
Beam
Direction

Polarimeter

Transverse
Polarimeter

Spin Rotator

Spin Rotator

pe

Spin RotatorSpin Rotator

Spin Rotator

Spin Rotator

LongitudinalRecent results from 

Ami Rostomyan
(for the HERMES collaboration)



Ami Rostomyan                                                                                                                Hadron structure 20132

HERMES main research topics:
✓ origin of nucleon spin

☛ longitudinal spin/momentum structure
☛ transverse spin/momentum structure

✓ hadronization/fragmentation

✓  nucleon properties (mass, charge, momentum, magnetic 
moment, spin...) should be explained by its constituents

☛ momentum: quarks carry ~ 50 % of the proton momentum
☛ spin: total quark spin contribution only ~30%

spin and 
hadronization
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Ideally: obtain a quantum 
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probability to find a quark in a nucleon with a certain polarization in a position b and momentum k

Wigner functions: W q(k,b)

quantum phase-space “tomography” of the nucleon
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probability to find a quark in a nucleon with a certain polarization in a position b and momentum k

Wigner functions: W q(k,b)

A Few Main Threads/Common Themes

!The study of hadron structure in the LHC era involves a  large set of 
of increasingly complicated and diverse observations from which 
PDFs, TMDs, GPDs, etc… are extracted and compared to patterns 
predicted theoretically.

! Experimental observations can be linked to the momentum, spin, and 
spatial configurations of the hadrons’ constituents.

Ph. Hagler, INT 2009

TMD

GPD

PDF

Transverse Momentum Dependent 
(TMDs) distribution functions  (DF)

q(x,kT)

Z d
3 b

quantum phase-space “tomography” of the nucleon
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☛semi-inclusive measurements

☛ inclusive measurements

☛ exclusive measurements
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HERMES main research topics:
✓ origin of nucleon spin

☛ longitudinal spin/momentum structure
☛ transverse spin/momentum structure

✓ hadronization/fragmentation

✓ nucleon properties (mass, charge, momentum, magnetic moment, 
spin...) should be explained by its constituents
☛ momentum: quarks carry ~ 50 % of the proton momentum
☛ spin: total quark spin contribution only ~30%
➡ study of TMD DFs and GPDs

spin and 
hadronization
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☛ longitudinal spin/momentum structure
☛ transverse spin/momentum structure

✓ hadronization/fragmentation

✓ nucleon properties (mass, charge, momentum, magnetic moment, 
spin...) should be explained by its constituents
☛ momentum: quarks carry ~ 50 % of the proton momentum
☛ spin: total quark spin contribution only ~30%
➡ study of TMD DFs and GPDs

✓ isolated quarks have never been observed in nature

✓ fragmentation functions were introduced to describe the 
hadronization
☛ non-pQCD objects
☛ universal but not well known functions
➡ advantage of lepton-nucleon scattering data ➝ 

flavour separation of fragmentation functions (FFs)

spin and 
hadronization
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☛  longitudinal target polarization (H, D, 3He)
☛  transverse target polarization (H)
☛  unpolarized targets: H, D, 4He, 14N, 20Ne, 84Kr, 131Xe 
☛  unpolarized H, D targets with recoil detector

The HERMES experiment, located at HERA, with its pure gas targets and advanced 
particle identification (π, K, p) is well suited for TMD and GPD measurements. 

Comparison of rise time curves
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semi-inclusive measurements
(probing TMDs)
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 semi-inclusive DIS cross section and TMDs

d
6!

dx dy dz d"Sd" dP
2

h!

"
Twist

Leading

FUU,T +# cos2" FUU
cos2"{ }+ S||!e 1#" 2FLL{ }+

+ S! !e 1"! 2 cos(" ""
S
)F

LT

cos(! "!S ){ }+…

f
1
!D

1

g
!

1T
"D

1

g
1L

!D
1

N/q U L T 

U 

L 

T 

8 

!"#$%&'()*%+,()-.+(
quark polarisation 

n
u

c
le

o
n

 p
o

la
ri

s
a
ti

o
n

 

Interference between wave functions with different  
angular momenta: contains information about parton  
orbital angular motion and spin-orbit effects 
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Multidimensional approach to investigate 
factorization and transverse momentum dependence 
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 semi-inclusive DIS cross section and TMDs

leading twist TMD DF:
parameterize the quark-flavor 
structure of the nucleon
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π+ and K+:
☛   favoured fragmentation on proton

π-:
☛ increased number of d-quarks in D target  
and favoured fragmentation on neutron

K-:
☛ cannot be produced through favoured 
fragmentation from the nucleon valence quarks
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tical uncertainties are too small to be visible. The systematic
uncertainties are given by the error bands.

which control the Monte Carlo event generator [43]. This
scan is carried out in the space in �

2 of the fit to mea-
sured multiplicities. Nine parameters which constrain
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in the scan. An eigenvector basis approach to the Hessian
method [44] is used to generate nine-parameter vectors
which are uncorrelated orthogonal combinations of the
input parameters to the scan. The intersections of these
eigenvectors with the �

