

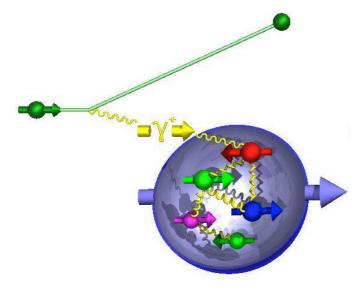
Hadron Structure '13

30. June - 4. July 2013, Tatranské Matliare, Slovakia

Ami Rostomyan
HERMES collaboration

(for the HERMES collaboration)

spin and hadronization

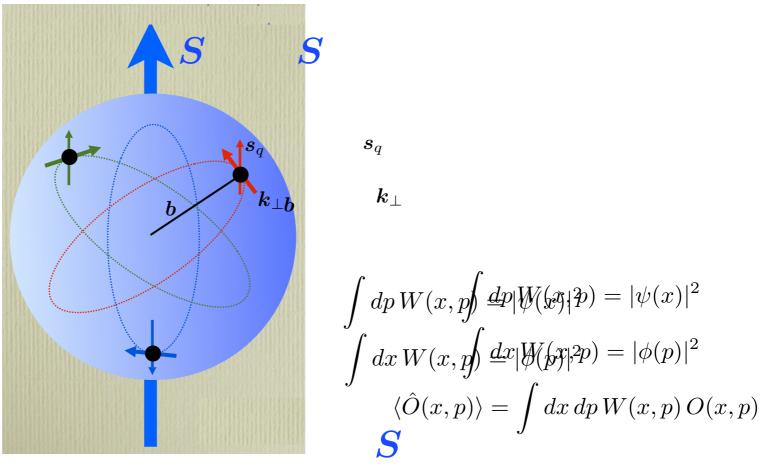


HERMES main research topics:

- **✓** origin of nucleon spin
 - longitudinal spin/momentum structure
 - transverse spin/momentum structure
- **✓** hadronization/fragmentation
- ✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
- momentum: quarks carry ~ 50 % of the proton momentum
- spin: total quark spin contribution only ~30%

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**



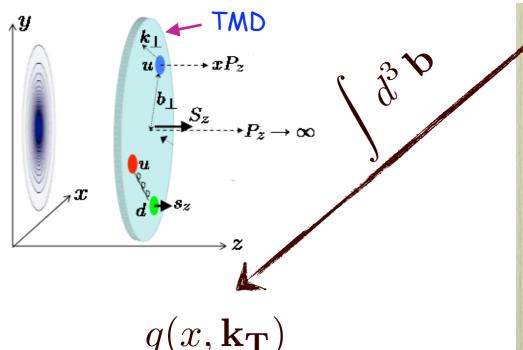
$$oldsymbol{s}_q$$

$$\int dp \, W(x,p) = |\psi(x)|^2$$

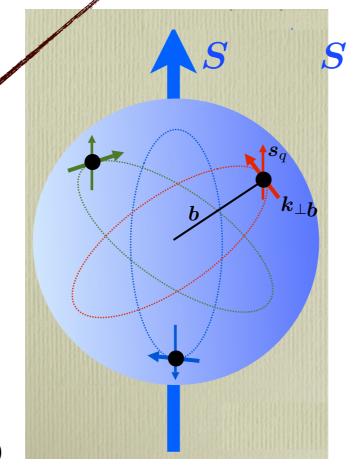
$$Hadr \int dx W(x,p) e^{-2} |\psi(x)|^2$$

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**



Transverse Momentum Dependent (TMDs) distribution functions (DF)



$$oldsymbol{s}_q$$

$$oldsymbol{k}_{\perp}$$

$$\int dp W(x, p) \underline{d}p |W(x)|^2 p) = |\psi(x)|^2$$

$$\int dx W(x, p) \underline{d}x |W(p)|^2 p) = |\phi(p)|^2$$

$$\langle \hat{O}(x, p) \rangle = \int dx \, dp \, W(x, p) \, O(x, p)$$

$$S$$

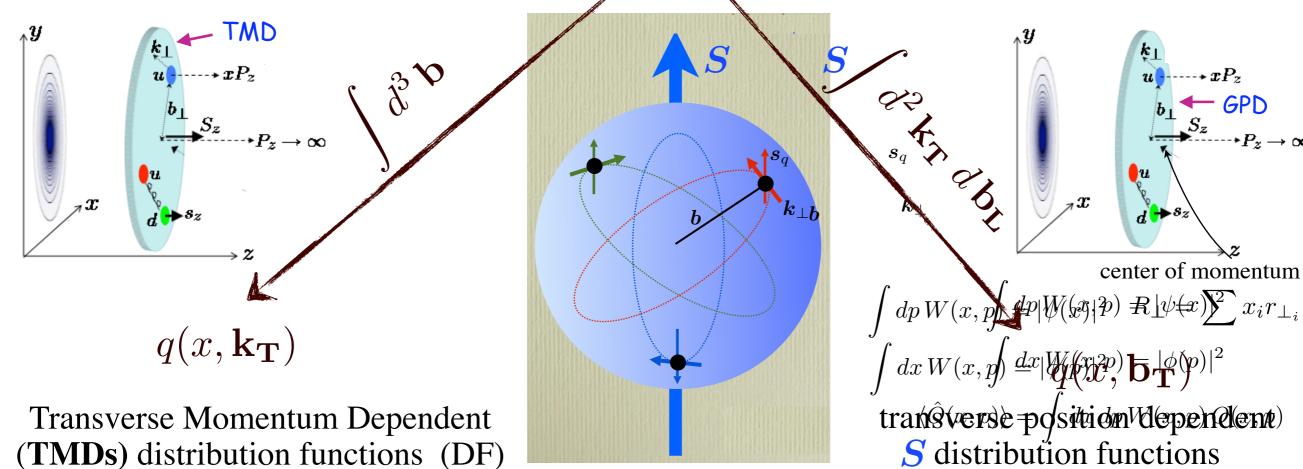
$$oldsymbol{s}_q$$

$$\int dp \, W(x,p) = |\psi(x)|^2$$

$$Hadr \int dx W(x,p) e^{-2} |\psi(x)|^2$$

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**

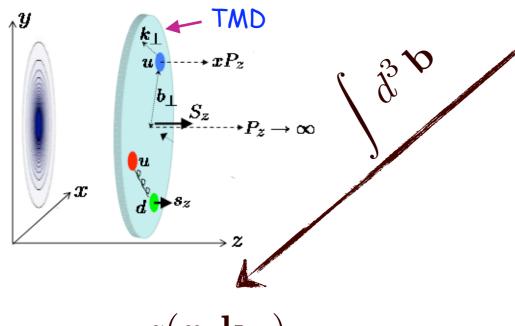


$$\int dp \, W(x,p) = |\psi(x)|^2$$

$$Hadr \int dx W(x,p) e^{-2} |\psi(x)|^2$$

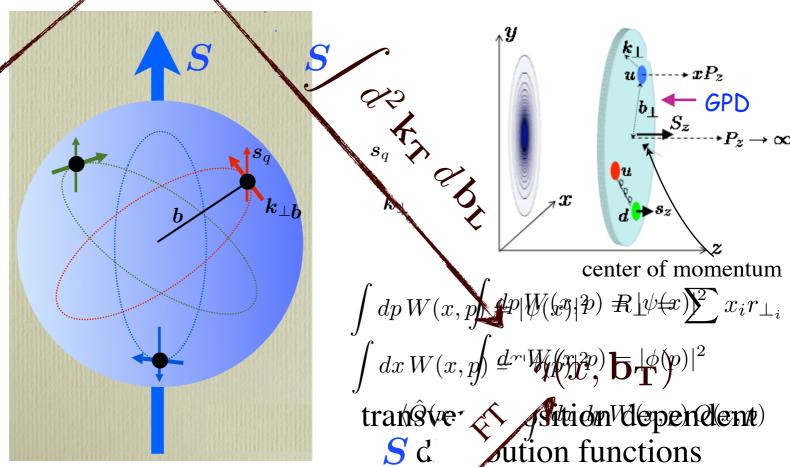
Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**



 $q(x, \mathbf{k_T})$

Transverse Momentum Dependent (TMDs) distribution functions (DF)



 $H(x,\xi,t)$

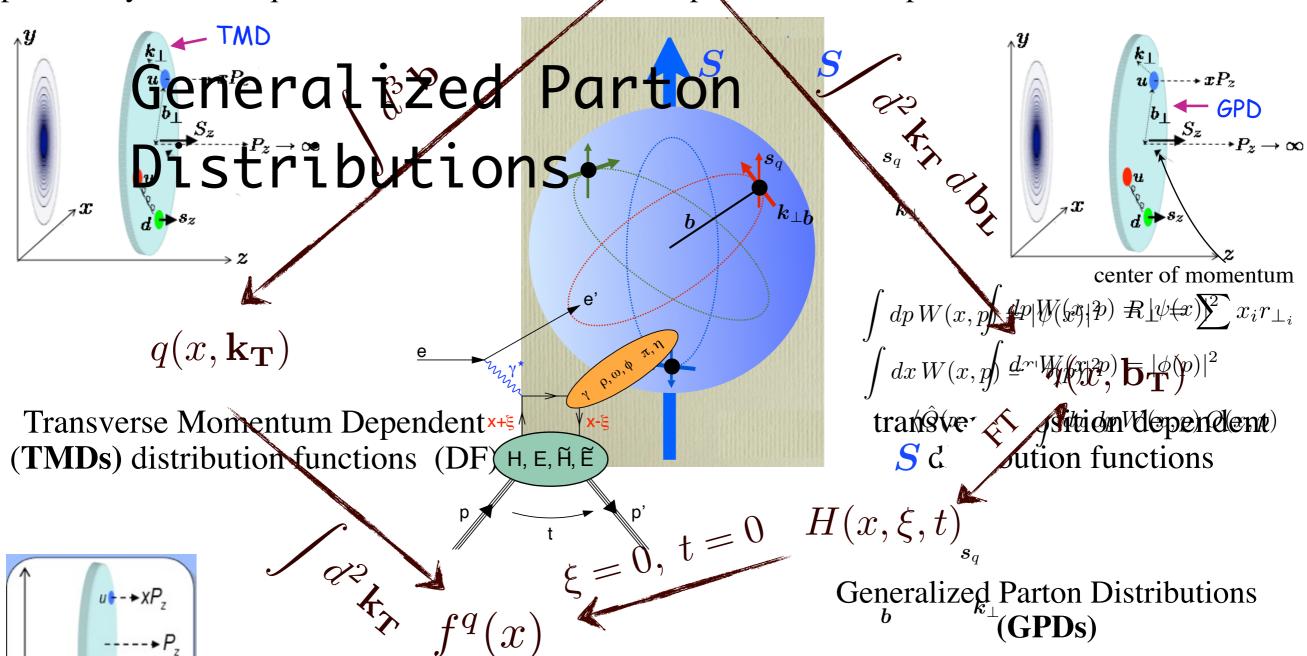
Generalized Parton Distributions (GPDs)

$$\int dp \, W(x,p) = |\psi(x)|^2$$

$$Hadr \int dx W(x,p) e^{-2} |\psi(x)|^2$$

Wigner functions: $(W^q(\mathbf{k}, \mathbf{b}))$

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**



Ami Rostomyan

Parton Distribution Functions (**PDFs**)

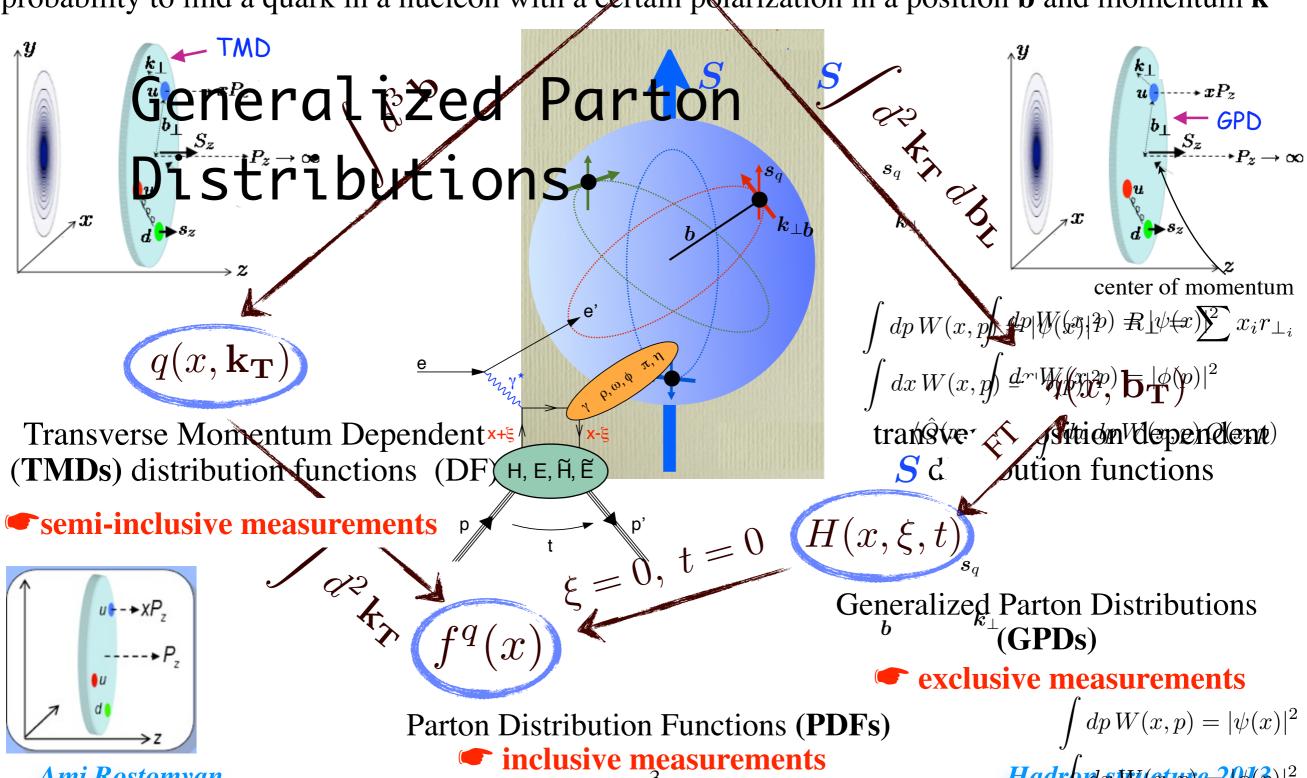
$$\int dp W(x,p) = |\psi(x)|^2$$

$$Hadr \int dx W(x,p) e^{-2} |\psi(x)|^2$$

Wigner functions: $W^q(\mathbf{k}, \mathbf{b})$

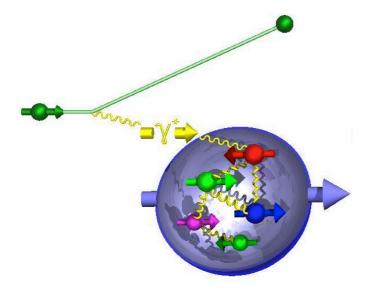
Ami Rostomyan

probability to find a quark in a nucleon with a certain polarization in a position **b** and momentum **k**



