)

When measuring the asymmetry Eq. (17) in γ∗
Lp →

K∗+Λ, the GPDs probed [cf. Eq. (16)] are the p → Λ
transition GPDs. They are of interest in themselves, con-
taining useful information about hyperon structure. Al-
ternatively, one can use SU(3) symmetry to relate them
to the flavor–diagonal GPDs in the proton, Eq. (4), and
in this way extract information about the elusive pro-
ton GPD E. Such analysis should eventually include
SU(3) breaking both in the meson distribution amplitude

Aγ∗p→K∗+Λ
recoil pol.

✦ cross section asymmetry with respect to transverse target polarization

✦ depends linearly on the helicity-flip GPD E
✦ no kinematic suppression of GPD E with respect to GPD H
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channel, and couples primarily to the light–quark com-
ponent of the φ. In this example the ∆0 acts as a “filter”
for the quantum numbers transferred to the produced
meson. The analysis of this process could also incorpo-
rate information on isospin violation in the φ meson from
the φ → ωπ0 decay measured recently in e+e− annihila-
tion [25, 26].
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the form of two functions, H and E, corresponding to the
Dirac and Pauli form factors in the matrix element of the
vector current, and related to the possibility of helicity–
conserving and helicity–flipping transitions between the
nucleon states. The Pauli form factor–type GPD E is of
special significance for nucleon structure. Contrary to the
Dirac form factor–type GPD H , which at zero momen-
tum transfer coincides with the usual unpolarized quark
density, the x–dependence of E is essentially unknown.
Only its first moment can be inferred from the nucleon’s
anomalous magnetic moment, and it shows that the dis-
tribution is sizable and likely to play a significant role in
hard exclusive amplitudes. In the impact parameter rep-
resentation, the function E describes the distortion of the
quarks’ longitudinal motion by transverse polarization of
the nucleon state [23]. It is also needed as an ingredient
to the angular momentum sum rule [27].

Extracting information about the Pauli form–factor
type GPD E from experimental data presents a ma-
jor challenge. In the N(e, e′γ)N cross section due to
DVCS and Bethe–Heitler interference the contribution
of E is suppressed for a proton target, and only experi-
ments with neutron (i.e., nuclear) targets offer reasonable
sensitivity. More direct access to E is possible through
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production. The transverse target spin dependence of
the γ∗

Lp → ρ0
Lp cross section is caused by the interfer-

ence of nucleon helicity–flip and nonflip amplitudes and
given by a term linear in the GPD E [2]. The same term
can be accessed by measuring the polarization of the re-
coiling baryon in scattering from an unpolarized target.
Such measurements are possible in γ∗

Lp → K∗+Λ, taking
advantage of the “self–analyzing” nature of the Λ — the
fact that the orientation of the Λ → pπ− decay plane is
almost perfectly correlated with the Λ spin. Such mea-
surements have been widely discussed in connection with
semi–inclusive particle production.

More precisely, the differential cross sections for the
production of longitudinally polarized vector mesons,
γ∗

L(q) + N(p) → VL(q′) + N ′(p′), are of the form

σL(target pol.) = σ0 + (nS)σ1, (14)

σL(recoil pol.) = σ0 + (nS′)σ′

1, (15)

where S and S′ are the target and recoil spin vectors, and
n = q′ × q/|q′ × q| is a transverse vector normal to the
scattering plane. The general amplitude structure of the
process implies that σ′

1 = σ1 for production of natural
parity (1−) vector mesons (ρ, K∗). In the leading–twist
approximation, the relative polarization asymmetries are
given by (cf. Refs. [2, 3])
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(16)

=
|∆⊥| Im(E∗H)

(1 − ξ2)|H|2 − (ξ2 + t/4M2)|E|2 − 2ξ2Re(E∗H)
,

where H and E are the complex leading–twist amplitudes
proportional to the GPDs, as defined in Ref. [3] [see also
Eq. (10)]. In order to extract this cross section ratio
from recoil polarization data one defines the angle, β, of
the recoil spin relative to the scattering plane, (nS′) =
|S′| sinβ (with sign as specified by the above definition
of n), and calculates the angular asymmetry of the cross
section
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When measuring the asymmetry Eq. (17) in γ∗
Lp →

K∗+Λ, the GPDs probed [cf. Eq. (16)] are the p → Λ
transition GPDs. They are of interest in themselves, con-
taining useful information about hyperon structure. Al-
ternatively, one can use SU(3) symmetry to relate them
to the flavor–diagonal GPDs in the proton, Eq. (4), and
in this way extract information about the elusive pro-
ton GPD E. Such analysis should eventually include
SU(3) breaking both in the meson distribution amplitude

A
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Table 1: Asymmetry Aρ
1 as a function of Q2. Both the statistical errors (first) and the

total systematic errors (second) are listed.

Q2 range 〈Q2〉 [(GeV/c)2] 〈x〉 〈ν〉 [GeV] Aρ
1

0.0004 − 0.005 0.0031 4.0 · 10−5 42.8 −0.030 ± 0.045 ± 0.014

0.005 − 0.010 0.0074 8.4 · 10−5 49.9 0.048 ± 0.038 ± 0.013

0.010 − 0.025 0.017 1.8 · 10−4 55.6 0.063 ± 0.026 ± 0.014

0.025 − 0.050 0.036 3.7 · 10−4 59.9 −0.035 ± 0.027 ± 0.009

0.05 − 0.10 0.072 7.1 · 10−4 62.0 −0.010 ± 0.028 ± 0.008

0.10 − 0.25 0.16 0.0016 62.3 −0.019 ± 0.029 ± 0.009

0.25 − 0.50 0.35 0.0036 60.3 0.016 ± 0.045 ± 0.014

0.5 − 1 0.69 0.0074 58.6 0.141 ± 0.069 ± 0.030

1 − 4 1.7 0.018 59.7 0.000 ± 0.098 ± 0.035

4 − 50 6.8 0.075 55.9 −0.85 ± 0.50 ± 0.39

small in that kinematical domain, which is to be expected if diffraction is the dominant
process for reaction (2).

In Fig. 6 the COMPASS results are compared to the HERMES results on Aρ
1 ob-

tained on a deuteron target [17]. Note that the lowest Q2 and x HERMES points, re-
ferred to as ‘quasi-photoproduction’, come from measurements where the kinematics of
the small-angle scattered electron was not measured but estimated from a MC simulation.
This is in contrast to COMPASS, where scattered muon kinematics is measured even at
the smallest Q2.

]
2
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Figure 6: Aρ
1 as a function of Q2 (left) and x (right) from the present analysis (circles)

compared to HERMES results on the deuteron target (triangles). For the COMPASS
results inner bars represent statistical errors, while the outer bars correspond to the total
error. For the HERMES results vertical bars represent the quadratic sum of statistical
and systematic errors. The curve represents the prediction explained in the text.

The results from both experiments are consistent within errors. The kinematical
range covered by the present analysis extends further towards small values of x and Q2

by almost two orders of magnitude. In each of the two experiments Aρ
1 is measured at

different average W , which is equal to about 10 GeV for COMPASS and 5 GeV for
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Figure 12: Left: The ratio of σU and σ for ρ production versus Q2 at W = 5 GeV. Data
taken from HERMES [35]. The solid (dashed, dash-dotted) line represents our estimate
(obtained with euHu

val + edHd
val, with euHu

val − edHd
val), see text. Right: The helicity cor-

relation ALL for ρ production at W = 5 (10) GeV dashed (dash-dotted) line. Data taken
from COMPASS [48] and HERMES [49]. For other notations cf. to Figs. 3 and 4.