2 contour which lies 68% above
the best-fit minimum in the scan space, provides input
parameter sets that characterize the corresponding un-
certainties in the multiplicities arising from those in the
JETSET model parameters. The largest deviation of the
multiplicities from the values extracted with the stan-
dard version of the Monte Carlo is taken as a systematic
uncertainty. This uncertainty does not exceed 3-4%.
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targets as a function of the energy fraction z in four pan-
els corresponding to the type of final-state hadron. The
individual panels compare data for a given hadron type
taken with a hydrogen (full circles) or deuterium (empty
squares) target. Error bars on the points for the sta-
tistical uncertainties are too small to be visible. The
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xB 0.023 - 0.085 - 0.6

z 0.1 - 0.15 - 0.2 - 0.25 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 -
0.8 - 1.1

Ph? [GeV] 0.0 - 0.1 - 0.3 - 0.45 - 0.6 - 1.2

TABLE III. 3D binning used for the unfolding correction of
those multiplicities presented as a function of z (Figs. 4 and
6).

systematic uncertainties are given by the error bands.
The z bins are defined in Tab. III (z), which together
with Tabs. IV (P

h?

), V (x
B

) and VI (Q2) tabulate the
binning used in the subsequent multi-dimensional rep-
resentation of the multiplicities presented in Fig. 8. To
indicate the importance of the correction for exclusive
vector meson decay, the multiplicities for a proton target
of pions and kaons versus z with the fraction of mesons
coming from all processes involving exclusive vector me-
son decay included (open circles) or subtracted (closed
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charge. The multiplicities in this LO approximation are
a reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by HER-
MES for SIDIS on the proton and deuteron with LO pre-
dictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. 8 (though integrated only over
the accepted range in x

B

of 0.023 to 0.600) using val-
ues for the FFs taken from three widely used analyses,
that of de Florian et al. (DSS) [22], that of Hirai et
al. (HKNS) [12], and that of Kretzer [9], together with
parton distributions taken from CTEQ6L [45]. For pos-
itively charged pions and kaons, the results for a proton
target using FFs from the analysis of DSS are in reason-
able agreement with the HERMES results. For negative
charges, the discrepancies between data and the results
based on FFs from DSS are substantial, particularly for
K

� where the curve predicted lies below the observed
multiplicity over most of the measured range of z. For
⇡

� the results from the DSS analysis agree with mea-
surement at low z. For both ⇡

� and K

�, fragmenta-
tion is less a↵ected by u-quark dominance. Uncertainties
in the less abundant production by strange and anti-u
quarks may have a larger impact on the predictions than
for the positively charged hadrons. Alternatively, next-
to-leading-order (NLO) processes may be proportionally
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more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured forK�. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K

� multiplicities and
the various predictions is also apparent here. In Figs. 9
and 10 the multiplicities obtained from the HERMES
Lund Monte Carlo, in which the fragmentation parame-
ters have been tuned for HERMES kinematic conditions
[20], are also shown. Inclusion of the data reported here
in future global analyses should result in higher precision
in the extraction of FFs, particularly those describing
less abundant fragmentation processes.

VI. SUMMARY

HERMES has measured the multiplicity of charge-
separated pions and kaons as a function of z, P

h?

, x
B

and Q

2 produced by SIDIS o↵ a hydrogen and a deu-
terium target. This high statistics data set, which re-
sult from scattering by pure gas targets of protons and
deuterons, provides unique information on the fragmen-
tation of quarks into final state hadrons and will con-
tribute valuable input for the extraction of fragmentation
functions using QCD fits. The comparison of the results
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parton distributions taken from CTEQ6L [45]. For pos-
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target using FFs from the analysis of DSS are in reason-
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more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured forK�. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K

� multiplicities and
the various predictions is also apparent here. In Figs. 9
and 10 the multiplicities obtained from the HERMES
Lund Monte Carlo, in which the fragmentation parame-
ters have been tuned for HERMES kinematic conditions
[20], are also shown. Inclusion of the data reported here
in future global analyses should result in higher precision
in the extraction of FFs, particularly those describing
less abundant fragmentation processes.

VI. SUMMARY

HERMES has measured the multiplicity of charge-
separated pions and kaons as a function of z, P

h?

, x
B

and Q

2 produced by SIDIS o↵ a hydrogen and a deu-
terium target. This high statistics data set, which re-
sult from scattering by pure gas targets of protons and
deuterons, provides unique information on the fragmen-
tation of quarks into final state hadrons and will con-
tribute valuable input for the extraction of fragmentation
functions using QCD fits. The comparison of the results
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Phys.Rev. D87 (2013) 074029

 unpolarized quarks    



Ami Rostomyan                                                                                                                Hadron structure 201310

�UU / f1 ⌦D1

✓calculations using DSS, HNKS and Kretzer FF fits together with CTEQ6L PDFs
proton:
☛  fair agreement for positive hadrons  
☛  disagreement for negative hadrons 

deuteron:
☛ results are in general in better agreement with the various predictions