 $Hadr p dx W (ct, p) e = 2 (b(3))^2$

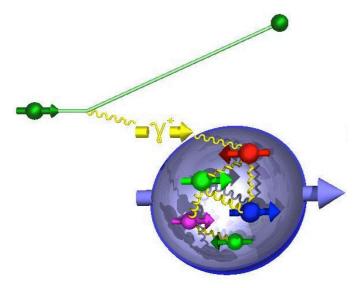
spin and hadronization



HERMES main research topics:

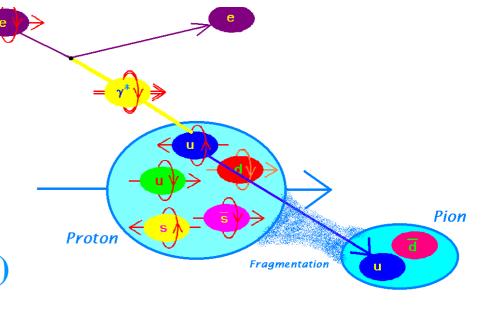
- **✓** origin of nucleon spin
 - longitudinal spin/momentum structure
 - transverse spin/momentum structure
- **✓** hadronization/fragmentation
- ✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
- \blacktriangleright momentum: quarks carry $\sim 50 \%$ of the proton momentum
- spin: total quark spin contribution only ~30%
- **⇒** study of TMD DFs and GPDs

spin and hadronization



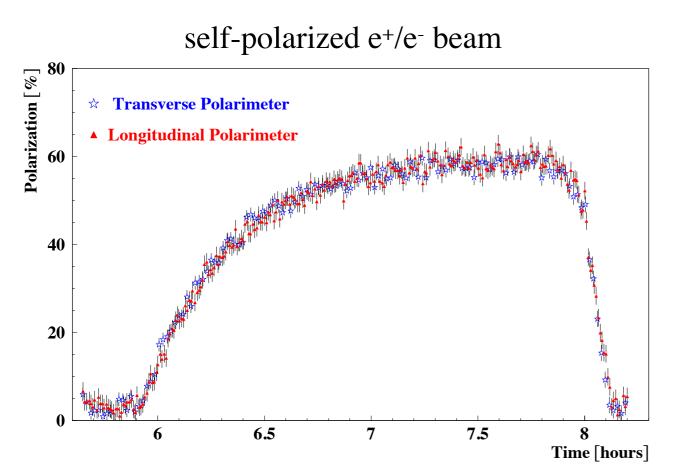
HERMES main research topics:

- **✓** origin of nucleon spin
 - longitudinal spin/momentum structure
 - transverse spin/momentum structure
- **✓** hadronization/fragmentation
- ✓ nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents
- momentum: quarks carry $\sim 50 \%$ of the proton momentum
- spin: total quark spin contribution only ~30%
- **⇒** study of TMD DFs and GPDs
- ✓ isolated quarks have never been observed in nature
- ✓ fragmentation functions were introduced to describe the hadronization
 - non-pQCD objects
 - universal but not well known functions
- → advantage of lepton-nucleon scattering data →
 flavour separation of fragmentation functions (FFs)

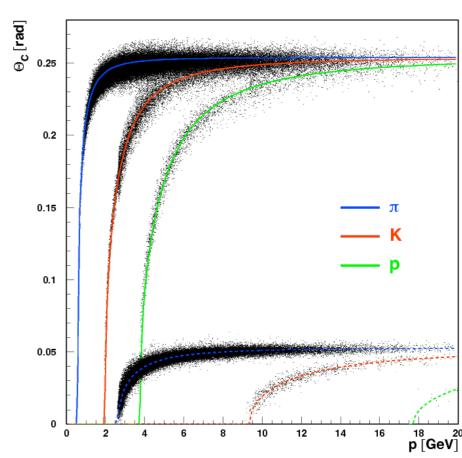


advantages of the experiment

The HERMES experiment, located at HERA, with its pure gas targets and advanced particle identification (π, K, p) is well suited for TMD and GPD measurements.

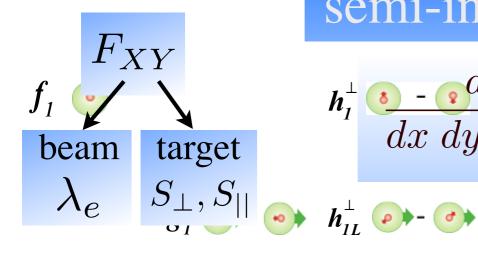


hadron identification with RICH detector



- longitudinal target polarization (H, D, ³He)
- **transverse** target polarization (H)
- unpolarized targets: H, D, ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr, ¹³¹Xe
- unpolarized H, D targets with recoil detector

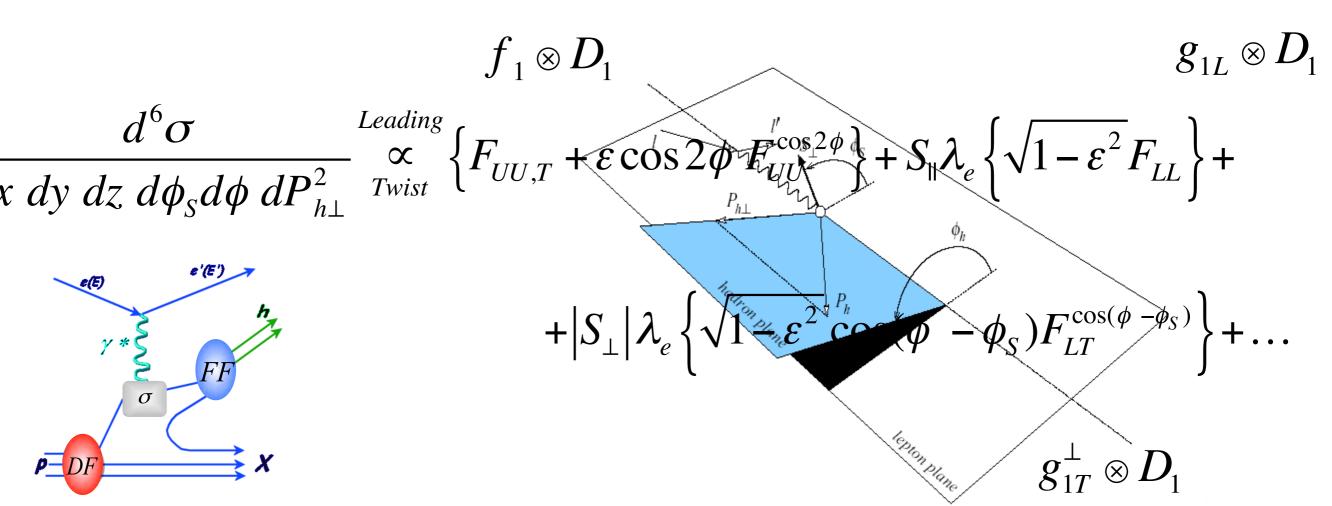
semi-inclusive measurements (probing TMDs)

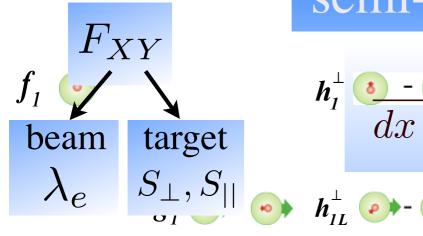


$$m{h}_{l}^{\perp}$$
 \rightarrow c $d^4\sigma$ $dx \ dy \ dz \ d\phi_s$ $\propto F_{UU} + S_{||} \lambda_e \sqrt{1 - \epsilon^2} F_{LL} + S_{\perp} \left\{ ... \right\}$ $m{h}_{lL}^{\perp}$ \rightarrow \rightarrow $f_1 \otimes D_1$

$$f_{IT}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ} g_{1T}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ} h_{I} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$$

$$h_{IT}^{\perp} \stackrel{\bullet}{\circ} - \stackrel{\bullet}{\circ}$$





$$S_{\perp}, S_{||}$$

$$\frac{d^6\sigma}{dx\;dy\;dz\;dP_h^2g^1_1d\phi\;d\phi_s}$$

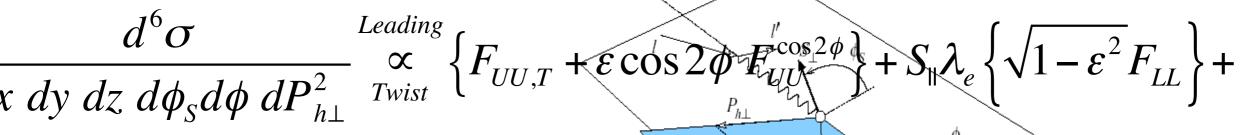
$$m{h}_{lL}^\perp$$
 odd o

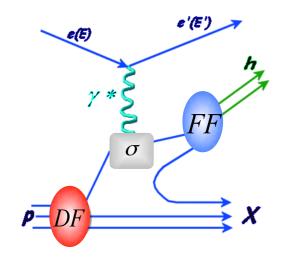
$$\frac{d^{6}\sigma}{dx\,dy\,dz\,dP_{h}^{2}d\phi\,d\phi_{s}} \quad \lim_{l \to \infty} \left\{ F_{UU} + \sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi}\cos\phi + \epsilon\,F_{UU}^{\cos2\phi}\cos2\phi \right\}$$

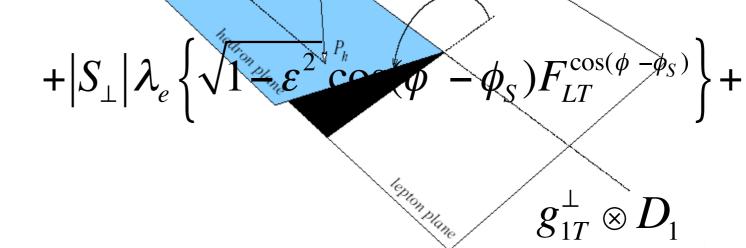
$$\mathbf{h}_{\mathrm{LT}}^{\mathrm{L}} = \lambda_{e}^{\mathrm{L}} \left\{ \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi} \sin\phi \right\} + S_{||} \left\{ \ldots \right\} + S_{\perp} \left\{ \ldots \right\}$$

$$\frac{d^6\sigma}{x\ dy\ dz\ d\phi_S d\phi\ dP_{h\perp}^2}$$

 $f_1 \otimes D_1$







$$\frac{d^6\sigma}{dx\ dy\ dz\ dP_{h}^2}\frac{d\phi\ d\phi_s}{g_1}$$

$$h_1^{\perp}$$
 \bullet - \circ

$$\propto \left\{ F_{UU} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi} \cos\phi + \epsilon F_{UU}^{\cos2\phi} \cos2\phi \right\}$$

$$h_{IL}^{\perp}$$
 $+$
 λ_{a}

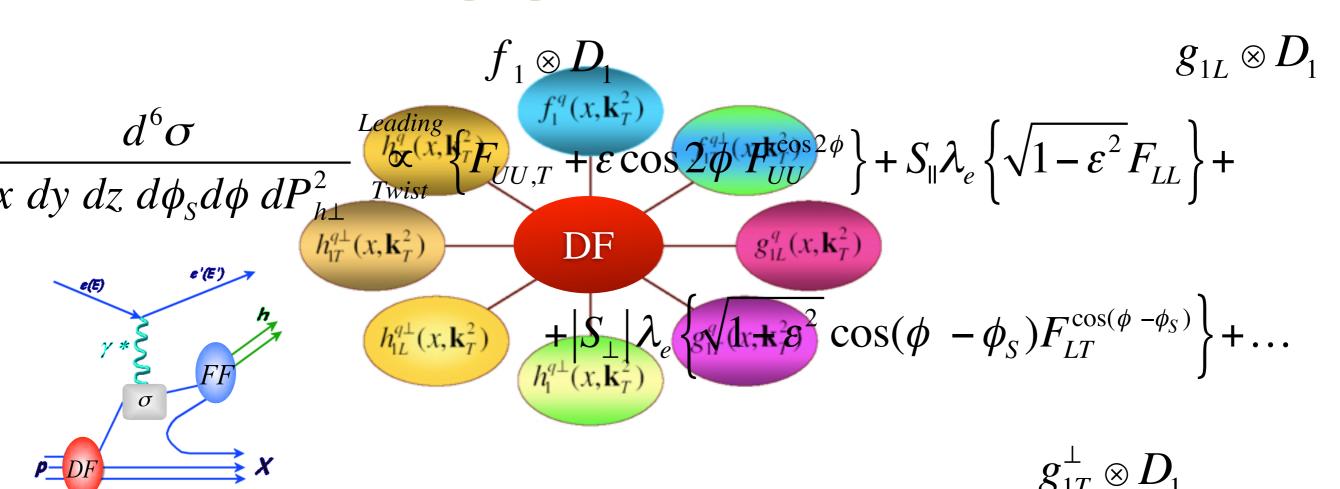
$$\frac{d^{\circ}\sigma}{dx \, dy \, dz \, dP_{h}^{2} d\phi \, d\phi_{s}} \propto \begin{cases} F_{UU} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi} \cos\phi + \epsilon F_{UU}^{\cos2\phi} \cos2\phi \end{cases}$$

$$+ \lambda_{e} \begin{cases} \sqrt{2\epsilon(1-\epsilon)} F_{UL}^{\sin\phi} \sin\phi \\ + S_{||} \begin{cases} ... \end{cases} + S_{\perp} \begin{cases} ... \end{cases} + ...$$

$$f_{UU}^{\perp} = 0 \quad \text{wist TMD DF:}$$

parameterize the quark-flavor

 $h_{\mathcal{B}}^{-}$ - of the nucleon



$$\frac{d^6\sigma}{dx\ dy\ dz\ dP_{h}^2} \frac{d\phi\ d\phi_s}{g_1}$$

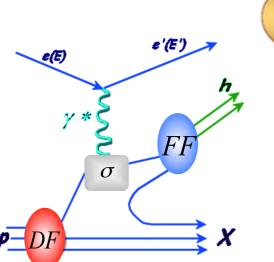
$$h_1^{\perp}$$
 \bullet - \circ

$$\propto \left\{ F_{UU} + \sqrt{2\epsilon(1+\epsilon)} F_{UU}^{\cos\phi} \cos\phi + \epsilon F_{UU}^{\cos2\phi} \cos2\phi \right\}$$

parameterize the quark-flavor $h_{\mathcal{B}}^{\perp}$ - of the nucleon

number densities for the conversion of a quark of a certain type to a specific $g_{1L}\otimes D_1$ hadron

$$\frac{d^6\sigma}{x\ dy\ dz\ d\phi_S d\phi\ dP_{h\perp}^2}$$



$$h_{1T}^{q\perp}(x,\mathbf{k}_{T}^{2}) + S \lambda_{e} \left\{ g \sqrt{\mathbf{k}_{T}^{2} + \mathbf{k}_{T}^{2}} \right\} \cos S$$

$$+ |S_{\perp}| \lambda_e \left\{ \sqrt{\mathbf{l}_{r,\mathbf{k},\mathbf{z}}^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} \right\} + \dots$$