=
2

NT + εNL
| MU

++,++ |2 . (54)

This is the unnatural parity part of NT scaled by NT +εNL, see (42). Integrating over t one
arrives at a cross section σU defined in analogy to σT in (7). Evaluating this cross section
for ρ production from the amplitudes given in (3) and (48) and using the GPDs H̃ described
above, we find the results shown in Fig. 12. The cross section σU (ρ) is rather small but
in agreement with the preliminary HERMES result [35] at Q2 = 2.88 GeV2 within an
admittedly large error. For larger energies our approach will lead to even smaller values
for σU since the valence quark contribution disappears and, as we mentioned above, the
combined gluon and sea contribution is very small (the typical size of gluon plus sea quark
contribution to σU (ρ) is 0.013 nb). We note that for ρ production, the H1 data [25] provide
values for σU that are compatible with zero (e.g. at Q2 = 3 GeV2, σU/σ = 0.03 ± 0.07)
while the ZEUS results [24] are about 1.5σ above zero (e.g. at Q2 " 3.4 GeV2, σU/σ =
0.03 ± 0.02). Both the experimental results are in agreement with our estimates within
errors. An immediate consequence of the cancellation of gluon and sea contributions to the
unnatural parity amplitude is that σU for φ production is very small, in fact compatible
with zero. This is in agreement with the preliminary HERMES data [37] and with the H1
data [32]. Thus, there is indication from both theory and experiment that σU for ρ and φ
production is small. Its neglect in σT seems to be justified. A larger cross section σU is
to be expected for ω production because the combination euH̃u

val + edH̃d
val occurs (see (4))

which is larger than euH̃u
val − edH̃d

val given the relative sign of H̃u
val and H̃d

val.
One may wonder whether or not it is possible to generate a value for σU as large as,
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➡ prediction is 
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In the Regge approach [9] the longitudinal double spin asymmetry Aρ
1 can arise due

to the interference of amplitudes for exchange in the t-channel of Reggeons with natural
parity (Pomeron, ρ, ω, f , A2 ) with amplitudes for Reggeons with unnatural parity (π, A1).
No significant asymmetry is expected when only a non-perturbative Pomeron is exchanged
because it has small spin-dependent couplings as found from hadron-nucleon data for cross
sections and polarisations.

Similarly, in the approach of Fraas [10], assuming approximate validity of SCHC, the
spin asymmetry Aρ

1 arises from the interference between parts of the helicity amplitudes
for transverse photons corresponding to the natural and unnatural parity exchanges in
the t channel. While a measurable asymmetry can arise even from a small contribution of
the unnatural parity exchange, the latter may remain unmeasurable in the cross sections.
A significant unnatural-parity contribution may indicate an exchange of certain Reggeons
like π, A1 or in partonic terms an exchange of qq̄ pairs.

In the same reference a theoretical prediction for Aρ
1 was presented, which is based

on the description of forward exclusive ρ0 leptoproduction and inclusive inelastic lepton-
nucleon scattering by the off-diagonal Generalised Vector Meson Dominance (GVMD)
model, applied to the case of polarised lepton–nucleon scattering. At the values of Bjorken
variable x < 0.2, with additional assumptions [11], Aρ

1 can be related to the A1 asymmetry
for inclusive inelastic lepton scattering at the same x as

Aρ
1 =

2A1

1 + (A1)2
. (4)

This prediction is consistent with the HERMES results for both the proton and deuteron
targets, although with rather large errors.

In perturbative QCD, there exists a general proof of factorisation [12] for exclu-
sive vector meson production by longitudinal photons. It allows a decomposition of the
full amplitude for reaction (2) into three components: a hard scattering amplitude for
the exchange of quarks or gluons, a distribution amplitude for the meson and the non-
perturbative description of the target nucleon in terms of the generalised parton distri-
butions (GPDs), which are related to the internal structure of the nucleon. No similar
proof of factorisation exists for transverse virtual photons, and as a consequence the in-
terpretation of Aρ

1 in perturbative QCD is not possible at leading twist. However, a model
including higher twist effects proposed by Martin et al. [13] describes the behaviour of
both σL as well as of σT reasonably well. An extension of this model by Ryskin [14] for
the spin dependent cross sections allows to relate Aρ

1 to the spin dependent GPDs of
gluons and quarks in the nucleon. The applicability of this model is limited to the range
Q2 ≥ 4 (GeV/c)2. More recently another pQCD-inspired model involving GPDs has been
proposed by Goloskokov and Kroll [15,16]. The non-leading twist asymmetry ALL results
from the interference between the dominant GPD Hg and the helicity-dependent GPD H̃g.
The asymmetry is estimated to be of the order k2

T H̃g/(Q2Hg), where kT is the transverse
momentum of the quark and the antiquark.

Up to now little experimental information has been available on the double spin
asymmetries for exclusive leptoproduction of vector mesons. The first observation of a non-
zero asymmetry Aρ

1 in polarised electron–proton deep-inelastic scattering was reported by
the HERMES experiment [11]. In the deep inelastic region (0.8 < Q2 < 3 (GeV/c)2)
the measured asymmetry is equal to 0.23 ± 0.14 (stat) ± 0.02 (syst) [17], with little
dependence on the kinematical variables. In contrast, for the ‘quasi-real photoproduction’
data, with 〈Q2〉 = 0.13 (GeV/c)2, the asymmetry for the proton target is consistent with

3

- Fraas - 
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[3], from which the charge radius has been extracted.
Extending the measurement of Fπ to larger values of Q2

requires the use of pion electroproduction from a nucleon
target. The pion exchange (t-pole) process, in which a
virtual photon couples to a virtual pion inside the nu-
cleon, dominates the longitudinal pion electroproduction
cross section, σL, at small values of the Mandelstam vari-
able t. There σL exhibits a characteristic t-dependence
and is proportional to F 2

π .
Experimental values of Fπ have previously been de-

termined at CEA and Cornell [4, 5], DESY [6, 7], and
recently at Jefferson Lab [8]. Most of the high Q2 data
have come from experiments at Cornell covering a range
of values in Q2 between 0.28 and 9.77 GeV2. In these ex-
periments Fπ was extracted from the longitudinal cross
sections, which were isolated by subtracting a model of
the transverse contribution from the unseparated cross
sections. Pion electroproduction data were also obtained
at DESY for a value of Q2 of 0.7 GeV2, at an invariant
mass of the photon nucleon system of W=2.19 GeV, and
longitudinal and transverse cross sections were extracted
using the Rosenbluth separation method. In 1997, Jeffer-
son Lab provided the first high precision pion electropro-
duction data for Fπ for values of Q2 between Q2=0.6 and
1.6 GeV2 at W=1.95 GeV [8]. For an updated analysis
of these data see reference [9]. These data give a precise
determination of σL with a significant improvement in
the experimental uncertainty. The results presented here
extend the Q2 range to 2.45 GeV2 and address questions
of model dependence in the extraction of Fπ .

The experiment described here was carried out in Hall
C at Thomas Jefferson National Accelerator Facility (Jef-
ferson Lab). Pion electroproduction cross sections were
measured from hydrogen and deuterium targets. The
data were taken at two beam energies for each of the
two values of Q2 at W=2.22 GeV. Charged pions were
detected in the High Momentum Spectrometer (HMS),
while the scattered electrons were detected in the Short
Orbit Spectrometer (SOS). Both spectrometers include
two drift chambers for track reconstruction and scintil-
lator arrays for triggering. A detailed description of the
Jefferson Lab Hall C spectrometers can be found in ref-
erence [10].

In order to select electrons in the SOS, a gas Čerenkov
detector containing Freon-12 at atmospheric pressure was
used in combination with a lead-glass calorimeter. Posi-
tively charged pions were identified in the HMS using an
aerogel Čerenkov detector with refractive index of 1.03
[11]. In the case of pion production at negative polar-
ity, electrons were rejected using a gas Čerenkov detector
containing C4F10 at 0.47 atm. Any remaining contami-
nation from real electron-proton coincidences was elimi-
nated with a coincidence time cut of ±1 ns. Background
from alumininum target cell walls (2-4% of the yield)
and random coincidences (∼1%) were subtracted from
the charge normalized yields. The exclusive neutron fi-
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FIG. 1: Representative example of the measured cross sec-

tions, d2σ
dtdφ

as a function of φ at Q2=1.6 GeV2 for two values
of ε. The curves shown represent the model cross section used
in the Monte Carlo simulation.

nal state was selected with a cut on the reconstructed
missing mass. The relevant electroproduction kinematic
variables Q2, W and t were reconstructed from the mea-
sured spectrometer quantities. Experimental yields were
calculated after correcting for several inefficiencies, the
dominant sources being particle tracking efficiency (3-
4%), pion absorption (4.8%), and computer dead time
(1-11%). The net uncertainty in these corrections is dom-
inated by the uncertainty in the absorption of the pions
(∼2%).

The unpolarized pion electroproduction cross section
can be written as the product of a virtual photon flux
factor and a virtual photon cross section,

d5σ

dΩedE′
edΩπ

= J (t, φ → Ωπ)Γv
d2σ

dtdφ
, (2)

where J (t, φ → Ωπ) is the Jacobian of the transfor-
mation from dtdφ to dΩπ, φ is the azimuthal angle
between the scattering and the reaction plane, and

Γv=
α

2π2

E′

e

Ee

1
Q2

1
1−ε

W 2−M2

2M is the virtual photon flux fac-
tor. The virtual photon cross section can be expressed
in terms of contributions from transversely and longitu-
dinally polarized photons,

2π
d2σ

dtdφ
=

dσT

dt
+ ε

dσL

dt
+

√

2ε(1 + ε)
dσLT

dt
cosφ (3)

+ ε
dσTT

dt
cos2φ.