12
M

u
lt

ip
li
c
it

y

-110

1

-1

1

0.2 0.4 0.6 0.8

-210

-110

z
0.2 0.4 0.6 0.8

-1

proton
CTEQ6L/DSS
CTEQ6L/HKNS
CTEQ6L/Kretzer
HERMES LEPTO/JETSET

proton
CTEQ6L/DSS
CTEQ6L/HKNS
CTEQ6L/Kretzer
HERMES LEPTO/JETSET

+
π

+
π

-
π

-
π

+K+K
-

K
-

K

FIG. 9. Comparison of the vector-meson-corrected mul-
tiplicities measured on the proton for various hadrons with
LO calculations using CTEQ6L parton distributions [45] and
three compilations (see text) of fragmentation functions. Also
shown are the values obtained from the HERMES Lund
Monte Carlo. The statistical error bars on the experimen-
tal points are too small to be visible.

charge. The multiplicities in this LO approximation are
a reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by HER-
MES for SIDIS on the proton and deuteron with LO pre-
dictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. 8 (though integrated only over
the accepted range in x

B

of 0.023 to 0.600) using val-
ues for the FFs taken from three widely used analyses,
that of de Florian et al. (DSS) [22], that of Hirai et
al. (HKNS) [12], and that of Kretzer [9], together with
parton distributions taken from CTEQ6L [45]. For pos-
itively charged pions and kaons, the results for a proton
target using FFs from the analysis of DSS are in reason-
able agreement with the HERMES results. For negative
charges, the discrepancies between data and the results
based on FFs from DSS are substantial, particularly for
K

� where the curve predicted lies below the observed
multiplicity over most of the measured range of z. For
⇡

� the results from the DSS analysis agree with mea-
surement at low z. For both ⇡

� and K

�, fragmenta-
tion is less a↵ected by u-quark dominance. Uncertainties
in the less abundant production by strange and anti-u
quarks may have a larger impact on the predictions than
for the positively charged hadrons. Alternatively, next-
to-leading-order (NLO) processes may be proportionally

M
u

lt
ip

li
c
it

y

-110

1

-1

1

0.2 0.4 0.6 0.8

-210

-110

z
0.2 0.4 0.6 0.8

-1

deuteron
CTEQ6L/DSS
CTEQ6L/HKNS
CTEQ6L/Kretzer
HERMES LEPTO/JETSET

deuteron
CTEQ6L/DSS
CTEQ6L/HKNS
CTEQ6L/Kretzer
HERMES LEPTO/JETSET

+
π

+
π

-
π

-
π

+K+K
-

K
-

K

FIG. 10. As in Fig. 9 but for deuterons.

more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
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FIG. 9. Comparison of the vector-meson-corrected mul-
tiplicities measured on the proton for various hadrons with
LO calculations using CTEQ6L parton distributions [45] and
three compilations (see text) of fragmentation functions. Also
shown are the values obtained from the HERMES Lund
Monte Carlo. The statistical error bars on the experimen-
tal points are too small to be visible.

charge. The multiplicities in this LO approximation are
a reasonable starting point for comparing the HERMES
results with predictions based on fragmentation functions
resulting from global QCD analyses of all relevant data.

A comparison of the multiplicities measured by HER-
MES for SIDIS on the proton and deuteron with LO pre-
dictions is presented in Figs. 9 and 10. The multiplicities
are calculated from Eq. 8 (though integrated only over
the accepted range in x

B

of 0.023 to 0.600) using val-
ues for the FFs taken from three widely used analyses,
that of de Florian et al. (DSS) [22], that of Hirai et
al. (HKNS) [12], and that of Kretzer [9], together with
parton distributions taken from CTEQ6L [45]. For pos-
itively charged pions and kaons, the results for a proton
target using FFs from the analysis of DSS are in reason-
able agreement with the HERMES results. For negative
charges, the discrepancies between data and the results
based on FFs from DSS are substantial, particularly for
K

� where the curve predicted lies below the observed
multiplicity over most of the measured range of z. For
⇡

� the results from the DSS analysis agree with mea-
surement at low z. For both ⇡

� and K

�, fragmenta-
tion is less a↵ected by u-quark dominance. Uncertainties
in the less abundant production by strange and anti-u
quarks may have a larger impact on the predictions than
for the positively charged hadrons. Alternatively, next-
to-leading-order (NLO) processes may be proportionally
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FIG. 10. As in Fig. 9 but for deuterons.

more important for ⇡

� and particularly K

�, and the
discrepancies observed here may signal the importance
of calculating multiplicities at NLO. For kaons the DSS
results give a better representation of the data than the
Kretzer and HKNS curves. This is to be expected, since
the DSS analysis included a preliminary version of the
HERMES proton data in its database. The Kretzer and
HKNS results are in substantial disagreement with the
multiplicities measured forK�. The results on deuterons
are in general in somewhat better agreement with the
various predictions, in particular for pions. However, the
discrepancy between the measured K

� multiplicities and
the various predictions is also apparent here. In Figs. 9
and 10 the multiplicities obtained from the HERMES
Lund Monte Carlo, in which the fragmentation parame-
ters have been tuned for HERMES kinematic conditions
[20], are also shown. Inclusion of the data reported here
in future global analyses should result in higher precision
in the extraction of FFs, particularly those describing
less abundant fragmentation processes.