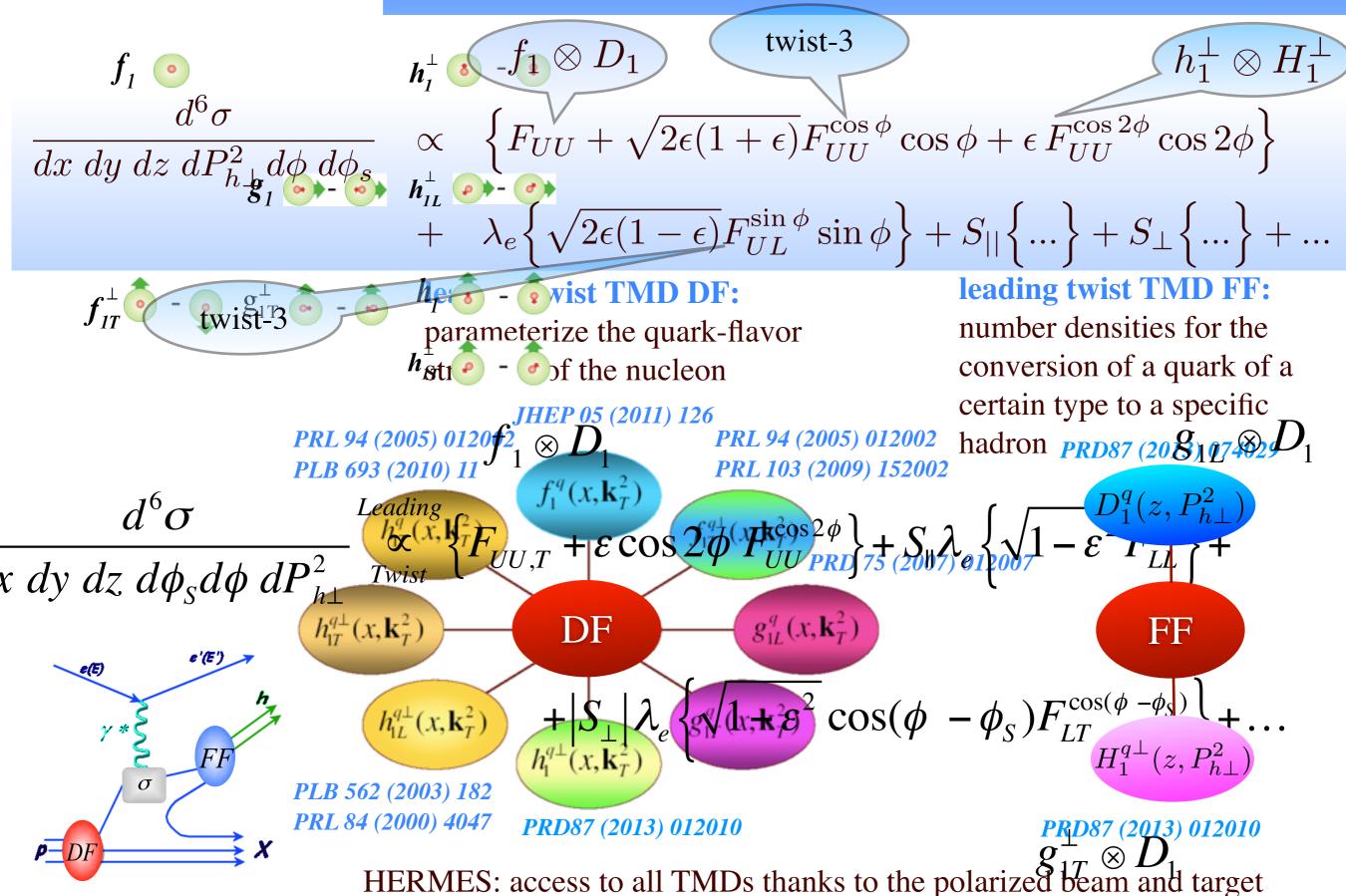
$$g_{1T}^{\perp}\otimes D_{1}$$

FF

$$\begin{array}{c} f_{I} & \bullet & h_{I}^{\perp} & \bullet & \bullet \\ \hline d^{6}\sigma & \propto & \left\{F_{UU} + \sqrt{2\epsilon(1+\epsilon)}F_{UU}^{\cos\phi}\cos\phi + \epsilon F_{UU}^{\cos2\phi}\cos2\phi\right\} \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ & + \lambda_{e}\left\{\sqrt{2\epsilon(1-\epsilon)}F_{UL}^{\sin\phi}\sin\phi\right\} + S_{||}\left\{...\right\} + S_{\perp}\left\{...\right\} + ... \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ f_{II}^{\perp} & \bullet & \bullet & \bullet \\ f_{II}^{\perp} & \bullet & \bullet \\$$

Ami Rostomyan

Hadron structure 2013



Ami Rostomyan

Hadron structure 2013

$$\sigma_{UU} \propto f_1 \otimes D_1$$

$$\sigma_{UU} \propto f_1 \otimes D_1$$
 $f_1 = igoplus f_1$

$$\sigma_{UU} \propto f_1 \otimes D_1$$

$$\sigma_{UU} \propto f_1 \otimes D_1$$
 $f_1 = igoplus f_1$

$$M^{h} = \frac{d\sigma_{SIDIS}^{h}(x, Q^{2}, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^{2})}$$

LO interpretation of multiplicity results (integrated over $P_{h\perp}$):

$$\sigma_{UU} \propto f_1 \otimes D_1$$
 $f_1 = igoplus f_1$

$$M^h \propto \frac{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2) D_{1q}^h(z, Q^2)}{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2)}$$

$$M^{h} = \frac{d\sigma_{SIDIS}^{h}(x, Q^{2}, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^{2})}$$

√ charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

 $\sigma_{UU} \propto f_1 \otimes D_1$

LO interpretation of multiplicity results (integrated over $P_{h\perp}$):

$$f_1 = \bigcirc$$

$$M^h \propto \frac{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2) D_{1q}^h(z, Q^2)}{\sum_q e_q^2 \int dx \, f_{1q}(x, Q^2)}$$

✓ charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

$$\pi^+$$
 and K⁺:

favoured fragmentation on proton

$\pi^{\overline{}}$:

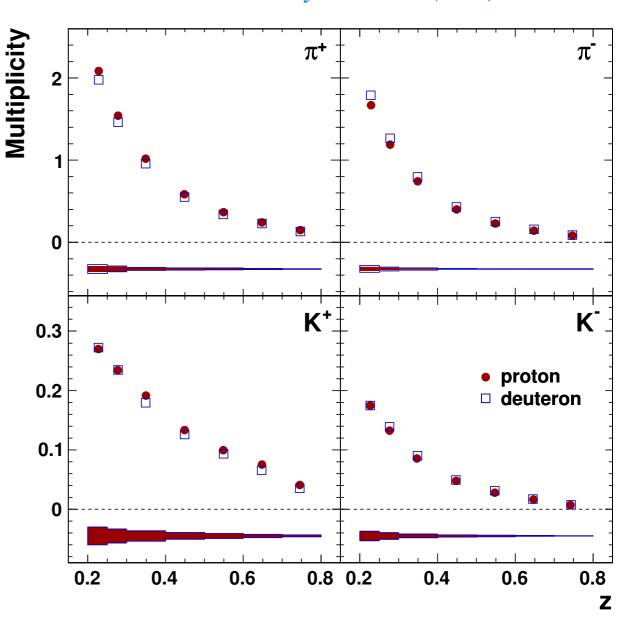
increased number of d-quarks in D target and favoured fragmentation on neutron

K:

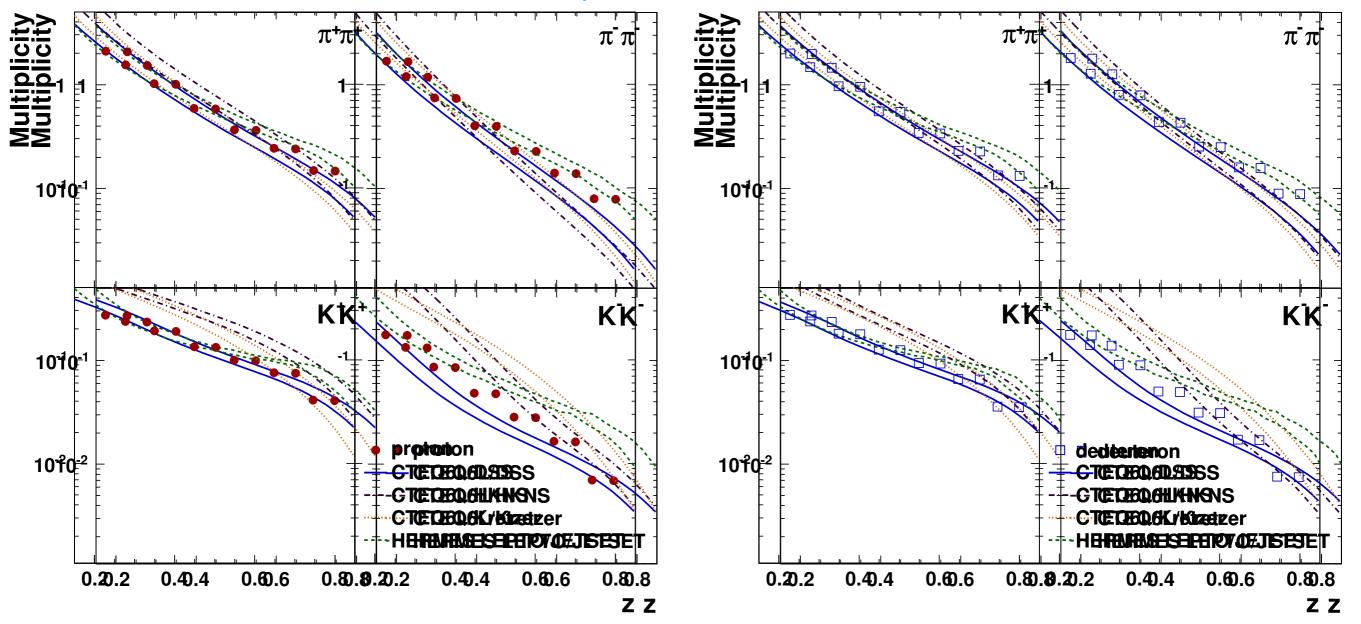
cannot be produced through favoured fragmentation from the nucleon valence quarks

$$M^{h} = \frac{d\sigma_{SIDIS}^{h}(x, Q^{2}, z, P_{h\perp})}{d\sigma_{DIS}(x, Q^{2})}$$

