

Partons in nucleons and nuclei Marrakech, Morocco

2011

- $\textbf{ theoretically the cleanest probe of GPDs } \\ \gamma^* \rightarrow \gamma: H, E, \widetilde{H}, \widetilde{E}$
- reperimentally probing Compton form factors
- ► theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{} + e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ P_{\ell} S_{L} d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

Ami Rostomyan

- ← theoretically the cleanest probe of GPDs $\gamma^* \rightarrow \gamma : H, E, \widetilde{H}, \widetilde{E}$
- reperimentally probing Compton form factors
- ➡ theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{\xrightarrow{P_{l}}} \underbrace{\mathsf{target:}}_{S_{L}S_{T}} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

single spin terms:

- ropure Bethe-Heitler contribution
- project imaginary parts of Compton form factors unpolarized and double-spin terms:
- roject real parts of Compton form factors

Ami Rostomyan

- $\textbf{ theoretically the cleanest probe of GPDs } \\ \gamma^* \rightarrow \gamma: H, E, \widetilde{H}, \widetilde{E}$
- reperimentally probing Compton form factors
- ► theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{} + e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ P_{\ell} S_{L} d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

Ami Rostomyan

- ► theoretically the cleanest probe of GPDs $\gamma^* \rightarrow \gamma : H, E, \widetilde{H}, \widetilde{E}$
- reperimentally probing Compton form factors
- theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{} P_{\iota} \text{target:} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

Fourier expansion in azimuthal angle

interference term: azimuthal relative order $\gamma^*(\mu) \to \gamma(\mu')$ modulation $1 \rightarrow +1$ 1/Qconstant $1 \rightarrow +1$ $\cos\phi,\sin\phi$ 1 1/Q $\cos 2\phi, \sin 2\phi$ $0 \rightarrow +1$ $1/Q^{2}$ $\cos 3\phi, \sin 3\phi$ $-1 \rightarrow +1$ or α_s Ami Rostomyan

- $\textbf{ theoretically the cleanest probe of GPDs } \\ \gamma^* \rightarrow \gamma: H, E, \widetilde{H}, \widetilde{E}$
- reperimentally probing Compton form factors
- ► theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{} + e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ P_{\ell} S_{L} d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

Ami Rostomyan

- ← theoretically the cleanest probe of GPDs $\gamma^* \rightarrow \gamma : H, E, \widetilde{H}, \widetilde{E}$
- experimentally probing Compton form factors
- ► theoretical accuracy at NNLO

$$\begin{split} d\sigma \sim d\sigma_{UU}^{BH} &+ e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \stackrel{\text{beam:}}{} P_{l} \underbrace{\text{target:}}_{S_{L}S_{T}} \\ &+ e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} \\ &+ e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} \\ &+ e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} \\ &+ e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} \\ &+ P_{\ell} S_{T} d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV} \end{split}$$

► unpolarized target $F(\mathcal{H}) + \frac{x_B}{2 - x_B}(F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}$ ► longitudinally polarized target $\frac{x_B}{2 - x_B}(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E})$ $+F(\tilde{\mathcal{H}}) - \frac{x_B}{2 - x_B}\left(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2\right)\tilde{\mathcal{E}}$ ► transversely polarized target $\frac{t}{4M^2}\left[(2 - x_B)F_1\mathcal{E}) - 4\frac{1 - x_B}{2 - x_B}F_2\mathcal{H}\right]$ Ami Rostomyan