Here, ε =
(

1 + 2 |q2|
Q2 tan2 θ

2

)−1

is the virtual photon po-

larization, where q
2 is the square of the three-momentum

transferred to the nucleon and θ is the electron scatter-
ing angle. The individual components in equation 3 were
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[3], from which the charge radius has been extracted.
Extending the measurement of Fπ to larger values of Q2

requires the use of pion electroproduction from a nucleon
target. The pion exchange (t-pole) process, in which a
virtual photon couples to a virtual pion inside the nu-
cleon, dominates the longitudinal pion electroproduction
cross section, σL, at small values of the Mandelstam vari-
able t. There σL exhibits a characteristic t-dependence
and is proportional to F 2

π .
Experimental values of Fπ have previously been de-

termined at CEA and Cornell [4, 5], DESY [6, 7], and
recently at Jefferson Lab [8]. Most of the high Q2 data
have come from experiments at Cornell covering a range
of values in Q2 between 0.28 and 9.77 GeV2. In these ex-
periments Fπ was extracted from the longitudinal cross
sections, which were isolated by subtracting a model of
the transverse contribution from the unseparated cross
sections. Pion electroproduction data were also obtained
at DESY for a value of Q2 of 0.7 GeV2, at an invariant
mass of the photon nucleon system of W=2.19 GeV, and
longitudinal and transverse cross sections were extracted
using the Rosenbluth separation method. In 1997, Jeffer-
son Lab provided the first high precision pion electropro-
duction data for Fπ for values of Q2 between Q2=0.6 and
1.6 GeV2 at W=1.95 GeV [8]. For an updated analysis
of these data see reference [9]. These data give a precise
determination of σL with a significant improvement in
the experimental uncertainty. The results presented here
extend the Q2 range to 2.45 GeV2 and address questions
of model dependence in the extraction of Fπ .

The experiment described here was carried out in Hall
C at Thomas Jefferson National Accelerator Facility (Jef-
ferson Lab). Pion electroproduction cross sections were
measured from hydrogen and deuterium targets. The
data were taken at two beam energies for each of the
two values of Q2 at W=2.22 GeV. Charged pions were
detected in the High Momentum Spectrometer (HMS),
while the scattered electrons were detected in the Short
Orbit Spectrometer (SOS). Both spectrometers include
two drift chambers for track reconstruction and scintil-
lator arrays for triggering. A detailed description of the
Jefferson Lab Hall C spectrometers can be found in ref-
erence [10].

In order to select electrons in the SOS, a gas Čerenkov
detector containing Freon-12 at atmospheric pressure was
used in combination with a lead-glass calorimeter. Posi-
tively charged pions were identified in the HMS using an
aerogel Čerenkov detector with refractive index of 1.03
[11]. In the case of pion production at negative polar-
ity, electrons were rejected using a gas Čerenkov detector
containing C4F10 at 0.47 atm. Any remaining contami-
nation from real electron-proton coincidences was elimi-
nated with a coincidence time cut of ±1 ns. Background
from alumininum target cell walls (2-4% of the yield)
and random coincidences (∼1%) were subtracted from
the charge normalized yields. The exclusive neutron fi-
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in the Monte Carlo simulation.

nal state was selected with a cut on the reconstructed
missing mass. The relevant electroproduction kinematic
variables Q2, W and t were reconstructed from the mea-
sured spectrometer quantities. Experimental yields were
calculated after correcting for several inefficiencies, the
dominant sources being particle tracking efficiency (3-
4%), pion absorption (4.8%), and computer dead time
(1-11%). The net uncertainty in these corrections is dom-
inated by the uncertainty in the absorption of the pions
(∼2%).

The unpolarized pion electroproduction cross section
can be written as the product of a virtual photon flux
factor and a virtual photon cross section,

d5σ

dΩedE′
edΩπ

= J (t, φ → Ωπ)Γv
d2σ

dtdφ
, (2)

where J (t, φ → Ωπ) is the Jacobian of the transfor-
mation from dtdφ to dΩπ, φ is the azimuthal angle
between the scattering and the reaction plane, and

Γv=
α

2π2

E′

e

Ee

1
Q2

1
1−ε

W 2−M2

2M is the virtual photon flux fac-
tor. The virtual photon cross section can be expressed
in terms of contributions from transversely and longitu-
dinally polarized photons,

2π
d2σ

dtdφ
=

dσT

dt
+ ε

dσL

dt
+

√

2ε(1 + ε)
dσLT

dt
cosφ (3)

+ ε
dσTT

dt
cos2φ.

Here, ε =
(

1 + 2 |q2|
Q2 tan2 θ

2

)−1

is the virtual photon po-

larization, where q
2 is the square of the three-momentum

transferred to the nucleon and θ is the electron scatter-
ing angle. The individual components in equation 3 were

2

[3], from which the charge radius has been extracted.
Extending the measurement of Fπ to larger values of Q2

requires the use of pion electroproduction from a nucleon
target. The pion exchange (t-pole) process, in which a
virtual photon couples to a virtual pion inside the nu-
cleon, dominates the longitudinal pion electroproduction
cross section, σL, at small values of the Mandelstam vari-
able t. There σL exhibits a characteristic t-dependence
and is proportional to F 2

π .
Experimental values of Fπ have previously been de-

termined at CEA and Cornell [4, 5], DESY [6, 7], and
recently at Jefferson Lab [8]. Most of the high Q2 data
have come from experiments at Cornell covering a range
of values in Q2 between 0.28 and 9.77 GeV2. In these ex-
periments Fπ was extracted from the longitudinal cross
sections, which were isolated by subtracting a model of
the transverse contribution from the unseparated cross
sections. Pion electroproduction data were also obtained
at DESY for a value of Q2 of 0.7 GeV2, at an invariant
mass of the photon nucleon system of W=2.19 GeV, and
longitudinal and transverse cross sections were extracted
using the Rosenbluth separation method. In 1997, Jeffer-
son Lab provided the first high precision pion electropro-
duction data for Fπ for values of Q2 between Q2=0.6 and
1.6 GeV2 at W=1.95 GeV [8]. For an updated analysis
of these data see reference [9]. These data give a precise
determination of σL with a significant improvement in
the experimental uncertainty. The results presented here
extend the Q2 range to 2.45 GeV2 and address questions
of model dependence in the extraction of Fπ .

The experiment described here was carried out in Hall
C at Thomas Jefferson National Accelerator Facility (Jef-
ferson Lab). Pion electroproduction cross sections were
measured from hydrogen and deuterium targets. The
data were taken at two beam energies for each of the
two values of Q2 at W=2.22 GeV. Charged pions were
detected in the High Momentum Spectrometer (HMS),
while the scattered electrons were detected in the Short
Orbit Spectrometer (SOS). Both spectrometers include
two drift chambers for track reconstruction and scintil-
lator arrays for triggering. A detailed description of the
Jefferson Lab Hall C spectrometers can be found in ref-
erence [10].

In order to select electrons in the SOS, a gas Čerenkov
detector containing Freon-12 at atmospheric pressure was
used in combination with a lead-glass calorimeter. Posi-
tively charged pions were identified in the HMS using an
aerogel Čerenkov detector with refractive index of 1.03
[11]. In the case of pion production at negative polar-
ity, electrons were rejected using a gas Čerenkov detector
containing C4F10 at 0.47 atm. Any remaining contami-
nation from real electron-proton coincidences was elimi-
nated with a coincidence time cut of ±1 ns. Background
from alumininum target cell walls (2-4% of the yield)
and random coincidences (∼1%) were subtracted from
the charge normalized yields. The exclusive neutron fi-
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tions, d2σ
dtdφ

as a function of φ at Q2=1.6 GeV2 for two values
of ε. The curves shown represent the model cross section used
in the Monte Carlo simulation.

nal state was selected with a cut on the reconstructed
missing mass. The relevant electroproduction kinematic
variables Q2, W and t were reconstructed from the mea-
sured spectrometer quantities. Experimental yields were
calculated after correcting for several inefficiencies, the
dominant sources being particle tracking efficiency (3-
4%), pion absorption (4.8%), and computer dead time
(1-11%). The net uncertainty in these corrections is dom-
inated by the uncertainty in the absorption of the pions
(∼2%).