- HERMES Collaboration-Phys. Rev. D87 (2013) 074029



- HERMES Collaboration-Phys.Rev. D87 (2013) 074029



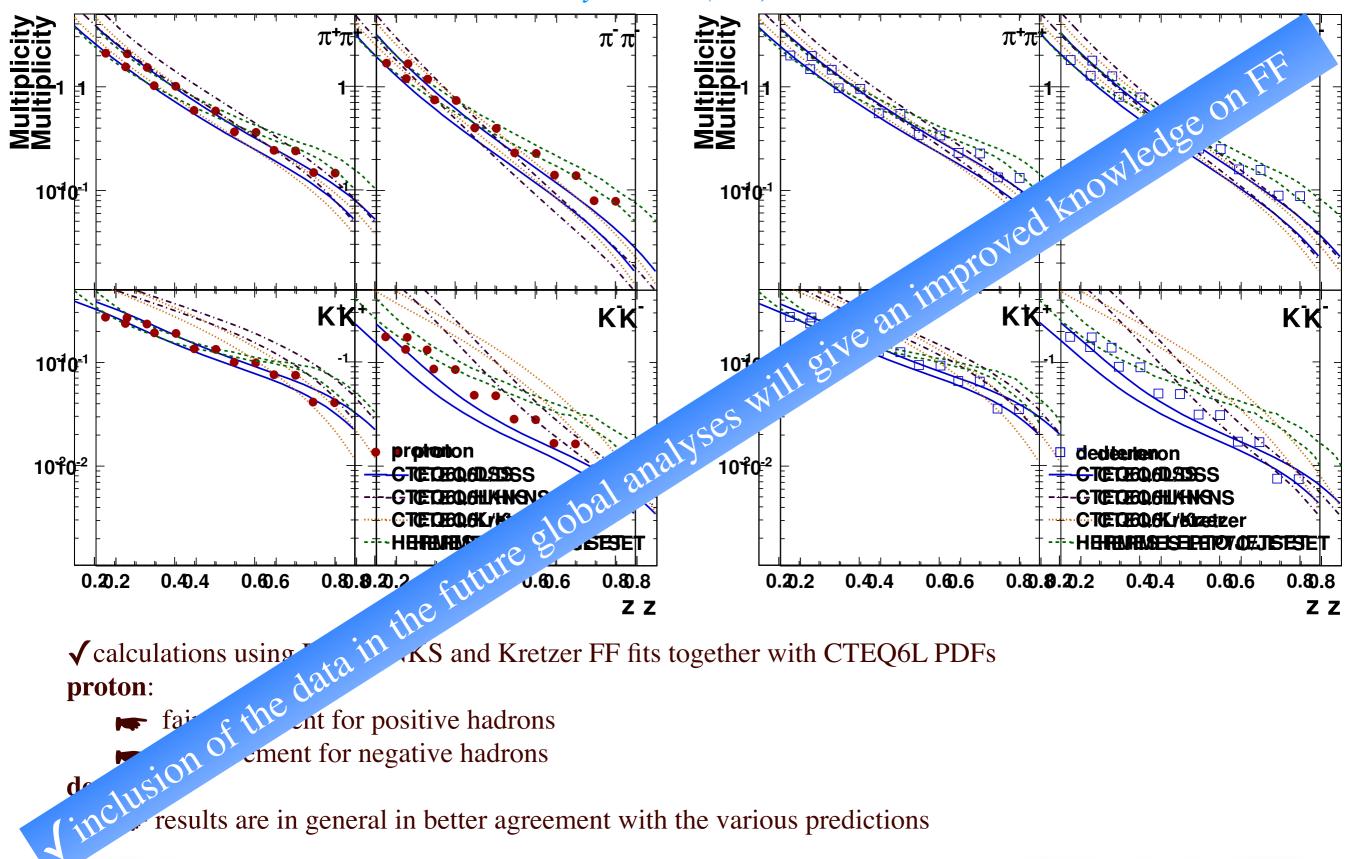
✓ calculations using DSS, HNKS and Kretzer FF fits together with CTEQ6L PDFs **proton**:

- fair agreement for positive hadrons
- disagreement for negative hadrons

deuteron:

results are in general in better agreement with the various predictions

- HERMES Collaboration-Phys.Rev. D87 (2013) 074029



KS and Kretzer FF fits together with CTEQ6L PDFs

results are in general in better agreement with the various predictions

evaluation of strange quark PDFs

√in the absence of experimental constraints, many global QCD fits of PDFs assume

$$s(x) = \bar{s}(x) = r[\bar{u}(x) + \bar{d}(x)]/2$$

✓ isoscalar extraction of $S(x)\mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$ based on the multiplicity data of K⁺ and K⁻ on D

$$S(x) \int \mathcal{D}_S^K(z) dz \simeq Q(x) \left[5 \frac{\mathrm{d}^2 N^K(x)}{\mathrm{d}^2 N^{DIS}(x)} - \int \mathcal{D}_Q^K(z) dz \right]$$

$$S(x) = s(x) + \bar{s}(x)$$

$$Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x)$$

$$\mathcal{D}_{S}^{\mathcal{K}} = D_{1}^{s \to K^{+}} + D_{1}^{\bar{s} \to K^{+}} + D_{1}^{s \to K^{-}} + D_{1}^{\bar{s} \to K^{-}}$$

$$\mathcal{D}_{Q}^{\mathcal{K}} = D_{1}^{u \to K^{+}} + D_{1}^{\bar{u} \to K^{+}} + D_{1}^{d \to K^{+}} + D_{1}^{\bar{d} \to K^{+}} + \dots$$

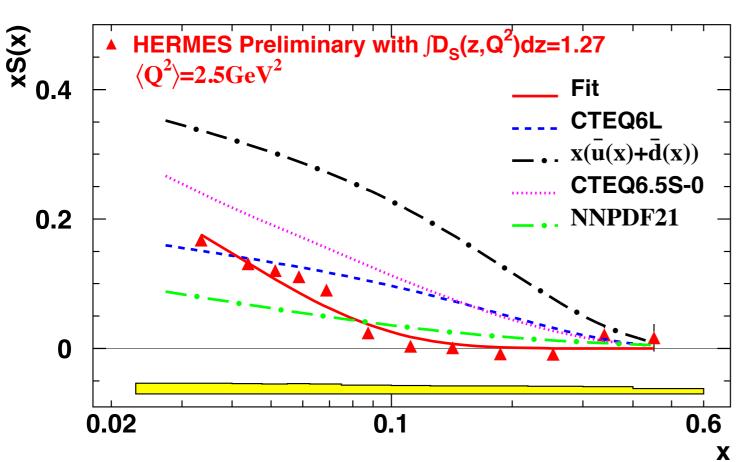
evaluation of strange quark PDFs

✓ in the absence of experimental constraints, many global QCD fits of PDFs assume

$$s(x) = \bar{s}(x) = r[\bar{u}(x) + \bar{d}(x)]/2$$

✓ isoscalar extraction of $S(x)\mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$ based on the multiplicity data of K⁺ and K⁻ on D

$$S(x) \int \mathcal{D}_S^K(z) dz \simeq Q(x) \left[5 \frac{\mathrm{d}^2 N^K(x)}{\mathrm{d}^2 N^{DIS}(x)} - \int \mathcal{D}_Q^K(z) dz \right]$$



- $S(x) = s(x) + \bar{s}(x)$ $Q(x) = u(x) + \bar{u}(x) + d(x) + \bar{d}(x)$ $\mathcal{D}_{S}^{\mathcal{K}} = D_{1}^{s \to K^{+}} + D_{1}^{\bar{s} \to K^{+}} + D_{1}^{s \to K^{-}} + D_{1}^{\bar{s} \to K^{-}}$ $\mathcal{D}_{Q}^{\mathcal{K}} = D_{1}^{u \to K^{+}} + D_{1}^{\bar{u} \to K^{+}} + D_{1}^{d \to K^{+}} + D_{1}^{\bar{d} \to K^{+}} + \dots$
 - ✓ the distribution of S(x) is obtained for a certain value of $\mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$
 - ✓ the normalization of the data is given by that value
 - ✓ whatever the normalization, the shape is incompatible with the predictions

beyond the collinear factorization

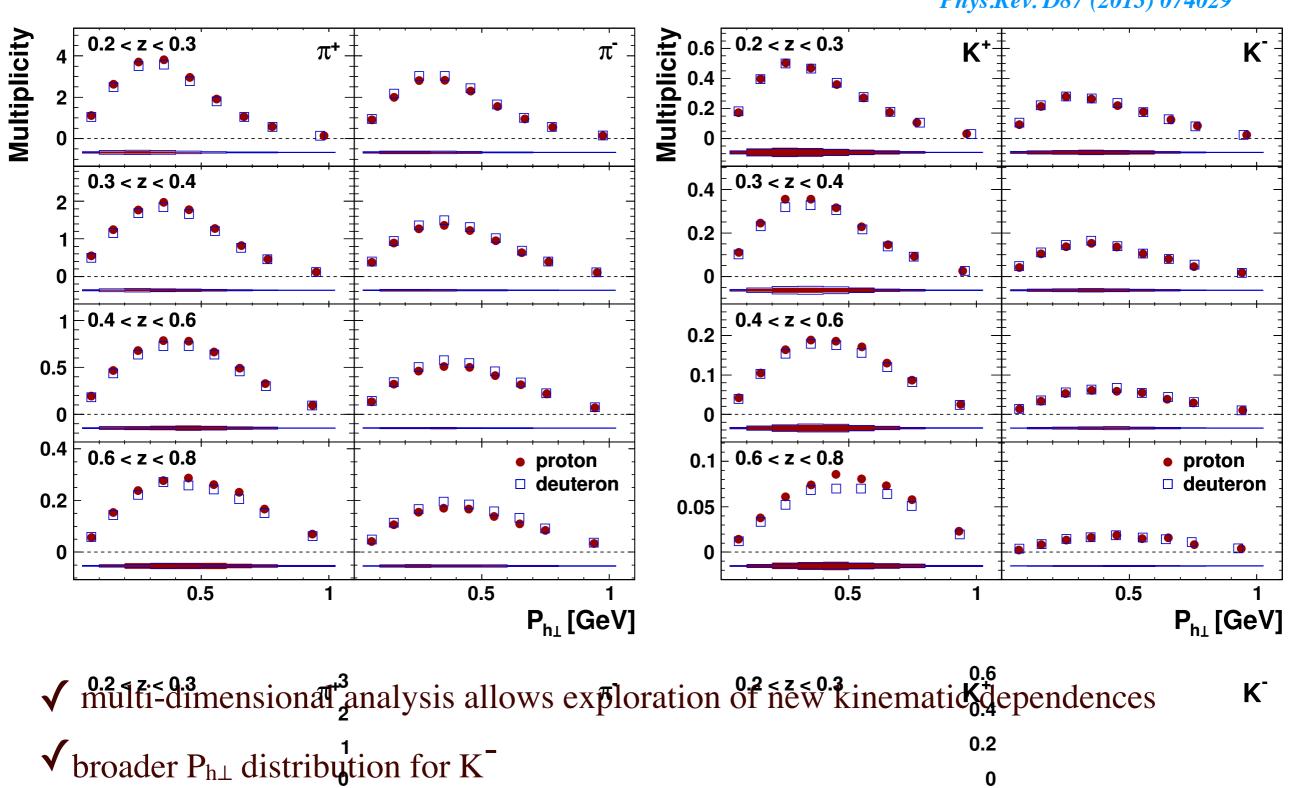
0.3 < z < 0.4

Ami Rostomyan

1.5

- HERMES Collaboration-Phys.Rev. D87 (2013) 074029

Hadron structure 2013



12

0.3 < z < 0.4

Collins effect

$$\begin{array}{c|c} \sigma_{XY} \\ \hline \text{beam:} \\ P_{I} \\ \hline \end{array} \quad \begin{array}{c|c} \text{target:} \\ S_{L}S_{T} \\ \hline \end{array}$$

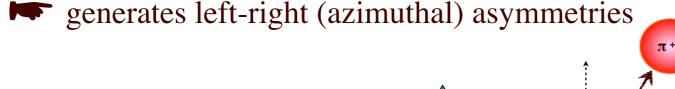
$$d\sigma = d\sigma_{UU}^{0} + \cos(2\phi)d\sigma_{UU}^{1} + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^{2} + P_{l}\frac{1}{Q}\sin(\phi)d\sigma_{LU}^{3}$$

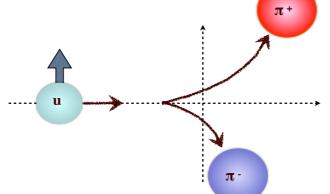
$$+ S_{L}\left[\sin(2\phi)d\sigma_{UL}^{4} + \frac{1}{Q}\sin(\phi)d\sigma_{UL}^{5} + P_{l}\left(d\sigma_{LL}^{6} + \frac{1}{Q}\cos(\phi)d\sigma_{LL}^{7}\right)\right]$$

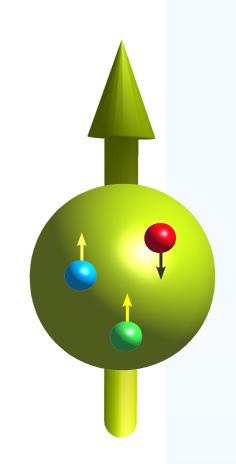
$$+ S_{T}\left[\sin(\phi - \phi_{s})d\sigma_{UT}^{8} + \sin(\phi + \phi_{s})d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s})d\sigma_{UT}^{10} + \frac{1}{Q}\sin(2\phi - \phi_{s})d\sigma_{UT}^{11} + \frac{1}{Q}\sin(\phi_{s})d\sigma_{UT}^{12}\right]$$

$$P_l\left(\cos(\phi - \phi_s)d\sigma_{LT}^{13} + \frac{1}{Q}\cos(\phi_s)d\sigma_{LT}^{14} + \frac{1}{Q}\cos(2\phi - \phi_s)d\sigma_{LT}^{15}\right)\right]$$

- the transversity DF $h_1^q(x)$ is sensitive to the difference of the number densities of transversely polarized quarks aligned along or opposite to the polarization of the nucleon
- "Collins-effect" accounts for the correlation between the transverse spin of the fragmenting quark and the transverse momentum of the produced unpolarized hadron







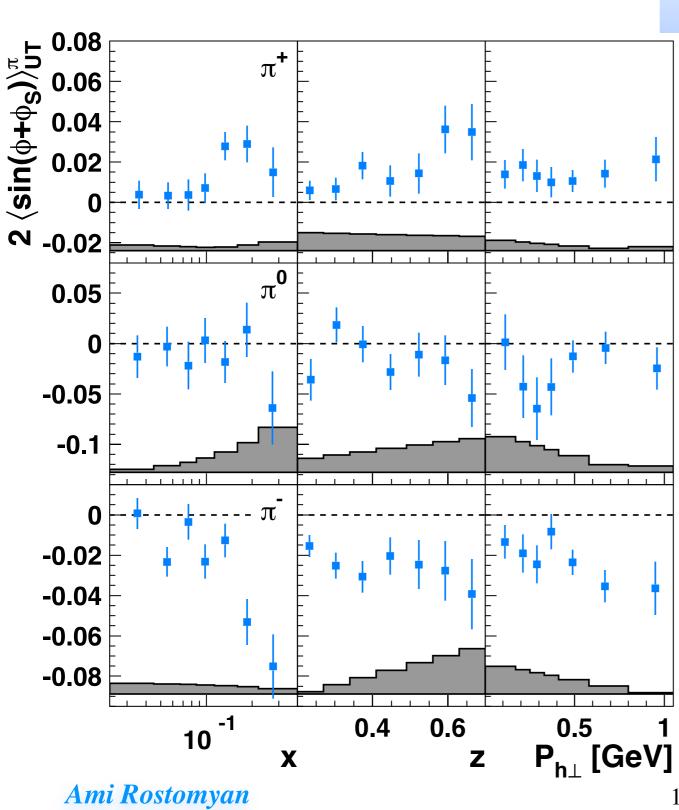
Collins amplitudes for pions

- HERMES Collaboration-Phys. Lett. B 693 (2010) 11-16

non-zero Collins effect observed!