Ν

- theoretically the cleanest probe of GPDs $\gamma^* \to \gamma : H, E, H, E$
- experimentally probing Compton form factors
- reference theoretical accuracy at NNLO

$$d\sigma \sim d\sigma_{UU}^{BH} + e_{\ell} d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \xrightarrow{[P_{l}] [target: S_{L}S_{T}]} + e_{\ell} P_{\ell} d\sigma_{LU}^{I} + P_{\ell} d\sigma_{LU}^{DVCS} + e_{\ell} S_{L} d\sigma_{UL}^{I} + S_{L} d\sigma_{UL}^{DVCS} + e_{\ell} S_{L} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} + e_{\ell} S_{T} d\sigma_{UT}^{I} + S_{T} d\sigma_{UT}^{DVCS} + P_{\ell} S_{L} d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} d\sigma_{LL}^{I} + P_{\ell} S_{L} d\sigma_{LL}^{DV} + e_{\ell} P_{\ell} S_{T} d\sigma_{LT}^{I} + P_{\ell} S_{T} d\sigma_{LT}^{DV}$$

$$= unpolarized target F(\mathcal{H}) + \frac{x_{B}}{2 - x_{B}} (F_{1} + F_{2}) \widetilde{\mathcal{H}} - \frac{t}{4M^{2}} F_{2} \mathcal{E}$$

$$= longitudinally polarized target$$

$$\frac{x_B}{2 - x_B} (F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2}\mathcal{E}\right)$$
$$+F_1 \widetilde{\mathcal{H}} - \frac{x_B}{2 - x_B} \left(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2\right) \widehat{\mathcal{E}}$$
$$ransversely polarized target$$

$$\frac{t}{4M^2} \left[(2-x_B)F_1 \mathcal{E} - 4\frac{1-x_B}{2-x_B}F_2 \mathcal{H} \right]$$

Ami Rostomyan

factorization in collinear approximation for $\sigma_L($ and $\rho_L, \omega_L, \phi_L)$ only

 $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2)) \otimes \Phi(z;\mu^2)$

 $rac{\sigma_L} - \sigma_T$ suppressed by 1/Q $rac{\sigma_T}$ suppressed by $1/Q^2$

(M. Burkardt, ()) $u_X(x, \boldsymbol{b}_\perp)$: 4 by ... Partons in nucleons and nuclei, Morocco, 2011

کر _{ال}

theoretically the cleanest probe of GPDs $\gamma^* \to \gamma : H, E, H, E$

- experimentally probing Compton form factors
- theoretical accuracy at NNLO

$$d\sigma \sim d\sigma_{UU}^{BH} + e_{\ell}d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \xrightarrow{[e_{l}, S_{r}]} \\ + e_{\ell}P_{\ell}d\sigma_{LU}^{I} + P_{\ell}d\sigma_{LU}^{DVCS} \\ + e_{\ell}S_{L}d\sigma_{UL}^{I} + S_{L}d\sigma_{UL}^{DVCS} \\ + e_{\ell}S_{T}d\sigma_{UT}^{I} + S_{T}d\sigma_{UT}^{DVCS} \\ + P_{\ell}S_{L}d\sigma_{LL}^{BH} + e_{\ell}P_{\ell}S_{L}d\sigma_{LL}^{I} + P_{\ell}S_{L}d\sigma_{LL}^{DV} \\ + P_{\ell}S_{T}d\sigma_{LT}^{BH} + e_{\ell}P_{\ell}S_{T}d\sigma_{LT}^{I} + P_{\ell}S_{T}d\sigma_{LT}^{DV} \\ \end{bmatrix}$$

 $F_1 \mathcal{H} + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$ Iongitudinally polarized target $\frac{x_B}{2-x_B}(F_1+F_2)\left(\mathcal{H}+\frac{x_B}{2}\mathcal{E}\right)$ $+F_1\widetilde{\mathcal{H}} - \frac{x_B}{2 - x_B} \left(\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right) \widetilde{\mathcal{E}}$ transversely polarized target $\frac{t}{4M^2} \left| (2-x_B)F_1 \mathcal{E} - 4\frac{1-x_B}{2-x_B}F_2 \mathcal{H} \right|$

Ami Rostomyan

meson production H.E.H.I **factorization in collinear approximation for** $\sigma_L(\text{ and }\rho_L,\omega_L,\phi_L)$ only $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2)) \otimes \Phi(z;\mu^2)$ $rac{\sigma_L} - \sigma_T$ suppressed by 1/Q