The unpolarized pion electroproduction cross section
can be written as the product of a virtual photon flux
factor and a virtual photon cross section,

d5σ

dΩedE′
edΩπ

= J (t, φ → Ωπ)Γv
d2σ

dtdφ
, (2)

where J (t, φ → Ωπ) is the Jacobian of the transfor-
mation from dtdφ to dΩπ, φ is the azimuthal angle
between the scattering and the reaction plane, and

Γv=
α

2π2

E′

e

Ee

1
Q2

1
1−ε

W 2−M2

2M is the virtual photon flux fac-
tor. The virtual photon cross section can be expressed
in terms of contributions from transversely and longitu-
dinally polarized photons,

2π
d2σ

dtdφ
=

dσT

dt
+ ε

dσL

dt
+

√

2ε(1 + ε)
dσLT

dt
cosφ (3)

+ ε
dσTT

dt
cos2φ.

Here, ε =
(

1 + 2 |q2|
Q2 tan2 θ

2

)−1

is the virtual photon po-

larization, where q
2 is the square of the three-momentum

transferred to the nucleon and θ is the electron scatter-
ing angle. The individual components in equation 3 were

3

determined from a simultaneous fit to the φ dependence
of the measured cross sections, d2σ

dtdφ
, at two values of ε.

A representative example as a function of φ is shown in
Figure 1.

The separated cross sections are determined at fixed
values of W , Q2 and t, common for both high and low
values of ε. However, the acceptance covers a range in
these quantities, thus the measured yields represent an
average over that range. Note that each t-bin has a differ-
ent average value of Q2, W . In order to minimize errors
resulting from averaging, the experimental cross sections
were calculated by comparing the experimental yields to
a Monte Carlo simulation of the experiment. To account
for variations of the cross section across the acceptance
the simulation uses a 1H(e,e′π+)n model based on pion
electroproduction data. In addition, the Monte Carlo in-
cludes a detailed description of the spectrometers, mul-
tiple scattering, ionization energy loss, pion decay, and
radiative processes. The separated cross sections, σL and
σT , are shown in Figure 2.

The uncertainty in the separated cross sections has
both statistical and systematic sources. The statistical
uncertainty in σT + εσL ranges between 1 and 2%. Sys-
tematic uncertainties that are uncorrelated between high
and low ε points are amplified by a factor of 1/∆ε in
the L-T separation. Correlated systematic uncertainties
propagate directly into the separated cross sections. Un-
certainties in the scattering kinematics and beam energy
were parameterized using data from the over-constrained
1H(e, e′p) reaction. Beam energy and spectrometer mo-
menta were determined to 0.1% while the spectrometer
angles were determined to ≈0.5 mrad. The spectrometer
acceptance was verified to better than 2% by compar-
ing e − p elastic scattering data to a global parameter-
ization [12]. The uncorrelated systematic uncertainty is
dominated by acceptance (0.6-1.1%) resulting in a total
uncorrelated uncertainty of 0.9 to 1.2%. The correlated
systematic uncertainty is mainly due to radiative correc-
tions (2%), pion absorption (2%), and pion decay (1%)
resulting in a total correlated uncertainty of 3.5%. A
third category of systematic uncertainties consists of un-
certainties that differ in size between ε points, but may
influence the t-dependence at a fixed value of ε in a corre-
lated way. The “t-correlated” uncertainty is dominated
by acceptance (0.6%), kinematics (0.8-1.1%) and model
dependence (1.1-1.3%) resulting in a partially correlated
uncertainty of 1.8 and 1.9%.

In order to determine Fπ, the experimental results for
σL are compared to a Regge model calculation by Van-
derhaeghen, Guidal and Laget (VGL) [13]. In this ap-
proach, pion electroproduction is described as the ex-
change of Regge trajectories for π- and ρ-like particles.
Since most model parameters are fixed by pion photopro-
duction data, Fπ and the πργ transition form factor are
the only free parameters. Both form factors are parame-
terized by a monopole form, [1+Q2/Λ2

i ]
−1, but the cutoff
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FIG. 2: Separated cross sections, σL and σT at central values
of Q2=1.60 (2.45) GeV2. Note that the average values of W
and Q2 are different for each −t-bin. The error bar indicates
statistical and uncorrelated systematic uncertainty in both ε
and −t combined in quadrature. The error band denote the
correlated part of the systematic uncertainty by which all data
points move collectively. The curves denote VGL Regge calcu-
lations for σL (solid line) and σT (dashed line) with values of
Λ2

π=0.513 (0.491) GeV2 and Λ2
ρ=1.1 GeV2. The discontinu-

ities in the σL curve result from the different average values
of W and Q2 for the various t-bins.

Q2 (GeV2) Fπ

1.60 0.243±0.012
2.45 0.167±0.010

TABLE I: Extracted values for Fπ at a value of W=2.22
GeV. The error on Fπ combines statistical and experimental
systematic uncertainties in quadrature.

parameter, Λ2
ρ, is not as well constrained as the pion cut-

off parameter, Λ2
π. Varying Λ2

ρ between 0.6 and 2.1 GeV2

changes σT by 13% (30%) at Q2 of 1.60 (2.45), but has
little influence on σL. Thus, Fπ can be determined in a
one parameter fit from a comparison of the longitudinal
experimental cross section to the one predicted from the
Regge model.

A comparison of our data to the VGL prediction is
shown in Figure 2. The t-dependence of the longitudinal
cross section is well described at both central values of
Q2. However, the transverse cross section is underpre-
dicted systematically. The value of Fπ was determined
from a least squares fit of the Regge model prediction to
the data, and the resulting values are shown in Table I.

The extraction of Fπ from σL relies on the domi-
nance of the pion exchange term. To test the pole dom-

π+

✦ two beam energies
➡ Rosenbluth separation

✦ simultaneous fit to the angular 
distribution

✦ L/T separated cross sections
✦ longitudinal cross section is well 
reproduced by the model prediction:
pion and rho Regge trajectory 
exchange

- Vanderhaeghen, Guidal, Laget (1997) -
✦ transverse component undershoot

- The Jefferson Lab Fpi-2 Collaboration (2006) -
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            cross section from HERMESπ+

✦ no L/T separation
✦ longitudinal component is expected to dominate (large t)
     GPD model calculations
✦ GPD      is considered to be dominated by the t-channel pion pole
✦       is neglected
✦ leading order calculations underestimate the data
✦ power corrections agree with data
     Regge model calculations
✦ transverse component of the cross section 6-8% at -t’<0.07 GeV2 
✦ the same model underestimate the JLAB data 
     (holds also for HERMES higher W kinematics?) 

LO

LO + power correctionslongitudinal
X-section total 

X-section

- HERMES Collaboration  (2007) -
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FIG. 4: Differential cross section for exclusive π+ production by virtual photons as a function of −t′ for four Q2 bins. The
inner error bars represent the statistical uncertainties and the outer error bars represent the quadratic sum of statistical and
systematic uncertainties. The curves represent calculations based on a GPD model [15] for dσL

dt′
using a Regge-type ansatz for

the t′ dependence (dashed-dotted lines: leading-order calculations, solid lines: with power corrections) and a Regge model [36]
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FIG. 5: Cross section for exclusive π+ production by vir-
tual photons as a function of Q2 for three xB bins and inte-
grated over t′ (colour online). The inner error bars represent
the statistical uncertainties and the outer error bars repre-
sent the quadratic sum of statistical and systematic uncer-
tainties. The curves represent calculations based on a GPD
model [15] for σL using a Regge-type ansatz for the t′ depen-
dence (dashed-dotted lines: leading-order calculations, solid
lines: with power corrections) and a Regge model [36] for σ
(dashed lines). The thin, medium and thick lines correspond
to the low, medium and high xB values, respectively.

from the GPD model [15] with the inclusion of the power
corrections, although the magnitude of the cross section
is underestimated. The data support the order of magni-
tude of the power corrections for the calculations by the
GPD model [15] at low −t′, a region where the longitu-
dinal part of the cross section is expected to dominate,
and for the available Q2 range.

Both the transverse and longitudinal parts of the cross
section were computed using a Regge model [36], where

pion production is described by the exchange of π and ρ
Regge trajectories. In this formalism, the meson-nucleon
coupling constants are fixed by pion photoproduction
data. In the original version [20], the ππγ form factor
is fixed by pion form factor measurements, while the πργ
transition form factor is unconstrained. In the version
used here [36], both form factors are taken to be both
Q2- and t′-dependent. The dashed (dotted) lines in Fig. 4
show the total (longitudinal) cross section computed us-
ing the Regge model. In this model the transverse part of
the cross section is estimated to represent from 6% to 8%
of the total cross section at −t′ = 0.07 GeV2 and from
15% to 25% of the total cross section integrated over t′,
confirming the expected suppression of the transverse to
the longitudinal part of the cross section. However data
from JLab [25] at lower center of mass energy (W 2 = 4.9
GeV2) show that the transverse part of the cross section
is underestimated by the Regge model by a factor of three
to four. It is not clear if this also holds at the higher
W 2 and −t′ values of the Hermes data. Compared to
the calculations for the longitudinal cross section from
the Regge model (dotted lines), the t′ dependence of the
GPD model [15] (solid lines) in Fig. 4 appears too steep.
The total cross section computed by the Regge model
describes well the t′ dependence of the differential cross
section (dashed line on Fig. 4) and the Q2 dependence
of the cross section integrated over t′ (dashed lines on
Fig. 5). The model calculations give also a good descrip-
tion of the magnitude of the data except at low −t′ for
Q2 < 3 GeV2, where the calculations overestimate the
data up to 70%.