both Collins FF and transversity sizeable

 $2\langle \sin(\phi + \phi_s) \rangle_{UT} \propto \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{P}}_{h\perp} \cdot \mathbf{k}_{\mathrm{T}}}{M_h} h_1^q(x, p_{\mathrm{T}}^2) H_1^{\perp q \to h}(z, k_{\mathrm{T}}^2)\right]}{\mathcal{C}\left[f_1^q(x, p_{\mathrm{T}}^2) D_1^{q \to h}(z, k_{\mathrm{T}}^2)\right]}$



Collins amplitudes for pions

- HERMES Collaboration-Phys. Lett. B 693 (2010) 11-16

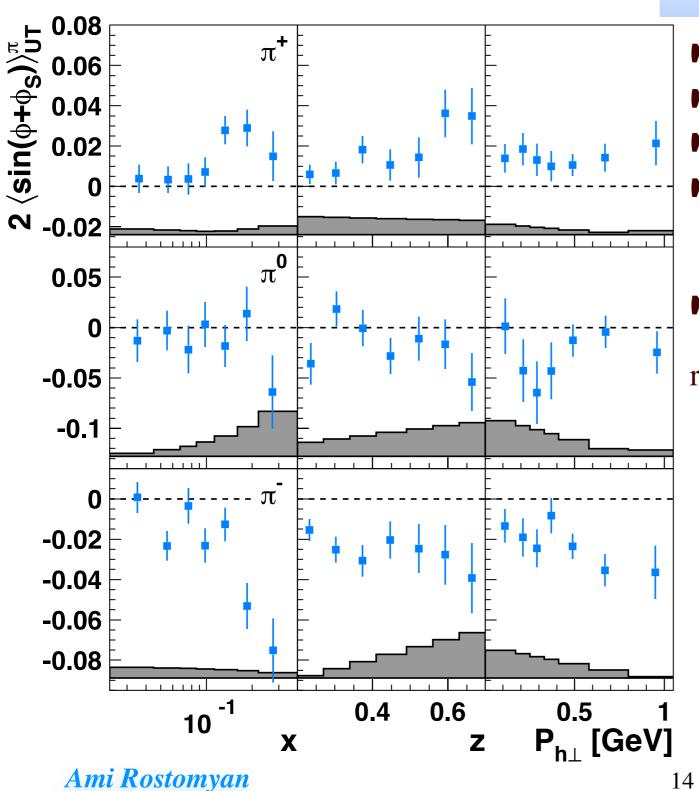
- non-zero Collins effect observed!
- both Collins FF and transversity sizeable

 $2\langle \sin(\phi + \phi_s) \rangle_{UT} \propto \frac{\mathcal{C}\left[-\frac{\tilde{\mathbf{P}}_{h\perp} \cdot \mathbf{k}_{\mathrm{T}}}{M_h} h_1^q(x, p_{\mathrm{T}}^2) H_1^{\perp q \to h}(z, k_{\mathrm{T}}^2)\right]}{\mathcal{C}\left[f_1^q(x, p_{\mathrm{T}}^2) D_1^{q \to h}(z, k_{\mathrm{T}}^2)\right]}$

$$ightharpoonup$$
 compatible with zero amplitude for π^0

large negative amplitude for
$$\pi$$

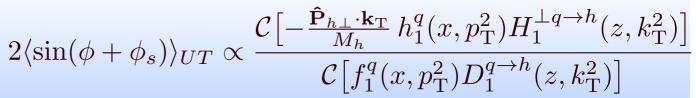
in qualitative agreement with BELLE results

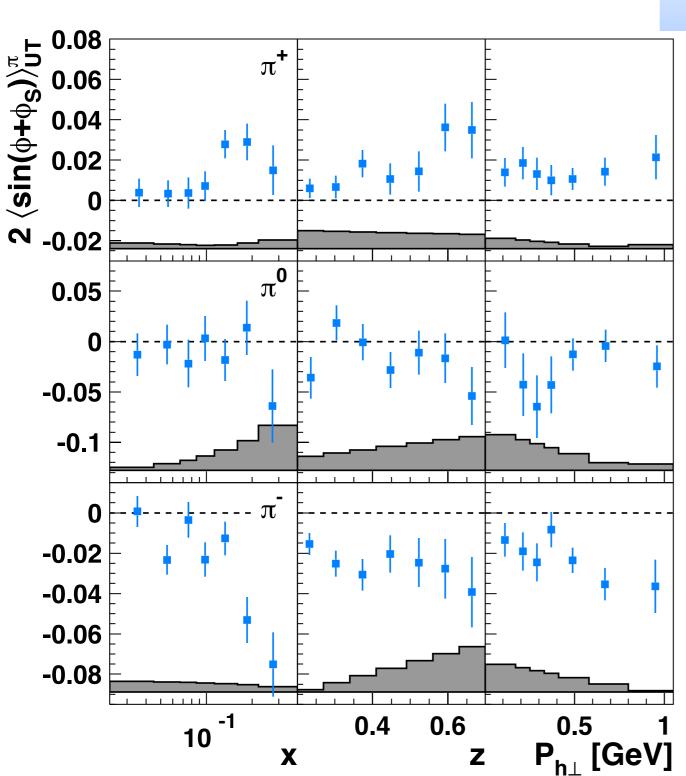


Collins amplitudes for pions

- HERMES Collaboration-Phys. Lett. B 693 (2010) 11-16

- non-zero Collins effect observed!
- both Collins FF and transversity sizeable





Ami Rostomyan

- \blacktriangleright positive amplitude for π +
- ightharpoonup compatible with zero amplitude for π^0
- large negative amplitude for π
- increase in magnitude with x
 - transversity mainly receives contribution from valence quarks
- increase with z

14

- in qualitative agreement with BELLE results
- positive for π + and negative for π
 - role of disfavored Collins FF:

$$\mathbf{H_{1}^{\perp,disfav}} \approx -H_{1}^{\perp,fav}$$

$$u \Rightarrow \pi^{+}; \qquad d \Rightarrow \pi^{-}(fav)$$

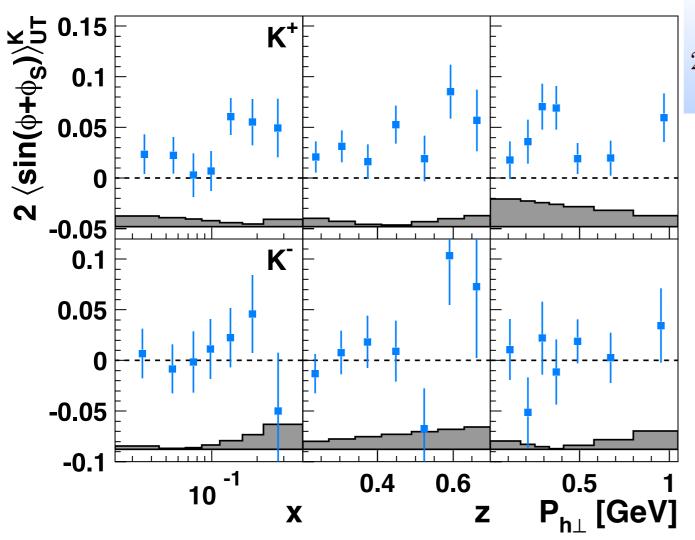
$$u \Rightarrow \pi^{-}; \qquad d \Rightarrow \pi^{+}(disfav)$$

$$\mathbf{h_{1}^{u}} > 0$$

$$\mathbf{h_{1}^{d}} < 0$$

Collins amplitudes for kaons

- HERMES Collaboration-Phys. Rev. Lett. 103 (2009) 152002



$$2\langle \sin(\phi + \phi_s) \rangle_{UT} \propto \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{P}}_{h\perp} \cdot \mathbf{k}_{\mathrm{T}}}{M_h} h_1^q(x, p_{\mathrm{T}}^2) H_1^{\perp q \to h}(z, k_{\mathrm{T}}^2)\right]}{\mathcal{C}\left[f_1^q(x, p_{\mathrm{T}}^2) D_1^{q \to h}(z, k_{\mathrm{T}}^2)\right]}$$

 K^+

 K^+ amplitudes are similar to π^+ as expected from the u-quark dominance

 K^+ are larger than π^+

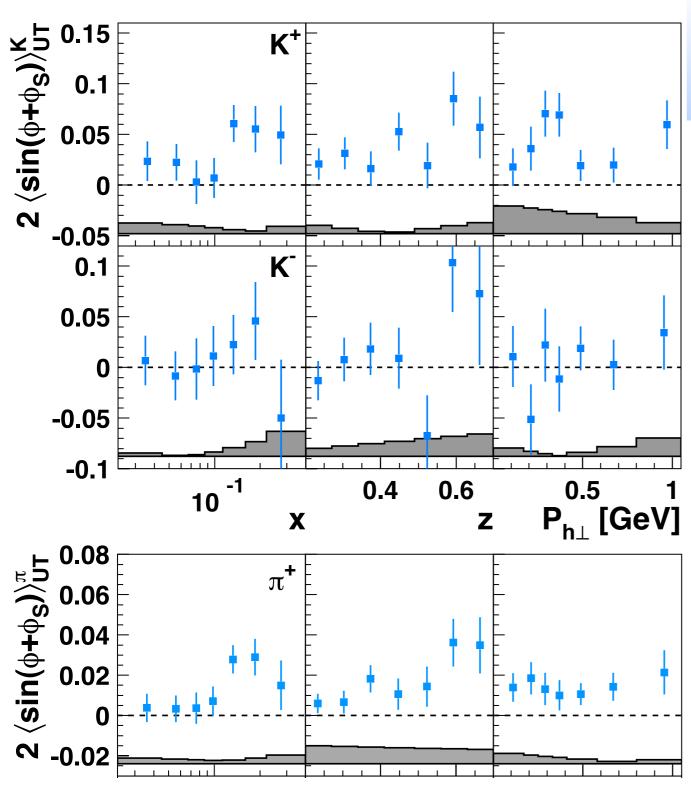
K

consistent with zero amplitudes

 $\mathbf{K}^{-}(\bar{\mathbf{u}}\mathbf{s})$ is all see object

Collins amplitudes for kaons

- HERMES Collaboration-Phys. Rev. Lett. 103 (2009) 152002



$$2\langle \sin(\phi + \phi_s) \rangle_{UT} \propto \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{P}}_{h\perp} \cdot \mathbf{k}_{\mathrm{T}}}{M_h} h_1^q(x, p_{\mathrm{T}}^2) H_1^{\perp q \to h}(z, k_{\mathrm{T}}^2)\right]}{\mathcal{C}\left[f_1^q(x, p_{\mathrm{T}}^2) D_1^{q \to h}(z, k_{\mathrm{T}}^2)\right]}$$

 K^{+}

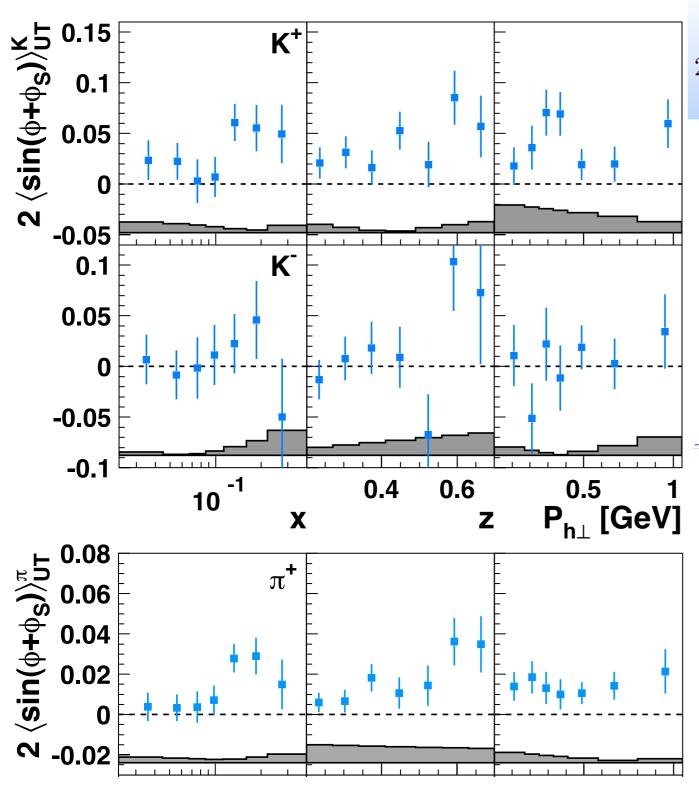
 K^+ amplitudes are similar to π^+ as expected from the u-quark dominance

 K^+ are larger than π^+

 K^{-}

consistent with zero amplitudes

 $\mathbf{K}^{-}(\bar{\mathbf{u}}\mathbf{s})$ is all see object



$$2\langle \sin(\phi + \phi_s) \rangle_{UT} \propto \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{P}}_{h\perp} \cdot \mathbf{k}_{\mathrm{T}}}{M_h} h_1^q(x, p_{\mathrm{T}}^2) H_1^{\perp q \to h}(z, k_{\mathrm{T}}^2)\right]}{\mathcal{C}\left[f_1^q(x, p_{\mathrm{T}}^2) D_1^{q \to h}(z, k_{\mathrm{T}}^2)\right]}$$

 K^{+}

 K^+ amplitudes are similar to π^+ as expected from the u-quark dominance

 K^+ are larger than π^+

K

consistent with zero amplitudes

 $\mathbf{K}^{-}(\bar{\mathbf{u}}\mathbf{s})$ is all see object

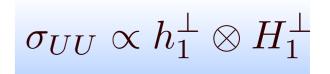
differences between K^+ and π + amplitudes

role of sea quarks in conjunction with possibly large FF

various contributions from decay of semiinclusively produced vector-mesons

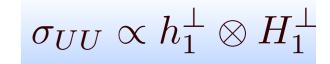
the k_T dependences of the fragmentation functions