VI. SUMMARY

HERMES has measured the multiplicity of charge-
separated pions and kaons as a function of z, P

h?

, x
B

and Q

2 produced by SIDIS o↵ a hydrogen and a deu-
terium target. This high statistics data set, which re-
sult from scattering by pure gas targets of protons and
deuterons, provides unique information on the fragmen-
tation of quarks into final state hadrons and will con-
tribute valuable input for the extraction of fragmentation
functions using QCD fits. The comparison of the results

- HERMES Collaboration- 
Phys.Rev. D87 (2013) 074029

 unpolarized quarks    

✓inclusion of th
e data 

in the fu
ture g

lobal a
nalyses 

will g
ive an

 im
proved knowledge on FF



Ami Rostomyan                                                                                                                Hadron structure 201311

evaluation of strange quark PDFs

2 Extraction of S(x) = s(x) + s̄(x)

The only change from the analysis extraction of S(x) in the 2008 paper is the replacement of the
original 2008 data file for the kaon multiplicities with those from the 2012 data base reported in
dc19. The same analysis scripts were used in both the 2008 and 2012 extractions. The method of
the analysis is summarized briefly here together with the new results.

In the isoscalar method used in Phys. Lett B666, 446 (2008), the momentum and helicity density
distributions of the strange quark sea were extracted in LO from spin-averaged K

± multiplicities,
and from K

± and inclusive double-spin asymmetries for scattering of polarized positrons by a po-
larized deuterium target. For the isoscalar deuteron, in LO these observables depend on the PDFs
Q(x) ⌘ u(x) + ū(x) + d(x) + d̄(x) and S(x) ⌘ s(x) + s̄(x). In the deuteron, an isoscalar target, the
fragmentation process in DIS can be described by fragmentation functions that have no isospin de-
pendence. Aside from isospin symmetry between proton and neutron, the only symmetry assumed is
charge-conjugation invariance in fragmentation. For the isoscalar deuteron in Leading Order (LO),
the inclusive unpolarized (U) electron scattering cross section in terms of the parton distributions
Q(x) ⌘ u(x) + ū(x) + d(x) + d̄(x) and S(x) ⌘ s(x) + s̄(x) takes the form

d2
N

DIS(x)
dxdQ

2
= K

U

(x, Q

2) [5Q(x) + 2S(x)] , (1)

where K
U

(x,Q

2) is a kinematic factor containing the hard scattering cross section. The weak
logarithmic dependence of the PDFs on �Q

2, the squared four-momentum of the exchanged virtual
photon, has been suppressed for simplicity. Applying the same LO formalism to the semi-inclusive
cross section for charged kaon production, irrespective of charge, hereafter designated as K gives

d2
N

K(x)
dxdQ

2
= K

U

(x,Q

2)

Q(x)

Z
DK

Q

(z)dz + S(x)
Z
DK

S

(z)dz

�
, (2)

where z ⌘ E

h

/⌫ with ⌫ and E

h

the energies of the virtual photon and of the detected hadron in the
target rest frame, DK

Q

(z) ⌘ 4D

K

u

(z) + D

K

d

(z) and DK

S

(z) ⌘ 2D

K

s

(z). The fragmentation function
D

K

q

(z) describing the number density of charged kaons from a struck quark of flavor q is integrated
over the measured range of z. Combining Eqs. (1,2) and neglecting the term 2S(x) compared to
5Q(x), it follows immediately that

S(x)
Z
DK

S

(z)dz ' Q(x)

5

d2
N

K(x)
d2

N

DIS(x)
�

Z
DK

Q

(z)dz

�
. (3)

Eq. 3 is the basis for the extraction of the quantity S(x)
R

D

K

S

(z)dz.
As in the analysis reported earlier, both S(x) and the quantity

R
D

K

S

(z)dz, which is the integral
over the measured region of z of the fragmentation function describing the number density of charged
kaons from a struck quark of flavor S, were taken as unknown, and the analysis was carried out
extracting the product S(x)

R
D

K

S

(z)dz. Here DK

S

(z) ⌘ 2D

K

s

(z). For x > 0.10 the multiplicity is
almost constant at a value of about 0.10. Assuming as in Ref. [1] that S(x) is negligible at large x it
can be shown that in LO S(x) = 0 for x > 0.10. For these conditions the LO multiplicity is identically
0.2

R
DK

S

(z). To account for any residual dependence on Q

2 or equivalently on x, the multiplicity
for x > 0.1 was fitted to a first degree polynomial yielding the result that dN

K(x)/dN

DIS(x)
= 0.1015±0.0017+(0.01294±0.010)·x, as shown by the solid curve in Fig. 1. In the region near
x=0.13 where Q