In conclusion, the cross section was measured for ex-
clusive electroproduction of π+ mesons from a hydrogen
target as a function of −t′ for four Q2 bins and as a func-
tion of Q2 for three xB bins. A model calculation for
the longitudinal part of the virtual-photon cross section

H̃
Ẽ
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Figure 2: The set of six Fourier amplitudes (AUT,!) describing the
sine modulations of the single-spin azimuthal asymmetry for unpo-
larized (U) beam and transverse (T) target polarization, for the ex-
clusive event sample. The error bars (bands) represent the statis-
tical (systematic) uncertainties. The results receive an additional
8.2% scale uncertainty corresponding to the target polarization un-
certainty.

tons, while the other Fourier amplitudes are expected to
be suppressed [9] by at least one power of 1/Q due to
interference between contributions from longitudinal and
transverse virtual photons, and by 1/Q2 due to terms in-
volving only transverse virtual photons.

Most of the Fourier amplitudes shown in Fig. 2 are
small or consistent with zero, except Asin φS

UT," . This am-
plitude is found to be large and positive indicating a sig-
nificant contribution from the transverse-to-longitudinal
helicity transition of the virtual photon, i.e.,

Asin φS

UT," ∝
∑

ν′

M∗
0ν′++ M0ν′0−

= M∗
0+++ M0+0− + M∗

0−++ M0−0−,

(12)

where Mµ′ν′µν are helicity amplitudes with µ′ (µ) and
ν′ (ν) denoting the helicities of the pion (virtual photon)
and the neutron (proton), respectively. These amplitudes

are proportional to
√
−t′

|µ−ν−µ′+ν′|
. In the framework

of GPDs, the amplitude M0−++ is associated at leading
twist with virtual-photon helicity flip in the t-channel [18],
which is proportional to

√
−t′ and hence is expected to

vanish for −t′ → 0. Among higher-twist contributions the
one that involves the parton-helicity-flip GPDs HT and
H̃T need not vanish at small values of |t′|. Moreover, in
the more general framework of helicity amplitudes and the
Regge model, Asin φS

UT," receives contributions from natural
and unnatural-parity exchange [33, 17], which allow it to
remain constant as a function of −t′, as the data in Fig. 2
suggest. Lack of parameterizations of the photoabsorption
cross sections and interference terms [18] involving trans-
verse virtual photons does not allow further interpretation
of the corresponding Fourier amplitudes. Any model that
describes exclusive pion production will need to describe
not only the leading-twist Fourier amplitude, but also the
other contributions to the target-spin azimuthal asymme-
try.

Of special interest in the present measurement is the

Fourier amplitude Asin(φ−φS)
UT," in case of production by lon-

gitudinal photons, which can be compared with GPD mod-
els. It is related to the parton-helicity-conserving part of
the scattering process and is sensitive to the interference
between H̃ and Ẽ [13, 16]:

Asin(φ−φS)
UT," = −

√
−t′

Mp

× ξ
√

1 − ξ2 Im(Ẽ∗H̃)

(1 − ξ2)H̃2 − tξ2

4M2
p
Ẽ2 − 2ξ2 Re(Ẽ∗H̃)

,
(13)

where the transition form factors H̃ and Ẽ denote con-
volutions of hard scattering kernels and the pion distri-
bution amplitude with the GPDs H̃ and Ẽ, respectively.
Note that in the models described below terms propor-
tional to the cosφ and cos(2φ) modulation of the spin-
averaged cross section are not included. In the measure-
ment presented here these terms are not known, although
they nonetheless contribute to the values of the extracted
Fourier amplitudes.

Figure 3 shows in more detail the extracted Fourier

amplitude Asin(φ−φS)
UT," as a function of −t′. The solid and

dotted curves represent the leading-twist, leading-order in
αs calculations of this amplitude for longitudinal virtual
photons using two variants of the GPD model of [20]. The
modelling of the GPD Ẽ relies here, even at larger val-
ues of −t, on the dominance of the pion pole 1/(m2

π − t)
in the pion exchange amplitude, with mπ the pion mass.

Then Ẽ is real and positive, and the value of Asin(φ−φS)
UT,"

is typically predicted to be large and negative, while it
must sharply vanish at the kinematic boundary −t′ = 0
(see solid curve). The data qualitatively disagree with
such a simplified GPD model. The “Regge-ized” variant
of the GPD-Ẽ model [20], containing more than only a
pion t-channel exchange, results in the dash-dotted curve.
In such a model the asymmetry can become positive at
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π+

✦ 6 azimuthal moments extracted 
according to - Diehl, Sapeta  (2005) - 
✦ no L/T separation 
✦ small overall value for leading 
asymmetry
✦ unexpected large overall value for 
➡ evidence of contribution from 
transversely polarized photons

- HERMES Collaboration  (2007) -
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-HERMES Collaboration: arXiv:0907.2596 (2009)-

6 azimuthal moments extracted according to

-Diehl, Sapeta (2005)-

average kinematics:

〈−t′〉 = 0.18 GeV2

〈xB〉 = 0.13

〈Q2〉 = 2.38 GeV2

no γ∗
L/γ∗

T separation

small overall value for leading asymmetry

amplitude A
sin(φ−φs)
UT

unexpected large overall value for asymmetry

amplitude Asin φs

UT

other moments: consistent with 0

evidence of contributions from transversely polar-

ized photons

-Ami Rostomyan- – p. 20
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Figure 2: The set of six Fourier amplitudes (AUT,!) describing the
sine modulations of the single-spin azimuthal asymmetry for unpo-
larized (U) beam and transverse (T) target polarization, for the ex-
clusive event sample. The error bars (bands) represent the statis-
tical (systematic) uncertainties. The results receive an additional
8.2% scale uncertainty corresponding to the target polarization un-
certainty.

tons, while the other Fourier amplitudes are expected to
be suppressed [9] by at least one power of 1/Q due to
interference between contributions from longitudinal and
transverse virtual photons, and by 1/Q2 due to terms in-
volving only transverse virtual photons.

Most of the Fourier amplitudes shown in Fig. 2 are
small or consistent with zero, except Asin φS

UT," . This am-
plitude is found to be large and positive indicating a sig-
nificant contribution from the transverse-to-longitudinal
helicity transition of the virtual photon, i.e.,

Asin φS

UT," ∝
∑

ν′

M∗
0ν′++ M0ν′0−

= M∗
0+++ M0+0− + M∗

0−++ M0−0−,

(12)

where Mµ′ν′µν are helicity amplitudes with µ′ (µ) and
ν′ (ν) denoting the helicities of the pion (virtual photon)
and the neutron (proton), respectively. These amplitudes

are proportional to
√
−t′

|µ−ν−µ′+ν′|
. In the framework

of GPDs, the amplitude M0−++ is associated at leading
twist with virtual-photon helicity flip in the t-channel [18],
which is proportional to

√
−t′ and hence is expected to

vanish for −t′ → 0. Among higher-twist contributions the
one that involves the parton-helicity-flip GPDs HT and
H̃T need not vanish at small values of |t′|. Moreover, in
the more general framework of helicity amplitudes and the
Regge model, Asin φS

UT," receives contributions from natural
and unnatural-parity exchange [33, 17], which allow it to
remain constant as a function of −t′, as the data in Fig. 2
suggest. Lack of parameterizations of the photoabsorption
cross sections and interference terms [18] involving trans-
verse virtual photons does not allow further interpretation
of the corresponding Fourier amplitudes. Any model that
describes exclusive pion production will need to describe
not only the leading-twist Fourier amplitude, but also the
other contributions to the target-spin azimuthal asymme-
try.