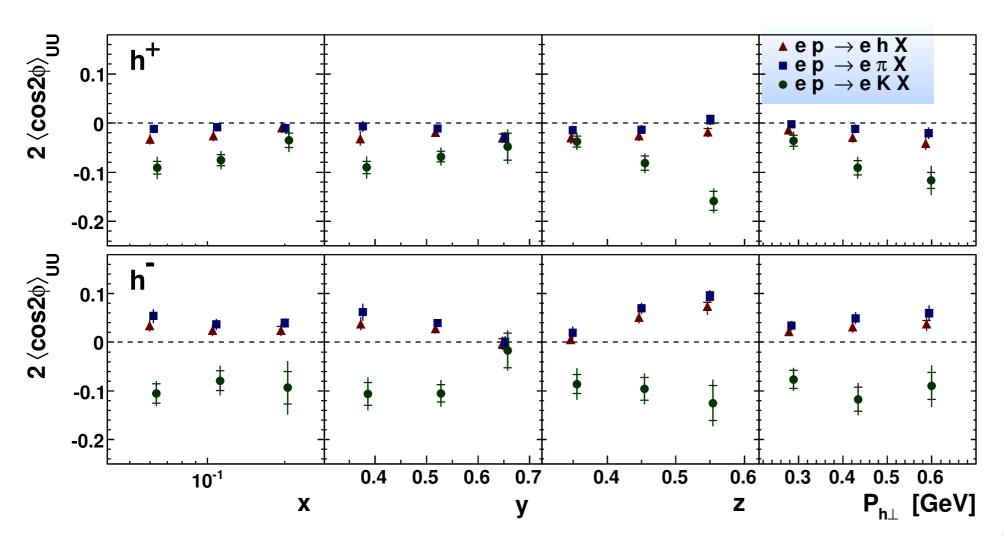
quark's transverse degrees of freedom

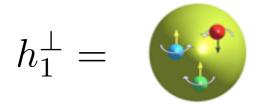


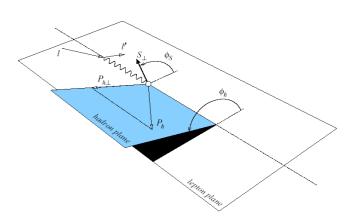
$$h_1^{\perp} =$$

quark's transverse degrees of freedom





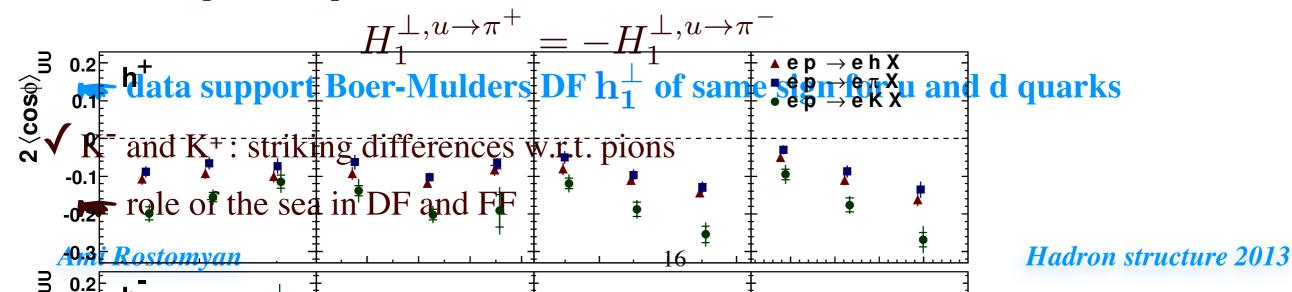




- HERMES Collaboration-Phys.Rev. D87 (2013) 012010

✓ negative asymmetry for π^+ and positive for π^-

from previous publications (*PRL 94 (2005) 012002, PLB 693 (2010) 11-16*):



beyond the leading twist

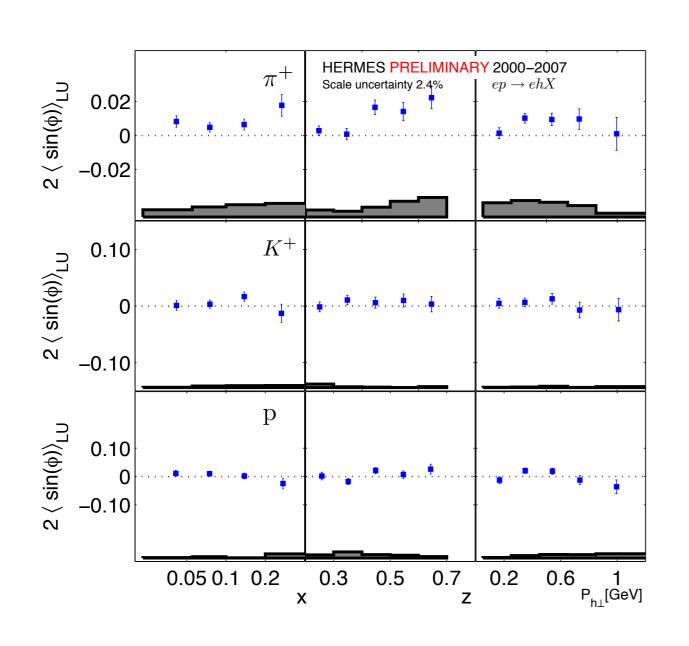
$$\frac{d^6\sigma}{dx\ dy\ dz\ dP_{h\perp}^2 d\phi\ d\phi_s} \propto \left\{ F_{UU} + \dots + \lambda_e \left\{ \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi} \sin\phi \right\} + \dots \right\}$$

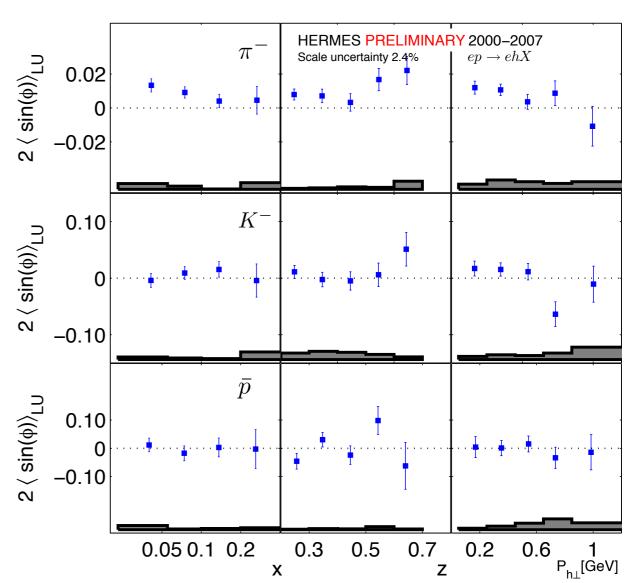
convolutions of twist-2 and twist-3 functions

beyond the leading twist

$$\frac{d^6\sigma}{dx\ dy\ dz\ dP_{h\perp}^2 d\phi\ d\phi_s} \propto \left\{ F_{UU} + \dots + \lambda_e \left\{ \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi} \sin\phi \right\} + \dots \right\}$$

convolutions of twist-2 and twist-3 functions

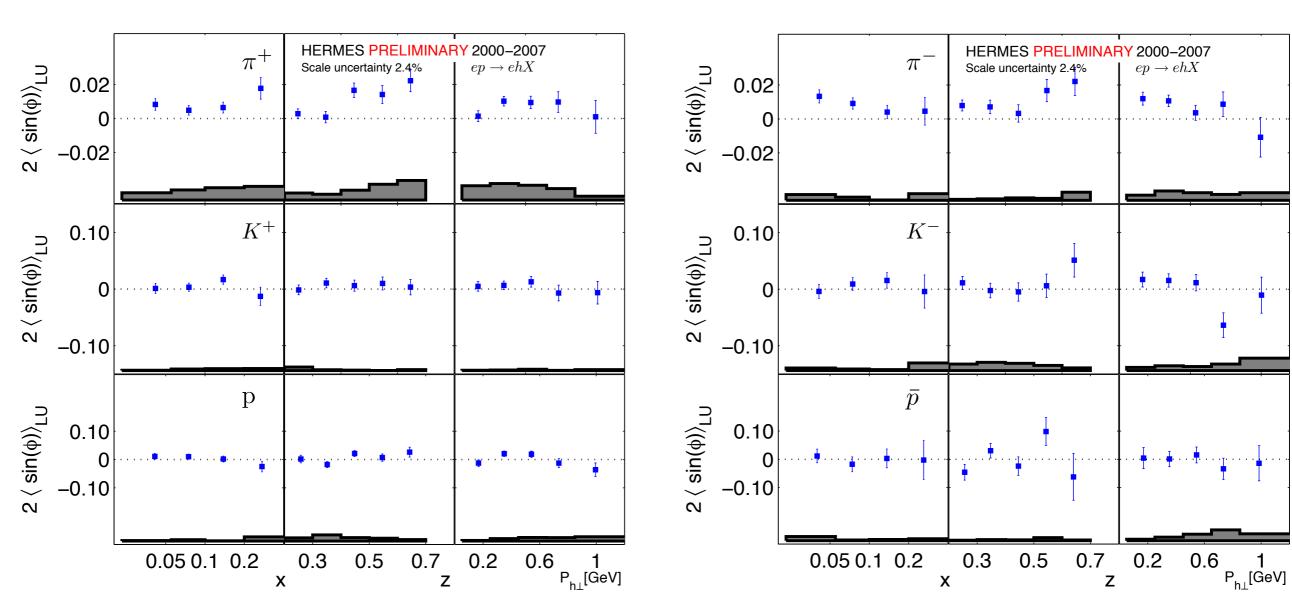




beyond the leading twist

$$\frac{d^6\sigma}{dx\ dy\ dz\ dP_{h\perp}^2 d\phi\ d\phi_s} \propto \left\{ F_{UU} + \dots + \lambda_e \left\{ \sqrt{2\epsilon(1-\epsilon)} F_{LU}^{\sin\phi} \sin\phi \right\} + \dots \right\}$$

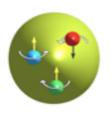
convolutions of twist-2 and twist-3 functions



 π^+ and π^-

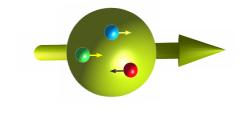
the role of the twist-3 DF or FF is sizeable

halftime report



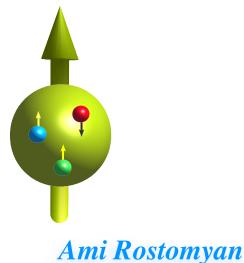
$$d\sigma = d\sigma_{UU}^0 + \cos(2\phi)d\sigma_{UU}^1 + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^2 + P_l \frac{1}{Q}\sin(\phi)d\sigma_{LU}^3$$

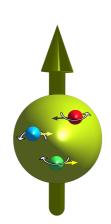
+
$$S_L \left[\sin(2\phi) d\sigma_{UL}^4 + \frac{1}{Q} \sin(\phi) d\sigma_{UL}^5 \right] + P_l \left[\left(d\sigma_{LL}^6 + \frac{1}{Q} \sin(\phi) d\sigma_{LL}^7 \right) \right]$$



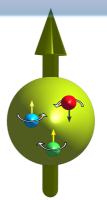
+
$$S_T \left[\sin(\phi - \phi_s) d\sigma_{UT}^8 + \sin(\phi + \phi_s) d\sigma_{UT}^9 + \sin(3\phi - \phi_s) d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_s) d\sigma_{UT}^{11} + \frac{1}{Q} \sin(\phi_s) d\sigma_{UT}^{12} \right]$$

+
$$P_l \left(\cos(\phi - \phi_s) d\sigma_{LT}^{13} + \frac{1}{Q} \cos(\phi_s) d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_s) d\sigma_{LT}^{15} \right)$$









halftime report

1

published

paper coming out soon

published

published

published

coming out soon

$$d\sigma = d\sigma_{UU}^0 + \cos(2\phi)d\sigma_{UU}^1 + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^2 + P_l \frac{1}{Q}\sin(\phi)d\sigma_{LU}^3$$

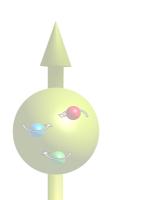
+
$$S_L \left[\sin(2\phi) d\sigma_{UL}^4 + \frac{1}{Q} \sin(\phi) d\sigma_{UL}^5 \right] + P_l \left(d\sigma_{LL}^6 + \frac{1}{Q} \sin(\phi) d\sigma_{LL}^7 \right) \right]$$

$$+ S_{T} \left[\sin(\phi - \phi_{s}) d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{s}) d\sigma_{UT}^{11} + \frac{1}{Q} \sin(\phi_{s}) d\sigma_{UT}^{12} \right]$$

$$+ Pt \left(\cos(\phi - \phi_s)d\sigma_{LT}^{13} + \frac{1}{Q}\cos(\phi_s)d\sigma_{LT}^{14} + \frac{1}{Q}\cos(2\phi - \phi_s)d\sigma_{LT}^{15}\right)$$

published

published



paper coming out soon

Ami Rostomyan

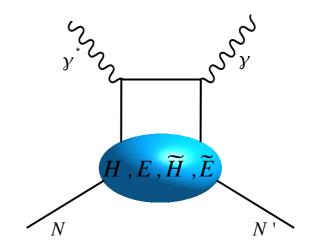
18

Hadron structure 2013

exclusive measurements (probing GPDs)