 $\bullet \sigma_T$ suppressed by $1/Q^2$ -Goloskokov, Kroll (2006)- \blacksquare power corrections: k_{\perp} is not neglected}

 $\mathcal{A} \propto F(x,\xi,t;\mu^2) \otimes K(x,\xi,z;\log(Q^2/\mu^2)) \otimes \Phi(z,k_{\perp};\mu^2)$

•
$$\gamma_T^* \to \rho_T^0$$
 transitions can be calculated

کر _{ال}

 $\mathcal{A} \propto$

 \mathbf{r} σ_L

 $\mathbf{F} \ \mathbf{\sigma}_T$

p0

- theoretically the cleanest probe of GPDs $\gamma^* \to \gamma : H, E, H, E$
- experimentally probing Compton form factors
- theoretical accuracy at NNLO

$$d\sigma \sim d\sigma_{UU}^{BH} + e_{\ell}d\sigma_{UU}^{I} + d\sigma_{UU}^{DVCS} \xrightarrow{[e_{l}, S_{r}]} + e_{\ell}P_{\ell}d\sigma_{LU}^{I} + P_{\ell}d\sigma_{LU}^{DVCS} + e_{\ell}S_{L}d\sigma_{UL}^{I} + S_{L}d\sigma_{UL}^{DVCS} + e_{\ell}S_{L}d\sigma_{UL}^{I} + S_{L}d\sigma_{UL}^{DVCS} + e_{\ell}S_{T}d\sigma_{UT}^{I} + S_{T}d\sigma_{UT}^{DVCS} + P_{\ell}S_{L}d\sigma_{LL}^{BH} + e_{\ell}P_{\ell}S_{L}d\sigma_{LL}^{I} + P_{\ell}S_{L}d\sigma_{LL}^{DV} + e_{\ell}P_{\ell}S_{T}d\sigma_{LT}^{I} + P_{\ell}S_{T}d\sigma_{LT}^{DV}$$

 $F \mathcal{H} + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$ Iongitudinally polarized target $\frac{x_B}{2-x_B}(F_1+F_2)\left(\mathcal{H}+\frac{x_B}{2}\mathcal{E}\right)$ $+F_1\widetilde{\mathcal{H}} - \frac{x_B}{2 - x_B} \left(\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right) \widetilde{\mathcal{E}}$ ransversely polarized target $\frac{t}{4M^2} \left[(2-x_B)F_1 \mathcal{E} - 4\frac{1-x_B}{2-x_B}F_2 \mathcal{H} \right]$

```
Ami Rostomyan
```

$$\begin{array}{l} & \textbf{meson production} \\ & \textbf{meson production}$$

Ami Rostomyan

 γ

Partons in nucleons and nuclei, Morocco, 2011

 $ep \rightarrow e' \gamma p'$ (recoil data)

► suppression of background from associated and semi-inclusive processes to a negligible level (~0.1%)

 $ep \rightarrow e' \gamma p'$ (recoil data)

► suppression of background from associated and semi-inclusive processes to a negligible level (~0.1%)

 $ep \to e'\gamma X$ refine missing mass technique (pre-recoil data)

 $ep \rightarrow e' \gamma p'$ (recoil data)

suppression of background from associated and semi-inclusive processes to a negligible level ($\sim 0.1\%$)

 $M_x^2 = (P_e + P_p - P_{e'} - P_{\pi^+})^2$

charged pion yield difference was used to subtract the non exclusive background

+ **N** - **(** N__)^{data} M_v^2 (GeV²) Partons in nucleons and nuclei, Morocco, 2011

(pre-recoil data)

$$GPD H: unpolarized hydrogen target$$

$$HERMES Collaboration-: JHEP II (2009) 083$$

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times [1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi)]$$

$$\mathcal{A}_{C}(\phi) = \sum_{n=0}^{3} \mathcal{A}_{C}^{\cos(n\phi)} \cos(n\phi)$$

$$\mathcal{A}_{LU}^{I}(\phi) = \sum_{n=1}^{2} \mathcal{A}_{LU,I}^{\sin(n\phi)} \sin(n\phi)$$