Of special interest in the present measurement is the

Fourier amplitude Asin(φ−φS)
UT," in case of production by lon-

gitudinal photons, which can be compared with GPD mod-
els. It is related to the parton-helicity-conserving part of
the scattering process and is sensitive to the interference
between H̃ and Ẽ [13, 16]:

Asin(φ−φS)
UT," = −

√
−t′

Mp

× ξ
√

1 − ξ2 Im(Ẽ∗H̃)

(1 − ξ2)H̃2 − tξ2

4M2
p
Ẽ2 − 2ξ2 Re(Ẽ∗H̃)

,
(13)

where the transition form factors H̃ and Ẽ denote con-
volutions of hard scattering kernels and the pion distri-
bution amplitude with the GPDs H̃ and Ẽ, respectively.
Note that in the models described below terms propor-
tional to the cosφ and cos(2φ) modulation of the spin-
averaged cross section are not included. In the measure-
ment presented here these terms are not known, although
they nonetheless contribute to the values of the extracted
Fourier amplitudes.

Figure 3 shows in more detail the extracted Fourier

amplitude Asin(φ−φS)
UT," as a function of −t′. The solid and

dotted curves represent the leading-twist, leading-order in
αs calculations of this amplitude for longitudinal virtual
photons using two variants of the GPD model of [20]. The
modelling of the GPD Ẽ relies here, even at larger val-
ues of −t, on the dominance of the pion pole 1/(m2

π − t)
in the pion exchange amplitude, with mπ the pion mass.

Then Ẽ is real and positive, and the value of Asin(φ−φS)
UT,"

is typically predicted to be large and negative, while it
must sharply vanish at the kinematic boundary −t′ = 0
(see solid curve). The data qualitatively disagree with
such a simplified GPD model. The “Regge-ized” variant
of the GPD-Ẽ model [20], containing more than only a
pion t-channel exchange, results in the dash-dotted curve.
In such a model the asymmetry can become positive at
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Figure 2: The set of six Fourier amplitudes (AUT,!) describing the
sine modulations of the single-spin azimuthal asymmetry for unpo-
larized (U) beam and transverse (T) target polarization, for the ex-
clusive event sample. The error bars (bands) represent the statis-
tical (systematic) uncertainties. The results receive an additional
8.2% scale uncertainty corresponding to the target polarization un-
certainty.

tons, while the other Fourier amplitudes are expected to
be suppressed [9] by at least one power of 1/Q due to
interference between contributions from longitudinal and
transverse virtual photons, and by 1/Q2 due to terms in-
volving only transverse virtual photons.

Most of the Fourier amplitudes shown in Fig. 2 are
small or consistent with zero, except Asin φS

UT," . This am-
plitude is found to be large and positive indicating a sig-
nificant contribution from the transverse-to-longitudinal
helicity transition of the virtual photon, i.e.,

Asin φS

UT," ∝
∑

ν′

M∗
0ν′++ M0ν′0−

= M∗
0+++ M0+0− + M∗

0−++ M0−0−,

(12)

where Mµ′ν′µν are helicity amplitudes with µ′ (µ) and
ν′ (ν) denoting the helicities of the pion (virtual photon)
and the neutron (proton), respectively. These amplitudes

are proportional to
√
−t′

|µ−ν−µ′+ν′|
. In the framework

of GPDs, the amplitude M0−++ is associated at leading
twist with virtual-photon helicity flip in the t-channel [18],
which is proportional to

√
−t′ and hence is expected to

vanish for −t′ → 0. Among higher-twist contributions the
one that involves the parton-helicity-flip GPDs HT and
H̃T need not vanish at small values of |t′|. Moreover, in
the more general framework of helicity amplitudes and the
Regge model, Asin φS

UT," receives contributions from natural
and unnatural-parity exchange [33, 17], which allow it to
remain constant as a function of −t′, as the data in Fig. 2
suggest. Lack of parameterizations of the photoabsorption
cross sections and interference terms [18] involving trans-
verse virtual photons does not allow further interpretation
of the corresponding Fourier amplitudes. Any model that
describes exclusive pion production will need to describe
not only the leading-twist Fourier amplitude, but also the
other contributions to the target-spin azimuthal asymme-
try.

Of special interest in the present measurement is the

Fourier amplitude Asin(φ−φS)
UT," in case of production by lon-

gitudinal photons, which can be compared with GPD mod-
els. It is related to the parton-helicity-conserving part of
the scattering process and is sensitive to the interference
between H̃ and Ẽ [13, 16]:

Asin(φ−φS)
UT," = −

√
−t′

Mp

× ξ
√

1 − ξ2 Im(Ẽ∗H̃)

(1 − ξ2)H̃2 − tξ2

4M2
p
Ẽ2 − 2ξ2 Re(Ẽ∗H̃)

,
(13)

where the transition form factors H̃ and Ẽ denote con-
volutions of hard scattering kernels and the pion distri-
bution amplitude with the GPDs H̃ and Ẽ, respectively.
Note that in the models described below terms propor-
tional to the cosφ and cos(2φ) modulation of the spin-
averaged cross section are not included. In the measure-
ment presented here these terms are not known, although
they nonetheless contribute to the values of the extracted
Fourier amplitudes.

Figure 3 shows in more detail the extracted Fourier

amplitude Asin(φ−φS)
UT," as a function of −t′. The solid and

dotted curves represent the leading-twist, leading-order in
αs calculations of this amplitude for longitudinal virtual
photons using two variants of the GPD model of [20]. The
modelling of the GPD Ẽ relies here, even at larger val-
ues of −t, on the dominance of the pion pole 1/(m2

π − t)
in the pion exchange amplitude, with mπ the pion mass.

Then Ẽ is real and positive, and the value of Asin(φ−φS)
UT,"

is typically predicted to be large and negative, while it
must sharply vanish at the kinematic boundary −t′ = 0
(see solid curve). The data qualitatively disagree with
such a simplified GPD model. The “Regge-ized” variant
of the GPD-Ẽ model [20], containing more than only a
pion t-channel exchange, results in the dash-dotted curve.
In such a model the asymmetry can become positive at
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Figure 2: The set of six Fourier amplitudes (AUT,!) describing the
sine modulations of the single-spin azimuthal asymmetry for unpo-
larized (U) beam and transverse (T) target polarization, for the ex-
clusive event sample. The error bars (bands) represent the statis-
tical (systematic) uncertainties. The results receive an additional
8.2% scale uncertainty corresponding to the target polarization un-
certainty.

tons, while the other Fourier amplitudes are expected to
be suppressed [9] by at least one power of 1/Q due to
interference between contributions from longitudinal and
transverse virtual photons, and by 1/Q2 due to terms in-
volving only transverse virtual photons.

Most of the Fourier amplitudes shown in Fig. 2 are
small or consistent with zero, except Asin φS

UT," . This am-
plitude is found to be large and positive indicating a sig-
nificant contribution from the transverse-to-longitudinal
helicity transition of the virtual photon, i.e.,

Asin φS

UT," ∝
∑

ν′

M∗
0ν′++ M0ν′0−

= M∗
0+++ M0+0− + M∗

0−++ M0−0−,

(12)

where Mµ′ν′µν are helicity amplitudes with µ′ (µ) and
ν′ (ν) denoting the helicities of the pion (virtual photon)
and the neutron (proton), respectively. These amplitudes

are proportional to
√
−t′

|µ−ν−µ′+ν′|
. In the framework

of GPDs, the amplitude M0−++ is associated at leading
twist with virtual-photon helicity flip in the t-channel [18],
which is proportional to

√
−t′ and hence is expected to

vanish for −t′ → 0. Among higher-twist contributions the
one that involves the parton-helicity-flip GPDs HT and
H̃T need not vanish at small values of |t′|. Moreover, in
the more general framework of helicity amplitudes and the
Regge model, Asin φS

UT," receives contributions from natural
and unnatural-parity exchange [33, 17], which allow it to
remain constant as a function of −t′, as the data in Fig. 2
suggest. Lack of parameterizations of the photoabsorption
cross sections and interference terms [18] involving trans-
verse virtual photons does not allow further interpretation
of the corresponding Fourier amplitudes. Any model that
describes exclusive pion production will need to describe
not only the leading-twist Fourier amplitude, but also the
other contributions to the target-spin azimuthal asymme-
try.

Of special interest in the present measurement is the

Fourier amplitude Asin(φ−φS)
UT," in case of production by lon-

gitudinal photons, which can be compared with GPD mod-
els. It is related to the parton-helicity-conserving part of
the scattering process and is sensitive to the interference
between H̃ and Ẽ [13, 16]:

Asin(φ−φS)
UT," = −

√
−t′

Mp

× ξ
√

1 − ξ2 Im(Ẽ∗H̃)

(1 − ξ2)H̃2 − tξ2

4M2
p
Ẽ2 − 2ξ2 Re(Ẽ∗H̃)

,
(13)

where the transition form factors H̃ and Ẽ denote con-
volutions of hard scattering kernels and the pion distri-
bution amplitude with the GPDs H̃ and Ẽ, respectively.
Note that in the models described below terms propor-
tional to the cosφ and cos(2φ) modulation of the spin-
averaged cross section are not included. In the measure-
ment presented here these terms are not known, although
they nonetheless contribute to the values of the extracted
Fourier amplitudes.