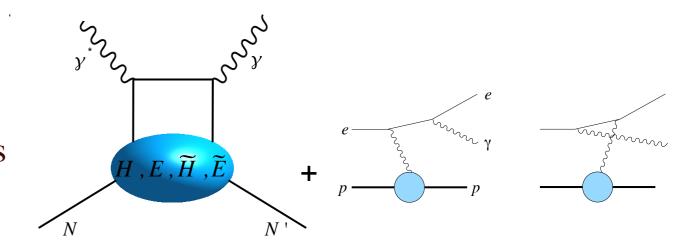
theoretically the cleanest probe of GPDs

$$\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$$

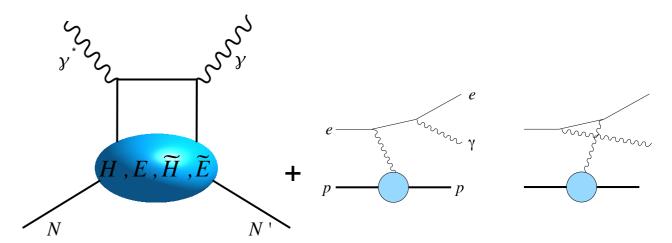


theoretically the cleanest probe of GPDs

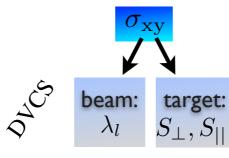
$$\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$$



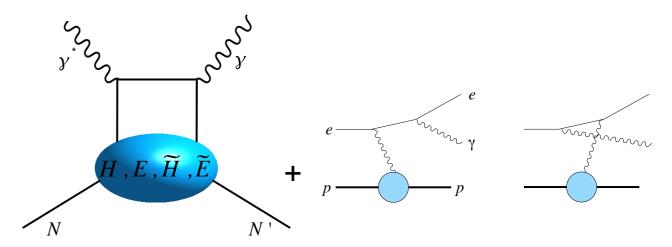
$$\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$$

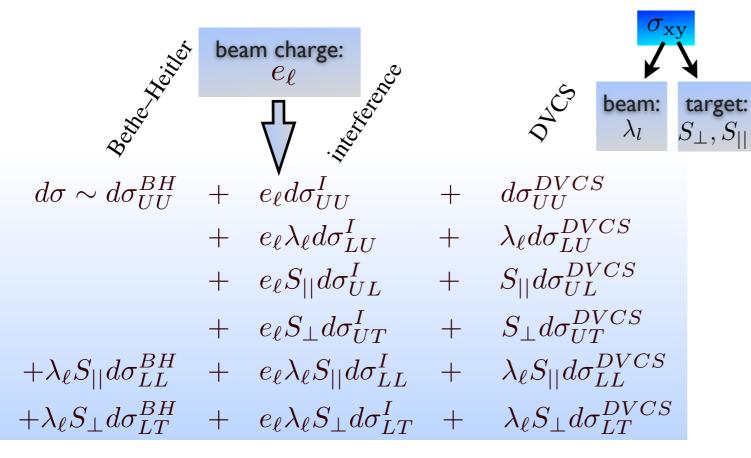


the state of the s

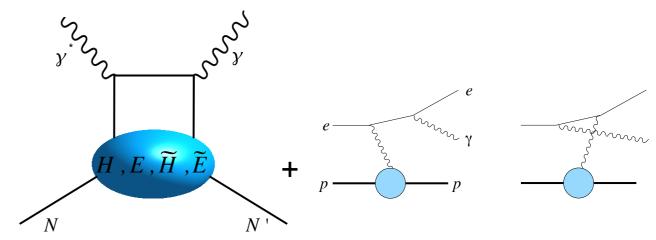


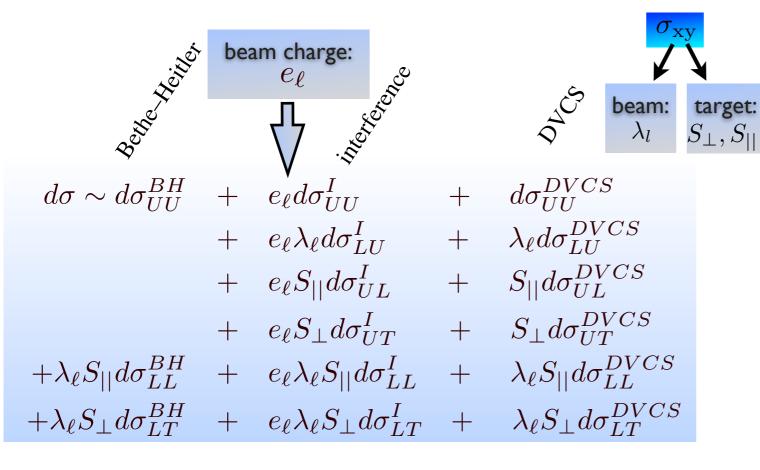
$$\gamma^*N \to \gamma N: H, E, \widetilde{H}, \widetilde{E}$$





$$\gamma^*N \to \gamma N: H, E, \widetilde{H}, \widetilde{E}$$

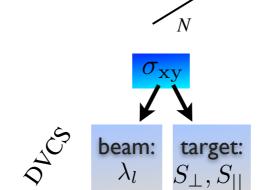




✓ HERMES measured complete set of beam helicity, beam charge and target polarization asymmetries

theoretically the cleanest probe of GPDs

$$\gamma^* N \to \gamma N : H, E, \widetilde{H}, \widetilde{E}$$



	bea	im charge: e_ℓ		
Some t				beam: λ_l
$d\sigma \sim d\sigma_{UU}^{BH}$	+	$e_\ell^{}d\sigma^I_{UU}$	+	$d\sigma_{UU}^{DVCS}$
	+	$e_\ell \lambda_\ell d\sigma^I_{LU}$	+	$\lambda_\ell d\sigma_{LU}^{DVCS}$
	+	$e_{\ell}S_{ }d\sigma^{I}_{UL}$	+	$S_{ }d\sigma_{UL}^{DVCS}$
	+	$e_{\ell}S_{\perp}d\sigma_{UT}^{I}$	+	$S_{\perp}d\sigma_{UT}^{DVCS}$
$+\lambda_{\ell}S_{ }d\sigma_{LL}^{BH}$	+	$e_{\ell}\lambda_{\ell}S_{ }d\sigma_{LL}^{I}$	+	$\lambda_{\ell} S_{ } d\sigma_{LL}^{DVCS}$
$+\lambda_{\ell}S_{\perp}d\sigma_{LT}^{BH}$	+	$e_{\ell}\lambda_{\ell}S_{\perp}d\sigma_{LT}^{I}$	+	$\lambda_{\ell} S_{\perp} d\sigma_{LT}^{DVCS}$

✓ HERMES measured complete set of beam helicity, beam charge and target polarization asymmetries

unpolarized target

H, E, \widetilde{H} , \widetilde{E}

$$F(\mathcal{H}) + \frac{x_B}{2 - x_B} (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$$

longitudinally polarized target

$$\frac{x_B}{2 - x_B} (F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2} \mathcal{E} \right)$$

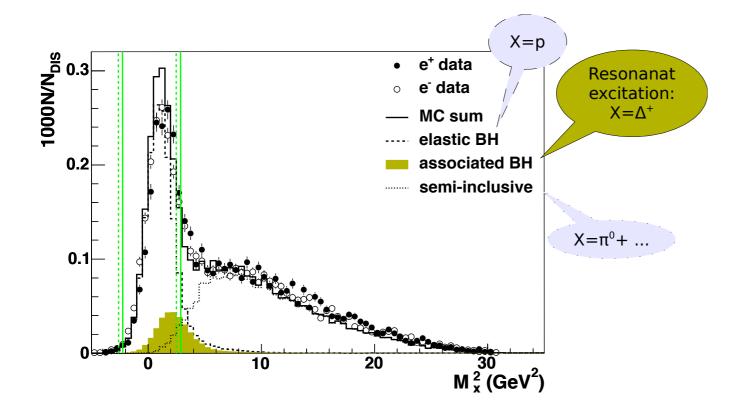
$$+ F_1 \widetilde{\mathcal{H}} - \frac{x_B}{2 - x_B} \left(\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right) \widetilde{\mathcal{E}}$$

transversely polarized target

$$\frac{t}{4M^2} \left[(2 - x_B)F(\mathcal{E}) - 4\frac{1 - x_B}{2 - x_B}F_2\mathcal{H} \right]$$

DVCS measurements

(without recoil detector)

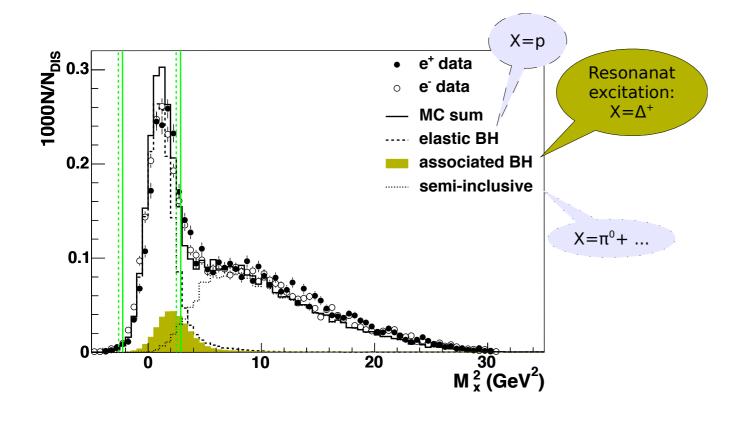


$$M_X^2 = (p + e - e' - \gamma)^2$$

 $ep \to e' \gamma p'$

(without recoil detector)

(with recoil detector)

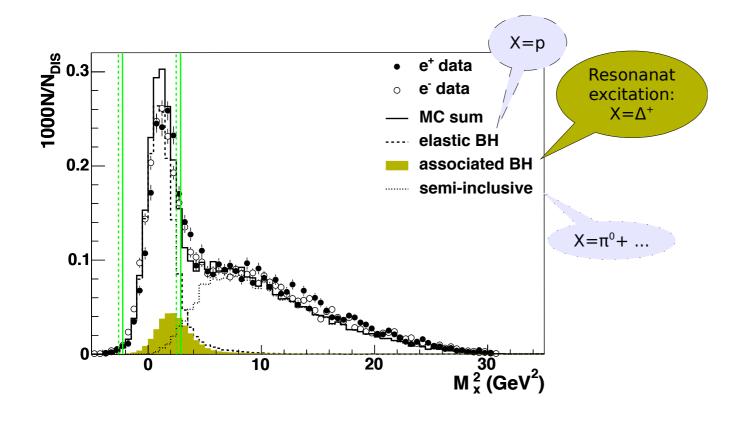


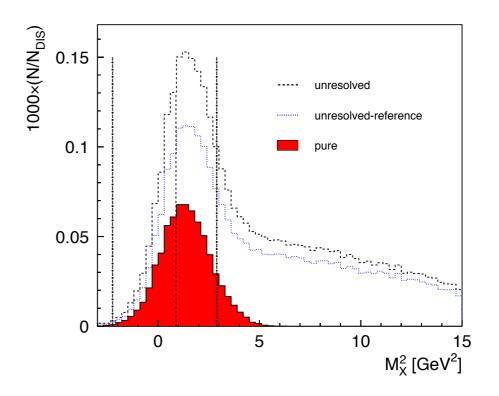
$$M_X^2 = (p + e - e' - \gamma)^2$$

 $ep \to e' \gamma p'$

(without recoil detector)

(with recoil detector)



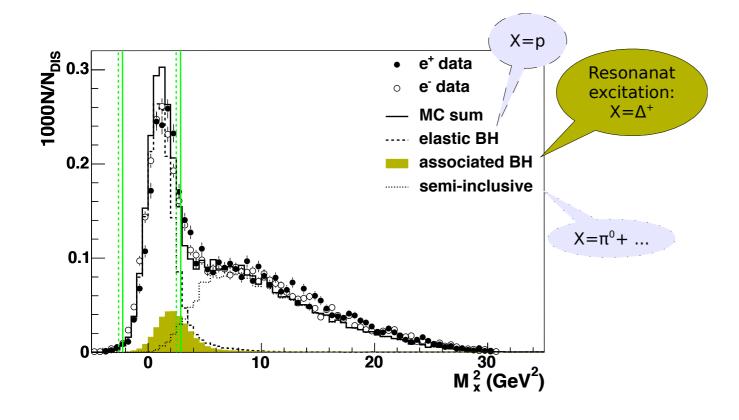


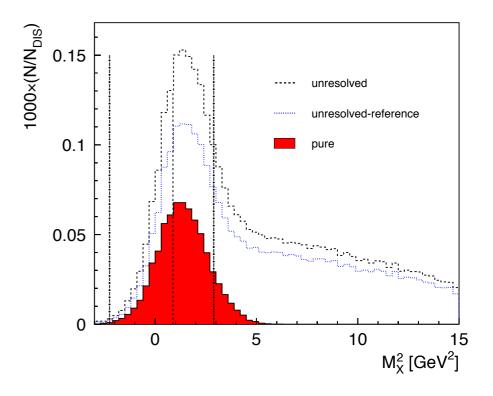
$$M_X^2 = (p + e - e' - \gamma)^2$$

 $ep \to e' \gamma p'$

(without recoil detector)

(with recoil detector)



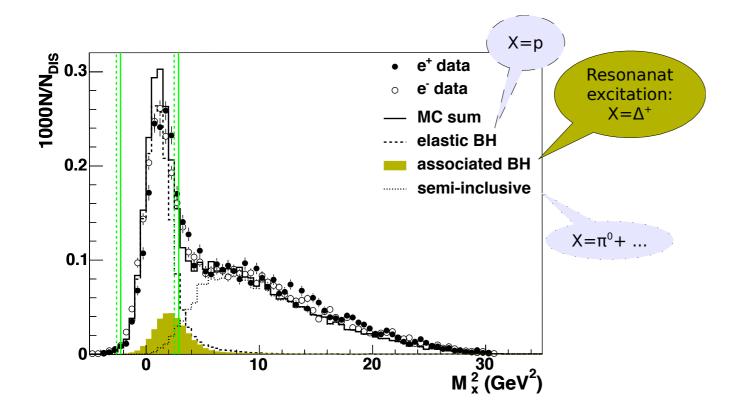


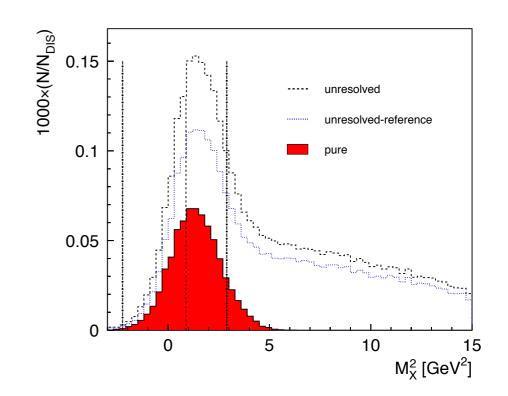
$$M_X^2 = (p + e - e' - \gamma)^2$$

- ✓ unresolved and unresolvedreference samples: $ep \rightarrow e' \gamma X$
 - use missing mass technique
 - for comparison only