Ami Rostomyan

Y

Wednesday, September 28, 2011

unpolarized deuterium target

 $\blacktriangleright \text{ coherent: } e^{\pm}d \to e^{\pm}d\gamma$

- 🖛 target stays intact
- ► spin-1 targets described by 9 GPDs: $H_1^q, H_2^q, H_3^q, H_4^q, H_5^q, \widetilde{H}_1^q, \widetilde{H}_2^q, \widetilde{H}_3^q, \widetilde{H}_4^q$

- - 🖛 target brakes up
 - ➡ spin-1/2 targets described by 4 GPDs:
 H, E, H, E

coherent:

racksim contribution at small -t

incoherent:

- \blacktriangleright contribution at larger -*t*
- ▶ contribution from coherent [0.06:0.7] GeV² is 20 %

Ami Rostomyan

Partons in nucleons and nuclei, Morocco, 2011

GPD H: unpolarized deuterium target

 $\mathcal{A}_C(\phi) = \sum A_C^{\cos(n\phi)} \cos(n\phi)$ $\frac{\mathcal{R}e[F_1\mathcal{H}]}{\mathcal{R}e[G_1\mathcal{H}_1]}\mathcal{A}_{LU}^{I}(\phi) = \sum_{I}^2 A_{LU,I}^{\sin(n\phi)} \sin(n\phi)$ $A_{C,incoh}^{\cos\phi} \propto \operatorname{Re}[\mathrm{F}_1\mathcal{H}]$ $A_{C,coh}^{\cos\phi} \propto \operatorname{Re}[G_1\mathcal{H}_1]$ $\mathcal{I}m|F_1\mathcal{H}$ $\mathcal{I}_{U_{I,I,\mathrm{indoh}}}^{\mathrm{sin}\,\phi} \propto \mathrm{IM}[\mathrm{F}_{1}\mathcal{H}]$

 $A_{LU,I,\mathrm{coh}}^{\sin\phi} \propto \mathrm{IM}[\mathrm{G}_1\mathcal{H}_1]$

Partons in nucleons and nuclei, Morocco, 2011

Im Hat and presults consistent
Im Hat and presults consistent
Im Hat and presults consistent
contribution at low -t

Wednesday, September 28, 2011

GPD H: unpolarized hydrogen target $\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi)\right]$ $\mathcal{A}_{\mathrm{LU}}(\phi) \simeq \sum A_{\mathrm{UL}}^{\sin(n\phi)} \sin(n\phi)$

restruction of single-charge beam-helicity asymmetry amplitudes for elastic data sample (background < 0.1%)

▶ indication for slightly larger magnitude of the leading amplitude for elastic process compared the one in the recoil detector acceptance

Ami Rostomyan

given channel probes specific GPD flavor

Ami Rostomyan

Partons in nucleons and nuclei, Morocco, 2011

vector meson cross section

 $\frac{d\sigma}{dx_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \vartheta \, d\varphi} \sim \frac{d\sigma}{dx_B \, dQ^2 \, dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)$

roduction and decay angular distributions W decomposed:

 $W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}$

reparametrized by helicity amplitudes

-Diehl (2007)-

► or alternatively by SDMEs:

-Schilling, Wolf (1973)- -Diehl (2007)-

helicity amplitudes or SDMEs describe

- ➡ the helicity transfer from virtual photon to the vector meson
- ► the parity of the diffractive exchange process
 - \blacktriangleright natural parity is related to H and E
 - **w** unnatural parity is related to \widetilde{H} and \widetilde{E}

Ami Rostomyan

Partons in nucleons and nuclei, Morocco, 2011

Wednesday, September 28, 2011

Ami Rostomyan

comparison to GPD model

Ami Rostomyan

Wednesday, September 28, 2011

observation of unnatural-parity exchange

at large W and Q², this transition should be suppressed by a factor of M_V/Q $ratio analysis: U_{11}/T_{00}$

the combinations of SDMEs expected to be zero⁴in case of natural parity exchange dominance