2 ⇡ 2.5 this fit gives the result
R 0.8
0.2 D

K

Q

(z, x)dz = 0.506 ± 0.010, in fair agreement
with the value 0.435 ± 0.044 obtained for Q

2 = 2.5 GeV2 from the most recent global analysis of
fragmentation functions [2]. The weak x dependence obtained in the fit is consistent with the Q

2

dependence exhibited by the data of the global analysis.
The extracted quantity

R 0.8
0.2 D

K

Q

(z, x)dz was then used together with values of Q(x, Q

2) from
Cteq6l and the measured multiplicities to obtain the product S(x)

R
DK

S

(z)dz. A small iterative
correction was made to account for the neglect of the 2S(x) term in Eq. 1. The result for the product
together with a fit of the form x

�a1
e

�x/a2(1 � x) is shown in Fig. 2. The quantity plotted in this

2

✓in the absence of experimental constraints, many global QCD fits of PDFs assume

✓isoscalar extraction of               based on the multiplicity data of K+ and K- on D

S(x) = s(x) + s̄(x)

Q(x) = u(x) + ū(x) + d(x) + d̄(x)

DK
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s(x) = s̄(x) = r[ū(x) + d̄(x)]/2
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 beyond the collinear factorization

✓ multi-dimensional analysis allows exploration of new kinematic dependences

✓broader Ph⊥ distribution for K-
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- HERMES Collaboration- 
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☛ the transversity DF            is sensitive to the difference of the number 
densities of transversely polarized quarks aligned along or opposite to the 
polarization of the nucleon

☛  “Collins-effect” accounts for the correlation between the transverse spin 
of the fragmenting quark and the transverse momentum of the produced 
unpolarized hadron 

☛ generates left-right (azimuthal) asymmetries
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☛ non-zero Collins effect observed!
☛ both Collins FF and transversity sizeable

- HERMES Collaboration- 
Phys. Lett. B 693 (2010) 11-16
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differences between K+  and π + amplitudes

☛ role of sea quarks in conjunction with 
possibly large FF

☛ various contributions from decay of semi-
inclusively produced vector-mesons

☛ the kT dependences of the fragmentation 
functions

Collins amplitudes for kaons
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- HERMES Collaboration- 
Phys.Rev. D87 (2013) 012010 ✓ negative asymmetry for π+ and positive for π-

☛ from previous publications ( PRL 94 (2005) 012002, PLB 693 (2010) 11-16 ): 

☛ data support Boer-Mulders DF        of same sign for u and d quarks
✓ K- and K+ : striking differences w.r.t. pions

☛ role of the sea in DF and FF
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exclusive measurements
(probing GPDs)
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 DVCS measurements
(without recoil detector)
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    GPD H: unpolarized hydrogen target
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    GPD H: unpolarized hydrogen target
(recoil data)
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☛ no separate access to DVCS and interference terms

- HERMES Collaboration- Nucl. Phys. B842 (2011) 265
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(pre-recoil data)

here it is not experimentally separable from the non-resonant data, it is treated as a part

of the signal.
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Figure 1: Amplitudes of the target-spin asymmetry AUL sensitive to a combination of the In-
terference and squared-DVCS terms, for positrons incident on longitudinally polarised protons, as
projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3
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terference and squared-DVCS terms, for positrons incident on longitudinally polarised protons, as
projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.
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Figure 2: Amplitudes of the double-spin asymmetry ALL sensitive to the Interference, squared-
DVCS and squared-BH terms in the scattering amplitude, for polarised positrons incident on lon-
gitudinally polarised protons, as projections in −t, xB, and Q2. The leftmost column shows the
asymmetry values when the extraction is performed in a single bin across the entire kinematic range
of the data set. The error bars (open red bands) show the statistical (systematic) uncertainties and
the solid blue bands represent the theoretical predictions from the “VGG Regge” GPD model de-
scribed in Ref. [8, 31]. There is an additional 5.3% scale uncertainty due to the precision of the
measurement of the beam and target polarisations. The fractional contributions from resonance
production estimated from an MC model are presented in the bottom panel.

contribution from CDVCS
LP .

The Asin(2φ)
UL amplitude has the unexpectedly large value Asin(2φ)

UL = −0.106 ± 0.032 ±
0.008 when extracted from the integrated kinematic range of the data set. The projections

across −t, xB and Q2 in Fig. 1 show no obvious features. This asymmetry amplitude is

expected to receive a mixture of quark twist-3 and gluon twist-2 contributions, and as such

could have been expected to be small in the HERMES kinematic range.

The CLAS collaboration also published extractions [32] of Asin φ
UL and Asin(2φ)

UL although

without projections in −t, xB and Q2 across the kinematic region covered by CLAS. In

Table 5, the signs of the CLAS results are suitable for comparison with HERMES results.