Figure 3 shows in more detail the extracted Fourier

amplitude Asin(φ−φS)
UT," as a function of −t′. The solid and

dotted curves represent the leading-twist, leading-order in
αs calculations of this amplitude for longitudinal virtual
photons using two variants of the GPD model of [20]. The
modelling of the GPD Ẽ relies here, even at larger val-
ues of −t, on the dominance of the pion pole 1/(m2

π − t)
in the pion exchange amplitude, with mπ the pion mass.

Then Ẽ is real and positive, and the value of Asin(φ−φS)
UT,"

is typically predicted to be large and negative, while it
must sharply vanish at the kinematic boundary −t′ = 0
(see solid curve). The data qualitatively disagree with
such a simplified GPD model. The “Regge-ized” variant
of the GPD-Ẽ model [20], containing more than only a
pion t-channel exchange, results in the dash-dotted curve.
In such a model the asymmetry can become positive at
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Figure 2: The set of six Fourier amplitudes (AUT,!) describing the
sine modulations of the single-spin azimuthal asymmetry for unpo-
larized (U) beam and transverse (T) target polarization, for the ex-
clusive event sample. The error bars (bands) represent the statis-
tical (systematic) uncertainties. The results receive an additional
8.2% scale uncertainty corresponding to the target polarization un-
certainty.

tons, while the other Fourier amplitudes are expected to
be suppressed [9] by at least one power of 1/Q due to
interference between contributions from longitudinal and
transverse virtual photons, and by 1/Q2 due to terms in-
volving only transverse virtual photons.

Most of the Fourier amplitudes shown in Fig. 2 are
small or consistent with zero, except Asin φS

UT," . This am-
plitude is found to be large and positive indicating a sig-
nificant contribution from the transverse-to-longitudinal
helicity transition of the virtual photon, i.e.,

Asin φS

UT," ∝
∑

ν′

M∗
0ν′++ M0ν′0−

= M∗
0+++ M0+0− + M∗

0−++ M0−0−,

(12)

where Mµ′ν′µν are helicity amplitudes with µ′ (µ) and
ν′ (ν) denoting the helicities of the pion (virtual photon)
and the neutron (proton), respectively. These amplitudes

are proportional to
√
−t′

|µ−ν−µ′+ν′|
. In the framework

of GPDs, the amplitude M0−++ is associated at leading
twist with virtual-photon helicity flip in the t-channel [18],
which is proportional to

√
−t′ and hence is expected to

vanish for −t′ → 0. Among higher-twist contributions the
one that involves the parton-helicity-flip GPDs HT and
H̃T need not vanish at small values of |t′|. Moreover, in
the more general framework of helicity amplitudes and the
Regge model, Asin φS

UT," receives contributions from natural
and unnatural-parity exchange [33, 17], which allow it to
remain constant as a function of −t′, as the data in Fig. 2
suggest. Lack of parameterizations of the photoabsorption
cross sections and interference terms [18] involving trans-
verse virtual photons does not allow further interpretation
of the corresponding Fourier amplitudes. Any model that
describes exclusive pion production will need to describe
not only the leading-twist Fourier amplitude, but also the
other contributions to the target-spin azimuthal asymme-
try.

Of special interest in the present measurement is the

Fourier amplitude Asin(φ−φS)
UT," in case of production by lon-

gitudinal photons, which can be compared with GPD mod-
els. It is related to the parton-helicity-conserving part of
the scattering process and is sensitive to the interference
between H̃ and Ẽ [13, 16]:

Asin(φ−φS)
UT," = −

√
−t′

Mp

× ξ
√

1 − ξ2 Im(Ẽ∗H̃)

(1 − ξ2)H̃2 − tξ2

4M2
p
Ẽ2 − 2ξ2 Re(Ẽ∗H̃)

,
(13)

where the transition form factors H̃ and Ẽ denote con-
volutions of hard scattering kernels and the pion distri-
bution amplitude with the GPDs H̃ and Ẽ, respectively.
Note that in the models described below terms propor-
tional to the cosφ and cos(2φ) modulation of the spin-
averaged cross section are not included. In the measure-
ment presented here these terms are not known, although
they nonetheless contribute to the values of the extracted
Fourier amplitudes.

Figure 3 shows in more detail the extracted Fourier

amplitude Asin(φ−φS)
UT," as a function of −t′. The solid and

dotted curves represent the leading-twist, leading-order in
αs calculations of this amplitude for longitudinal virtual
photons using two variants of the GPD model of [20]. The
modelling of the GPD Ẽ relies here, even at larger val-
ues of −t, on the dominance of the pion pole 1/(m2

π − t)
in the pion exchange amplitude, with mπ the pion mass.

Then Ẽ is real and positive, and the value of Asin(φ−φS)
UT,"

is typically predicted to be large and negative, while it
must sharply vanish at the kinematic boundary −t′ = 0
(see solid curve). The data qualitatively disagree with
such a simplified GPD model. The “Regge-ized” variant
of the GPD-Ẽ model [20], containing more than only a
pion t-channel exchange, results in the dash-dotted curve.
In such a model the asymmetry can become positive at
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g2
KNΛ/g2

KNΣ ≈ 12. For the K0Σ+ channel, the pole con-
tribution is absent if ηa

K = 0 (as for π0). In this case, the
ratio π0p : K0Σ+ is determined by the PV contribution
and is very sensitive to the input valence quark distribu-
tion into H̃. For ∆uV ≈ −∆dV expected in the large Nc

limit, π0 : K0 ≈ 1 : 3, while for ∆uV ≈ −2∆dV prefered
by the global fit to DIS of Ref. [16], π0 : K0 ≈ 3 : 1.
The sensitivity of this ratio to the polarized quark distri-
butions might be interesting to provide cross-checks on
such global fits from DIS. In Fig. 1, we show the results
for K0Σ+ by using the polarized distributions of [16] as
input for H̃ (as in [13]). Besides the PV contribution,
K0Σ+ electroproduction has also a pole contribution, if
ηa

K #= 0. We include the pole contribution of Eq. (17),
and use the CZ kaon DA with ηa

K = 0.25. The resulting
K0 pole contribution provides a sizeable enhancement of
the K0Σ+ cross section (it is roughly half the value of
the PV contribution at the largest xB).
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FIG. 3. Transverse spin asymmetry, for K+Λ and K0Σ+

longitudinal electroproduction for different values of t (indi-
cated on the curves in (GeV/c)2). For K+Λ, thick (thin)
lines are the predictions with asymptotic (CZ) kaon DA. For
K0Σ+, thick (thin) lines are the predictions with CZ type
kaon DA, with antisymmetric part : ηa

K = 0.25 (0.1).

For the strangeness channels, AKY is given by :

AKY =
2 |∆⊥|

π

Im(AB∗) 4ξmN

DKY
, (18)

DKY = |A|24m2
N (1 − ξ2) + |B|2ξ2

[
−t + (mY − mN )2

]

−Re(AB∗) 4ξmN [ξ(mY + mN) + mY − mN ] ,

where A and B are as defined before. Interestingly, that
in the case of hyperon production, the same interference

azimuthal spin asymmetry can be measured on an un-

polarized target by measuring the polarization of the re-
coiling hyperon through its decay angular distribution.
AK+Λ,AK0Σ+ are shown in Fig. 3. They are as large as
for π+n. We also find AK+Σ0 ∼ AK+Λ. For K0 pro-
duction, the sensitivity to the SU(3)f symmetry break-
ing effects in the kaon DA is illustrated (lower panel of
Fig. 3), by plotting AK0Σ+ for two values of ηa

K . Because
AK0Σ+ is directly proportional to ηa

K , it provides a very
sensitive observable to extract the K0 form factor.

To summarize, we have shown that yields for hard
exclusive production of decuplet and octet baryons are
similar. Strange and nonstrange channels can be com-
parable and in some channels strange can even dominate
(depending on DA and polarized parton distributions),
in contrast to low-energy strangeness production. Large
transverse spin asymmetries are predicted for many of
these reactions. Several tests of validity of the large Nc

approximation in QCD would be possible.
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(where it induces an asymmetry of the meson distribu-
tion amplitude) as well as in the GPDs. We note that,
as in φ and ρ0 production, the cross section for longitu-
dinal photon polarization can be isolated by measuring
the K∗ → Kπ decay and relying on s–channel helicity
conservation.

Measurements of recoil polarization in γ∗
Lp → K∗+Λ

could also be done with a polarized target. This combi-
nation in principle would allow one to measure the cross
sections corresponding to individual helicity amplitudes,
making it possible to separate H and E without relying
on interference effects.