 $u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1} \qquad u_{2} = r_{11}^{5} + r_{1-1}^{5} \qquad u_{3} = r_{11}^{8} + r_{1-1}^{8}$ A_{UT} π^{0} A_{UL} A_{UL}

section

Ami Rostomyan

Φ

observation of unnatural-parity exchange

at large W and Q², this transition should be suppressed by a factor of M_V/Q we direct helicity amplitude ratio analysis: U_{11}/T_{00}

the combinations of SDMEs expected to be zero⁴in case of natural parity exchange dominance

 $u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1 \qquad u_2 = r_{11}^5 + r_{1-1}^5 \qquad u_3 = r_{11}^8 + r_{1-1}^8$

Wednesday, September 28, 2011

observation of unnatural-parity exchange

at large W and Q², this transition should be suppressed by a factor of M_V/Q w direct helicity amplitude ratio analysis: U_{11}/T_{00}

the combinations of SDMEs expected to be zero in case of natural parity exchange dominance

 $u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1 \qquad u_2 = r_{11}^5 + r_{1-1}^5 \qquad u_3 = r_{11}^8 + r_{1-1}^8$

Wednesday, September 28, 2011

SDMEs on a transversely polarized target

SDMEs on a transversely polarized target

SDMEs on a transversely polarized target

π^{\star} production: transversely polarized hydrogen target

 $rac{}$ no σ_L / σ_T separation

 $ep \to e'\pi^+(n)$

► small overall value for leading asymmetry amplitude with possible sign change

$$A_{UT}^{\sin(\phi-\phi_s)} \propto \frac{\operatorname{Im}(\widetilde{\mathcal{E}}^*\widetilde{\mathcal{H}})}{|\widetilde{\mathcal{H}}|^2} \propto \left|\frac{\widetilde{\mathcal{E}}}{\widetilde{\mathcal{H}}}\right| \sin \delta$$

➡ theoretical expectation: A^{sin(φ-φ_s)}_{UT} ∝ √-t'
 Frankfurt et al. (2001)- -Belitsky, Muller (2001) -Goloskokov, Kroll (2009)- -Bechler, Muller (2009) ➡ evidence of contributions from transversely polarized photons

Partons in nucleons and nuclei, Morocco, 2011

Wednesday, September 28, 2011

π^{+} production: transversely polarized hydrogen target $ep \rightarrow e'\pi^{+}(n)$ -HERMES Collaboration-: Phys. Lett. B 682 (2010) 345-350

16

 \blacksquare no σ_L / σ_T separation

➡ small overall value for leading asymmetry amplitude with possible sign change

$$A_{UT}^{\sin(\phi-\phi_s)} \propto \frac{\mathrm{Im}(\widetilde{\mathcal{E}}^*\widetilde{\mathcal{H}})}{|\widetilde{\mathcal{H}}|^2} \propto \left|\frac{\widetilde{\mathcal{E}}}{\widetilde{\mathcal{H}}}\right| \sin \delta$$

➡ theoretical expectation: A^{sin(φ-φ_s)}_{UT} ∝ √-t'
 Frankfurt et al. (2001)- -Belitsky, Muller (2001) -Goloskokov, Kroll (2009)- -Bechler, Muller (2009) ➡ evidence of contributions from transversely polarized photons

- no turnover towards 0 for $t' \to 0$
- mild t-dependence
- \blacktriangleright can be explained only by σ_L / σ_T interference
- rediction is approximately constant
- \blacktriangleright non-vanishing model predictions with contribution from $H_{\rm T}$

Ami Rostomyan

summary

Ami Rostomyan

Partons in nucleons and nuclei, Morocco, 2011

Wednesday, September 28, 2011

summary

Ami Rostomyan

Partons in nucleons and nuclei, Morocco, 2011

Without Recoil Detector In Recoil Detector acceptance With Recoil Detector With Recoil Detector Similar background Background-free Similar kinematics