The sign of the Asinφ
UL (Asin(2φ)

UL ) amplitude has been inverted once (twice) to account for
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  GPD    : longitudinally polarized hydrogen targeteH
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Figure 1: Amplitudes of the target-spin asymmetry AUL sensitive to a combination of the In-
terference and squared-DVCS terms, for positrons incident on longitudinally polarised protons, as
projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3
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Figure 1: Amplitudes of the target-spin asymmetry AUL sensitive to a combination of the In-
terference and squared-DVCS terms, for positrons incident on longitudinally polarised protons, as
projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3
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Figure 2: Amplitudes of the double-spin asymmetry ALL sensitive to the Interference, squared-
DVCS and squared-BH terms in the scattering amplitude, for polarised positrons incident on lon-
gitudinally polarised protons, as projections in −t, xB, and Q2. The leftmost column shows the
asymmetry values when the extraction is performed in a single bin across the entire kinematic range
of the data set. The error bars (open red bands) show the statistical (systematic) uncertainties and
the solid blue bands represent the theoretical predictions from the “VGG Regge” GPD model de-
scribed in Ref. [8, 31]. There is an additional 5.3% scale uncertainty due to the precision of the
measurement of the beam and target polarisations. The fractional contributions from resonance
production estimated from an MC model are presented in the bottom panel.

contribution from CDVCS
LP .

The Asin(2φ)
UL amplitude has the unexpectedly large value Asin(2φ)

UL = −0.106 ± 0.032 ±
0.008 when extracted from the integrated kinematic range of the data set. The projections

across −t, xB and Q2 in Fig. 1 show no obvious features. This asymmetry amplitude is

expected to receive a mixture of quark twist-3 and gluon twist-2 contributions, and as such

could have been expected to be small in the HERMES kinematic range.

The CLAS collaboration also published extractions [32] of Asin φ
UL and Asin(2φ)

UL although

without projections in −t, xB and Q2 across the kinematic region covered by CLAS. In

Table 5, the signs of the CLAS results are suitable for comparison with HERMES results.

The sign of the Asinφ
UL (Asin(2φ)

UL ) amplitude has been inverted once (twice) to account for
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projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3
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the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3

– 11 –

 )
!

c
o

s
 (

0

L
L

A

-0.2

0

0.2

0.4

0.6

integrated

 !
 c

o
s
 

L
L

A

-0.4

-0.2

0

0.2

0.4

 )
!

 c
o

s
 (

2

L
L

A

-0.4

-0.2

0

0.2

0.4

integrated

R
e

s
o

. 
fr

a
c

. 

0.1

0.2

0.3

0 0.2 0.4 0.6

-0.2

0

0.2

0.4

0.6

0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

] 2-t [GeV

0 0.2 0.4 0.6

0 0.1 0.2 0.3

-0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3

-0.4

-0.2

0

0.2

0.4

0 0.1 0.2 0.3

-0.4

-0.2

0

0.2

0.4

 Bx

0 0.1 0.2 0.3

0 5 10

-0.2

0

0.2

0.4

0.6 VGG Regge

0 5 10

-0.4

-0.2

0

0.2

0.4

0 5 10

-0.4

-0.2

0

0.2

0.4

] 2 [GeV 2Q

0 5 10

Figure 2: Amplitudes of the double-spin asymmetry ALL sensitive to the Interference, squared-
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of the data set. The error bars (open red bands) show the statistical (systematic) uncertainties and
the solid blue bands represent the theoretical predictions from the “VGG Regge” GPD model de-
scribed in Ref. [8, 31]. There is an additional 5.3% scale uncertainty due to the precision of the
measurement of the beam and target polarisations. The fractional contributions from resonance
production estimated from an MC model are presented in the bottom panel.

contribution from CDVCS
LP .

The Asin(2φ)
UL amplitude has the unexpectedly large value Asin(2φ)

UL = −0.106 ± 0.032 ±
0.008 when extracted from the integrated kinematic range of the data set. The projections

across −t, xB and Q2 in Fig. 1 show no obvious features. This asymmetry amplitude is

expected to receive a mixture of quark twist-3 and gluon twist-2 contributions, and as such

could have been expected to be small in the HERMES kinematic range.

The CLAS collaboration also published extractions [32] of Asin φ
UL and Asin(2φ)

UL although

without projections in −t, xB and Q2 across the kinematic region covered by CLAS. In

Table 5, the signs of the CLAS results are suitable for comparison with HERMES results.
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UL ) amplitude has been inverted once (twice) to account for

– 12 –

A
LL

(�) =
2X

n=0

Acos(n�)
LL

cos(n�) .

  GPD    : longitudinally polarized hydrogen targeteH



Ami Rostomyan                                                                                                                Hadron structure 201325

� (P`, Pz, �, e`) = �UU(�, e`) [1 + Pz AUL(�) + P` Pz ALL(�) + P` ALU(�)]

AUL(�) '
3X

n=1

Asin(n�)
UL sin(n�)

☛ no separate access to DVCS and interference terms

- HERMES Collaboration- Nucl. Phys. B842 (2011) 265

ep ! e0�X

(pre-recoil data)

Asin�
UL / F1Im eH

Asin�
UL /

⇢
DVCS : twist� 3
I : twist� 2

Asin 2�
UL /

8
<

:

I : quark twist� 3

or gluon twist� 2

DVCS : twist� 4

☛ unexpected large value

here it is not experimentally separable from the non-resonant data, it is treated as a part

of the signal.