Another interesting observable is the ratio of ρ+n and
K∗+Λ production cross sections. The ρ+n channel in-
volves nonsinglet quark exchange only, and GPD–based
calculations of the cross section are free from the un-
certainties in the relative strength of gluon and singlet
quark exchange affecting the ρ0p channel [10, 11]. While
not fully model–independent, one can expect the ra-
tio of ρ+n and K∗+Λ production cross sections to be
more reliably described by GPD–based calculations in
the leading–twist approximation than the absolute cross
sections.

A rough estimate of the expected K∗+Λ/ρ+n cross sec-
tion ratio can be obtained if we neglect the differences
in the final–state masses, use the flavor structure of the
production amplitudes as given by SU(3) symmetry (see
Table I), assume that Hu = 2Hd and Eu = 2Ed, and
neglect the contributions from Hs and Es. With these
approximations we obtain

σL(γ∗p → K∗+Λ)

σL(γ∗p → ρ+n)
≈

3

2
, (18)

showing that both are of the same order. More detailed
calculations have been reported in Ref. [11].

Experiments aiming to study K∗Λ production must
take into account that the cross section for the K∗Σ0

channel is likely to be of comparable magnitude. It will
be necessary to separate the two channels, as the Σ0 de-
cays to Λ via emission of a low–energy photon. This
caveat applies also to KΛ and K∗Σ0 production as dis-
cussed in Sec. V.

V. STRANGENESS POLARIZATION IN KΛ
AND KΣ PRODUCTION

Pseudoscalar meson production at high Q2 probes the
“polarized” GPDs H̃ and Ẽ, whose first moments are
given by the axial and pseudoscalar form factors of the
axial vector current operator. At zero momentum trans-
fer the GPD H̃ coincides with the usual polarized quark
densities in the nucleon. In this sense, pseudoscalar me-
son production experiments can probe the spin structure
of the nucleon without using target polarization [28, 29].

A special feature of the pseudoscalar GPD Ẽ is that it
contains a term corresponding to t–channel exchange of
pseudoscalar mesons (see Fig. 4), analogous to the “pole

n, p

!, ",
0
"
+

+
##,
0

KK,
+ 0

$%
L
(Q

2)

+
K

+
#

(b)

p

(a)

GPD

hard

hard

FIG. 4: (a) QCD factorization in pseudoscalar meson produc-
tion. (b) “Pole” contribution to the GPD Ẽ in π+ and K+

production. This contribution to the amplitude is equivalent
to the virtual photon scattering from a π+/K+ emitted by
the proton.

term” in the pseudoscalar form factor [28, 29]. In the
context of meson production this term corresponds to
the process in which a π+ or K+ is emitted by the nu-
cleon (with |t| ∼ M2

π, M2
K) and interacts with the elec-

tromagnetic probe as a whole, via its EM form factor;
in fact, this process is the basis of measurements of the
π+ and K+ form factor in electroproduction from the
nucleon. Calculations based on the chiral quark–soliton
model of the nucleon [30] show that the π+ pole term
dominates the isovector GPD Ẽ at small t and is largely
responsible for the π+ electroproduction cross section at
|t| ∼ M2

π. The K+ pole term in the p → Λ GPD is less
prominent (because the pole at t = M2

K is further re-
moved from the physical region t < tmin < 0), but it still
contributes significantly to the K+ production cross sec-
tion [11]. From the point of view of SU(3) symmetry the
pole term represents a strong symmetry–breaking effect,
as its strength depends on the pole position determined
by the π/K mass, and unbroken symmetry would imply
Mπ = MK .

In order to access the spin structure of the nucleon as
encoded in the GPD H̃ , and to be able to apply SU(3)
symmetry, one needs to separate the “pole” and “non–
pole” contributions in pseudoscalar meson production.
In the case of pion production this is in principle possi-
ble by comparing the π+n channel with π0p, where the
pole contribution is exactly zero because the π0 is a C–
parity eigenstate and does not have a single–photon cou-
pling. However, the two channels involve the isoscalar

✦separate the pion/kaon pole term 
contributions 

π

7

(where it induces an asymmetry of the meson distribu-
tion amplitude) as well as in the GPDs. We note that,
as in φ and ρ0 production, the cross section for longitu-
dinal photon polarization can be isolated by measuring
the K∗ → Kπ decay and relying on s–channel helicity
conservation.

Measurements of recoil polarization in γ∗
Lp → K∗+Λ

could also be done with a polarized target. This combi-
nation in principle would allow one to measure the cross
sections corresponding to individual helicity amplitudes,
making it possible to separate H and E without relying
on interference effects.

Another interesting observable is the ratio of ρ+n and
K∗+Λ production cross sections. The ρ+n channel in-
volves nonsinglet quark exchange only, and GPD–based
calculations of the cross section are free from the un-
certainties in the relative strength of gluon and singlet
quark exchange affecting the ρ0p channel [10, 11]. While
not fully model–independent, one can expect the ra-
tio of ρ+n and K∗+Λ production cross sections to be
more reliably described by GPD–based calculations in
the leading–twist approximation than the absolute cross
sections.

A rough estimate of the expected K∗+Λ/ρ+n cross sec-
tion ratio can be obtained if we neglect the differences
in the final–state masses, use the flavor structure of the
production amplitudes as given by SU(3) symmetry (see
Table I), assume that Hu = 2Hd and Eu = 2Ed, and
neglect the contributions from Hs and Es. With these
approximations we obtain

σL(γ∗p → K∗+Λ)

σL(γ∗p → ρ+n)
≈

3

2
, (18)

showing that both are of the same order. More detailed
calculations have been reported in Ref. [11].

Experiments aiming to study K∗Λ production must
take into account that the cross section for the K∗Σ0

channel is likely to be of comparable magnitude. It will
be necessary to separate the two channels, as the Σ0 de-
cays to Λ via emission of a low–energy photon. This
caveat applies also to KΛ and K∗Σ0 production as dis-
cussed in Sec. V.
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axial vector current operator. At zero momentum trans-
fer the GPD H̃ coincides with the usual polarized quark
densities in the nucleon. In this sense, pseudoscalar me-
son production experiments can probe the spin structure
of the nucleon without using target polarization [28, 29].

A special feature of the pseudoscalar GPD Ẽ is that it
contains a term corresponding to t–channel exchange of
pseudoscalar mesons (see Fig. 4), analogous to the “pole
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FIG. 4: (a) QCD factorization in pseudoscalar meson produc-
tion. (b) “Pole” contribution to the GPD Ẽ in π+ and K+

production. This contribution to the amplitude is equivalent
to the virtual photon scattering from a π+/K+ emitted by
the proton.

term” in the pseudoscalar form factor [28, 29]. In the
context of meson production this term corresponds to
the process in which a π+ or K+ is emitted by the nu-
cleon (with |t| ∼ M2

π, M2
K) and interacts with the elec-

tromagnetic probe as a whole, via its EM form factor;
in fact, this process is the basis of measurements of the
π+ and K+ form factor in electroproduction from the
nucleon. Calculations based on the chiral quark–soliton
model of the nucleon [30] show that the π+ pole term
dominates the isovector GPD Ẽ at small t and is largely
responsible for the π+ electroproduction cross section at
|t| ∼ M2

π. The K+ pole term in the p → Λ GPD is less
prominent (because the pole at t = M2

K is further re-
moved from the physical region t < tmin < 0), but it still
contributes significantly to the K+ production cross sec-
tion [11]. From the point of view of SU(3) symmetry the
pole term represents a strong symmetry–breaking effect,
as its strength depends on the pole position determined
by the π/K mass, and unbroken symmetry would imply
Mπ = MK .

In order to access the spin structure of the nucleon as
encoded in the GPD H̃ , and to be able to apply SU(3)
symmetry, one needs to separate the “pole” and “non–
pole” contributions in pseudoscalar meson production.
In the case of pion production this is in principle possi-
ble by comparing the π+n channel with π0p, where the
pole contribution is exactly zero because the π0 is a C–
parity eigenstate and does not have a single–photon cou-
pling. However, the two channels involve the isoscalar

✦ results from CLAS on Beam-
recoil polarization transfer in the 
nucleon resonance region in 
exclusive reactions

✦ beyond the resonance region 
measurements of cross sections and 
asymmetries might be helpful

γ∗p→ K+Λ, K0Σ+

γ∗p→ K+Σ0

γ∗p→ K0Σ+

- Strikman, Weiss  (2008) - 
- Diehl, Kugler, Schaefer, Weiss (2005) - 

γ∗p→ π+n

γ∗p→ π0p
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