 
!

s
in

 

U
L

A

-0.2

0

 )
!

s
in

 (
2

U
L

A

-0.2

0

 )
!

s
in

 (
3

U
L

A

-0.2

0

0.2

integrated

R
e
s
o

. 
fr

a
c
. 

0.1

0.2

0.3

0 0.2 0.4 0.6

0 0.2 0.4 0.6

0 0.2 0.4 0.6

] 2-t [GeV

0 0.2 0.4 0.6

0 0.1 0.2 0.3

0 0.1 0.2 0.3

0 0.1 0.2 0.3

 Bx

0 0.1 0.2 0.3

0 5 10

VGG Regge

0 5 10

0 5 10

] 2 [GeV 2Q

0 5 10

Figure 1: Amplitudes of the target-spin asymmetry AUL sensitive to a combination of the In-
terference and squared-DVCS terms, for positrons incident on longitudinally polarised protons, as
projections in −t, xB, and Q2. The leftmost column shows the asymmetry values when the extrac-
tion is performed in a single bin across the entire kinematic range of the data set. The error bars
(open red bands) show the statistical (systematic) uncertainties and the solid blue bands represent
the predictions from the “VGG Regge” GPD model described in Refs. [8, 31]. There is an addi-
tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
LP, which is twist-2 and is expected to dominate the twist-3
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tional 4.2% scale uncertainty due to the precision of the measurement of the target polarisation.
The fractional contributions from resonance production estimated from an MC model are presented
in the bottom panel.

All amplitudes presented correspond to Fourier coefficients described in Ref. [11] relat-

ing to the twist-2 and twist-3 CFFs shown in Table 2 with the caveat that this relationship

may be complicated by various cn terms in the denominators of Eqs. 1.7 and 1.9.

The first harmonic of the AUL, when the extraction is performed in a single bin from all

kinematics, exhibits the value Asin φ
UL = −0.073±0.032 (stat.)±0.007 (syst.). The kinematic

projections provide no evidence of strong dependences on −t, xB, or Q2. This asymmetry

amplitude receives a mixture of twist-2 and twist-3 contributions, as shown in Table 2.

The primary contributor is CI
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scribed in Ref. [8, 31]. There is an additional 5.3% scale uncertainty due to the precision of the
measurement of the beam and target polarisations. The fractional contributions from resonance
production estimated from an MC model are presented in the bottom panel.

contribution from CDVCS
LP .

The Asin(2φ)
UL amplitude has the unexpectedly large value Asin(2φ)

UL = −0.106 ± 0.032 ±
0.008 when extracted from the integrated kinematic range of the data set. The projections

across −t, xB and Q2 in Fig. 1 show no obvious features. This asymmetry amplitude is

expected to receive a mixture of quark twist-3 and gluon twist-2 contributions, and as such

could have been expected to be small in the HERMES kinematic range.

The CLAS collaboration also published extractions [32] of Asin φ
UL and Asin(2φ)

UL although

without projections in −t, xB and Q2 across the kinematic region covered by CLAS. In

Table 5, the signs of the CLAS results are suitable for comparison with HERMES results.

The sign of the Asinφ
UL (Asin(2φ)

UL ) amplitude has been inverted once (twice) to account for
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Equation (2.6) shows that this amplitude is sensitive to the GPD H in the HERMES

kinematic conditions. Also shown in this figure is the previously published result, which has

been shown to constrain GPD models [12]. The greatly improved precision of the present

measurement confirms that this amplitude increases with increasing −t. As mentioned

above regarding the corresponding coefficients cI
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C is

expected to relate to the same combination of GPDs as does Acos φ
C . The results shown

in figure 5 suggest that the magnitude of this amplitude also increases with −t, while its
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circles (squares) are shifted right (left) for visibility. The error bars represent the statistical uncer-
tainties, while the top (bottom) bands denote the systematic uncertainties for AUT,I (AUT,DVCS),
excluding the 8.1 % scale uncertainty from the target polarisation measurement. The curves are
predictions of the GPD model variant (Reg, no D) shown in figure 5 as a continuous curve, with
three different values for the u-quark total angular momentum Ju and fixed d-quark total angular
momentum Jd = 0 [16]. See text for details.

asymmetry amplitudes of interest here (see table 1), related to the coefficients given in

eqs. (2.5)–(2.10), of the corresponding harmonics of φ appearing in eqs. (2.3) and (2.4).

Of particular interest is the asymmetry amplitude Acos φ
C in the upper row of figure 5.

Equation (2.6) shows that this amplitude is sensitive to the GPD H in the HERMES

kinematic conditions. Also shown in this figure is the previously published result, which has

been shown to constrain GPD models [12]. The greatly improved precision of the present

measurement confirms that this amplitude increases with increasing −t. As mentioned

above regarding the corresponding coefficients cI
0,UU and cI

1,UU, the amplitude Acos 0φ
C is

expected to relate to the same combination of GPDs as does Acos φ
C . The results shown

in figure 5 suggest that the magnitude of this amplitude also increases with −t, while its

opposite sign is expected from eq. (2.7).

Of special interest in this work are the amplitudes Asin(φ−φS) cos(nφ)
UT,I , n = 0, 1, presented

in the top two rows of figure 6. Equations (2.9) and (2.8) show that these amplitudes are

sensitive to the GPD E and hence to the total angular momenta of quarks. These am-
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Leading amplitudes of charge-difference and charge-averaged transverse double-spin asymmetries 
are compatible with zero over all kinematic regions.  

Sensitivity to Ju is suppressed by kinematic pre-factor. 

Aram Movsisyan, DIS, Newport News 14.04.2011 
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Figure 2: Charge-difference double-spin asymmetry amplitudes describing the dependence of the interference term on transverse target polarization in combination

with beam helicity and beam charge extracted from hydrogen target data. These asymmetry amplitudes correspond to n = 0 and n = 1 in Eq. 26. The error

bars (bands at the bottom of the panels) represent the statistical (systematic) uncertainties. There is an additional overall 8.6% scale uncertainty arising from the

uncertainties in the measurements of the beam and target polarizations. The curves show the results of theoretical calculations using the VGG double-distribution

model [39, 41] with a Regge ansatz for modeling the t dependence of GPDs [42]. The widths of the curves represent the effect of varying the total angular momentum

Ju of u-quarks between 0.2 and 0.6, with Jd = 0. The bottom row shows the fractional contribution of associated BH production as obtained from a MC simulation.
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Figure 3: Charge-averaged double-spin asymmetry amplitudes describing the dependence of the sum of squared DVCS and BH terms on transverse target polar-

ization in combination with beam helicity extracted from hydrogen target data. These asymmetry amplitudes correspond to n = 0 and n = 1 in Eq. 27. The error

bars (bands at the bottom of the panels) represent the statistical (systematic) uncertainties. There is an additional overall 8.6% scale uncertainty arising from the

uncertainties in the measurements of the beam and target polarizations. The curves and the bottom row of panels have the same meaning as in Fig. 2.

8

)
sφ-

φ
c
o

s
(

L
T

,I
A

-0.5

0

0.5

φ
)c

o
s

sφ-
φ

c
o

s
(

L
T

,I
A -0.5

0

0.5

φ
)s

in
sφ-

φ
s
in

(

L
T

,I
A

-0.5

0

0.5

fr
a
c
ti

o
n

A
s
s
o

c
.

0

0.2

0.4

overall

-2 -1

-0.5

0

0.5

-0.5

0

0.5

-2 -1

-0.5

0

0.5

-2 -1

]2-t [GeV

-210 -110

-1

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

Bx

-110

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

]2 [GeV2Q

1 10

Figure 2: Charge-difference double-spin asymmetry amplitudes describing the dependence of the interference term on transverse target polarization in combination

with beam helicity and beam charge extracted from hydrogen target data. These asymmetry amplitudes correspond to n = 0 and n = 1 in Eq. 26. The error

bars (bands at the bottom of the panels) represent the statistical (systematic) uncertainties. There is an additional overall 8.6% scale uncertainty arising from the

uncertainties in the measurements of the beam and target polarizations. The curves show the results of theoretical calculations using the VGG double-distribution

model [39, 41] with a Regge ansatz for modeling the t dependence of GPDs [42]. The widths of the curves represent the effect of varying the total angular momentum

Ju of u-quarks between 0.2 and 0.6, with Jd = 0. The bottom row shows the fractional contribution of associated BH production as obtained from a MC simulation.
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ization in combination with beam helicity extracted from hydrogen target data. These asymmetry amplitudes correspond to n = 0 and n = 1 in Eq. 27. The error

bars (bands at the bottom of the panels) represent the statistical (systematic) uncertainties. There is an additional overall 8.6% scale uncertainty arising from the

uncertainties in the measurements of the beam and target polarizations. The curves and the bottom row of panels have the same meaning as in Fig. 2.
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- HERMES Collaboration- Phys. Lett. B 704 (2011) 15-23

☛                           could provide a 
similar constraint to the real part 
 ☛ due to different kinematic pre-
factors, this amplitude is suppressed

Asin(���s) sin�
UT,I

�(�,�s, e`, S?,�) = �UU(�)

⇢
1 + e`AC(�) + �ADV CS

LU (�) + e`�AI
LU (�)

+S?ADV CS
UT (�,�S) + e`S?AI

UT (�,�S)

+ �S?ABH+DV CS
LT (�,�S) + e`�S?AI
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GPD E: transversely polarized hydrogen target
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with 
Target at COMPASS

F. Videbœk 
Physics Department 

Brookhaven National Laboratory 

Hall BHall A Hall C

The Spin Community And

☛ HERMES has been the pioneering collaboration in TMD and GPD fields
☛ still very important player in the field of nucleon (spin) structure

☛ polarized e+/- beams
☛ pure gas target

☛ good particle identification
☛ recoil detector