(without recoil detector)

(with recoil detector)





missing mass technique

$$M_X^2 = (p + e - e' - \gamma)^2$$

✓ unresolved and unresolvedreference samples: $ep \rightarrow e' \gamma X$

use missing mass technique

for comparison only

✓ pure sample: $ep \rightarrow e'\gamma p'$

all particles in the final state are detected

kinematic event fit

BH/DVCS events with 83% efficiency

background contamination from semiinclusive and associated processes less than 0.2% $ep \to e' \gamma X$

(pre-recoil data)

GPD H: unpolarized hydrogen target

-HERMES Collaboration-: JHEP 11 (2009) 083

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi)\right]$$

$$\mathcal{A}_{C}(\phi) = \sum_{n=0}^{3} A_{C}^{\cos(n\phi)} \cos(n\phi)$$

$$\mathcal{A}_{LU}^{I}(\phi) = \sum_{n=1}^{2} A_{LU,I}^{\sin(n\phi)} \sin(n\phi)$$

$$\mathcal{A}_C(\phi) = \sum_{n=0}^{3} A_C^{\cos(n\phi)} \cos(n\phi)$$

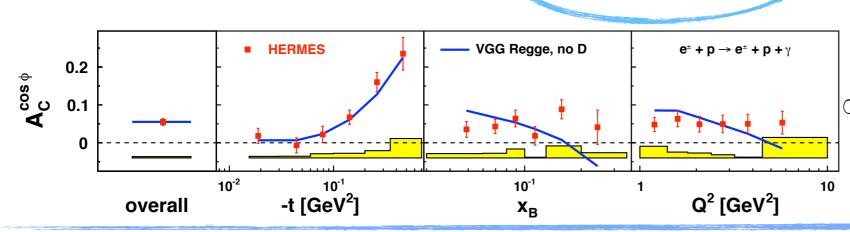
$$\mathcal{A}_{LU}^{I}(\phi) = \sum_{n=1}^{2} A_{LU,I}^{\sin(n\phi)} \sin(n\phi)$$

GPD H: unpolarized hydrogen target

-HERMES Collaboration-: JHEP 11 (2009) 083

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi) \right]$$

$$\mathcal{A}_{C}(\phi) = \frac{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) - (\sigma^{-\rightarrow} + \sigma^{+\leftarrow})}{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) + (\sigma^{-\rightarrow} + \sigma^{+\leftarrow})} \qquad A_{C}^{\cos \phi} \propto \text{Re}[F_{1}\mathcal{H}]$$



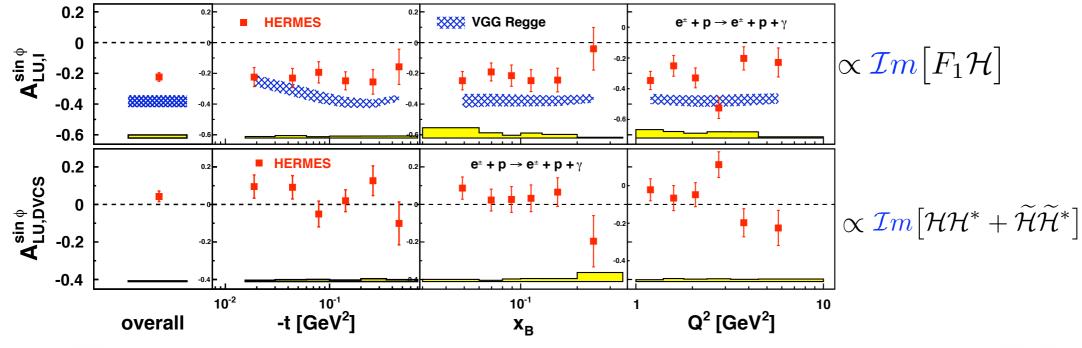
$$\mathcal{A}_C(\phi) = \sum_{n=0}^{3} A_C^{\cos(n\phi)} \cos(n\phi)$$

$$\mathcal{A}_{LU}^{I}(\phi) = \sum_{n=1}^{2} A_{LU,I}^{\sin(n\phi)} \sin(n\phi)$$

 ∞ beam charge asymmetry

- strong t-dependence
- ightharpoonup no x_B or Q^2 dependences

$$\mathcal{A}_{LU}^{I,DVCS}(\phi) = \frac{(\sigma^{+\rightarrow} - \sigma^{+\leftarrow})^{+}(\sigma^{-\rightarrow} - \sigma^{-\leftarrow})}{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) + (\sigma^{-\rightarrow} + \sigma^{-\leftarrow})}$$

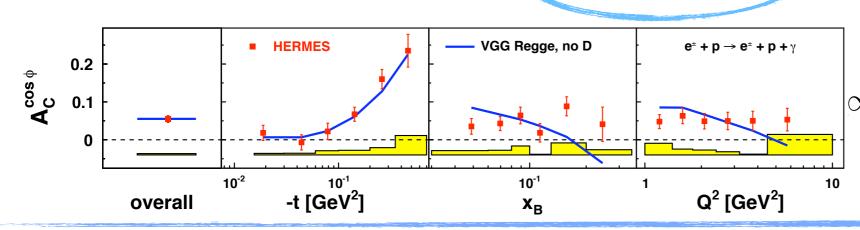


GPD H: unpolarized hydrogen target

-HERMES Collaboration-: JHEP 11 (2009) 083

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi) \right]$$

$$\mathcal{A}_{C}(\phi) = \frac{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) - (\sigma^{-\rightarrow} + \sigma^{+\leftarrow})}{(\sigma^{+\rightarrow} + \sigma^{+\leftarrow}) + (\sigma^{-\rightarrow} + \sigma^{+\leftarrow})} \qquad A_{C}^{\cos \phi} \propto \operatorname{Re}[F_{1}\mathcal{H}]$$



$$\mathcal{A}_C(\phi) = \sum_{n=0}^{3} A_C^{\cos(n\phi)} \cos(n\phi)$$

$$\mathcal{A}_{LU}^{I}(\phi) = \sum_{n=1}^{2} A_{LU,I}^{\sin(n\phi)} \sin(n\phi)$$

beam charge asymmetry

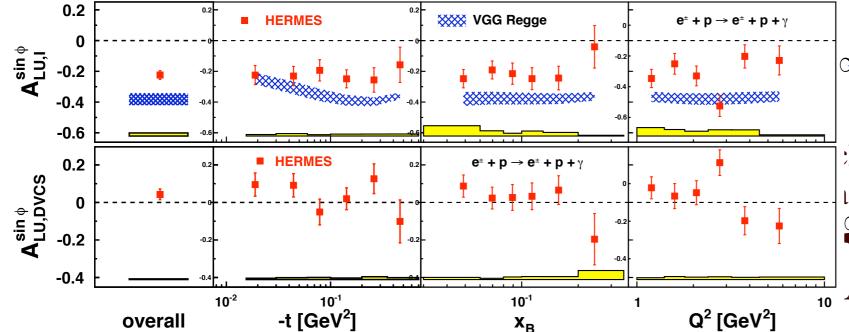
strong t-dependence

- ightharpoonup no x_B or Q^2 dependences

 $A_{LU,I}^{\sin\phi} \propto \operatorname{Im}[F_1\mathcal{H}]$

charge-difference beam helicity asymmetry

- large overall value no kin. dependencies



harge-averaged beam helicity

 $A_{LU,\mathrm{DVCS}}^{\sin\phi} \propto \mathrm{Im}[\mathcal{H}\mathcal{H}^* - \widetilde{\mathcal{H}}\widetilde{\mathcal{H}}^*]$

GPD H: unpolarized hydrogen target

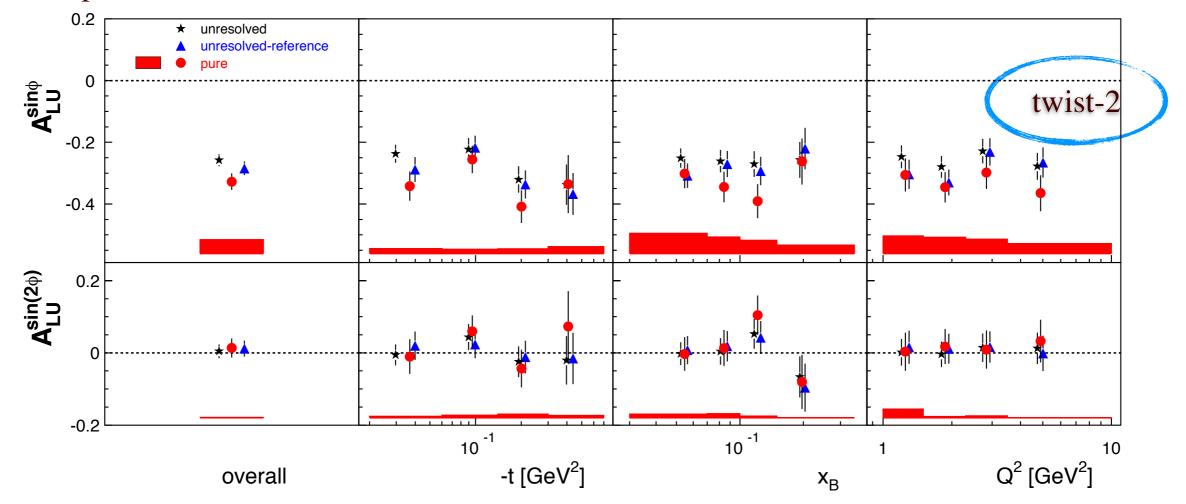
(recoil data)

$$\sigma(\phi, P_{\ell}, e_{\ell}) = \sigma_{UU}(\phi) \times \left[1 + P_{\ell} \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} P_{\ell} \mathcal{A}_{LU}^{I}(\phi) + e_{\ell} \mathcal{A}_{C}(\phi) \right]$$

- HERMES Collaboration-JHEP 10 (2012) 042

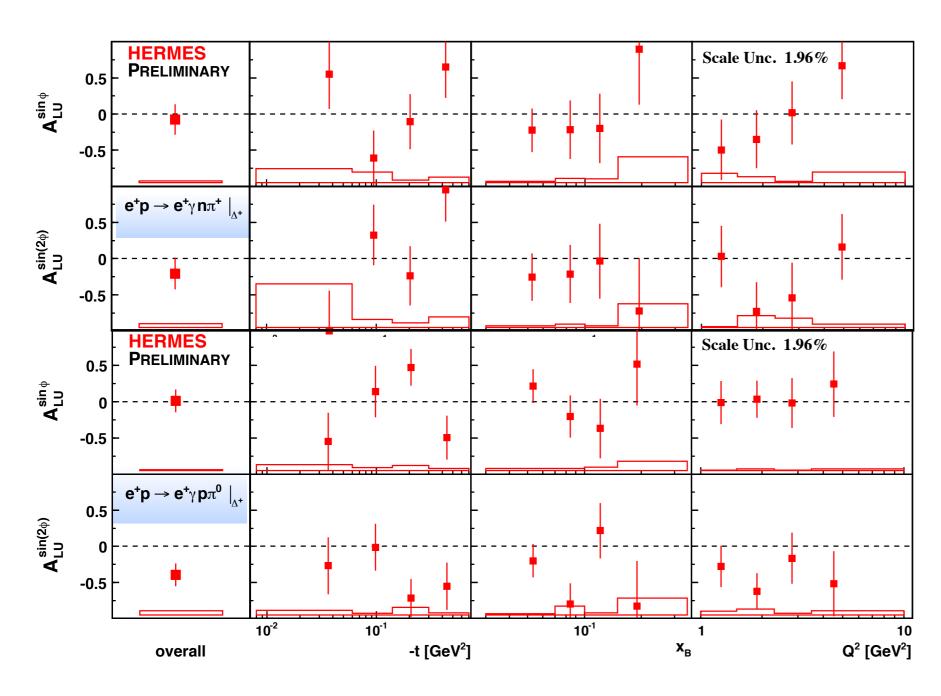
$$\mathcal{A}_{\mathrm{LU}}(\phi) \simeq \sum_{n=1}^{2} A_{\mathrm{LU}}^{\sin(n\phi)} \sin(n\phi)$$

- extraction of single-charge beam-helicity asymmetry amplitudes for elastic (pure) data sample
- no separate access to DVCS and interference terms



indication for slightly larger magnitude of the leading amplitude for elastic process compared to the one in the recoil detector acceptance (unresolved-reference)

(recoil data)



- consistent with zero result for both channels
- associated DVCS is mainly dilution in the analysis using the missing mass technique
- in agreement with the DVCS results on pure sample

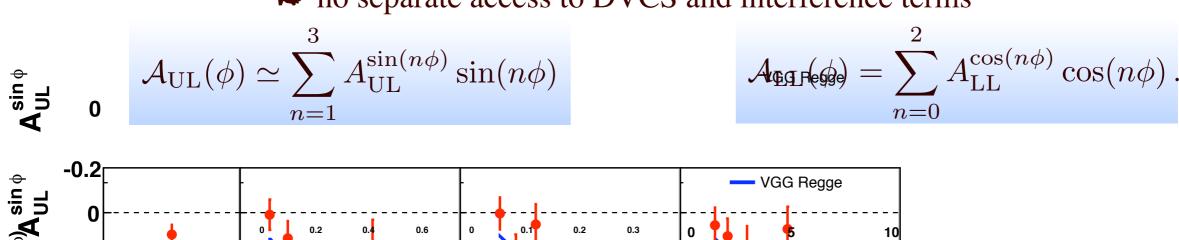
GPD \widetilde{H} : longitudinally polarized hydrogen target

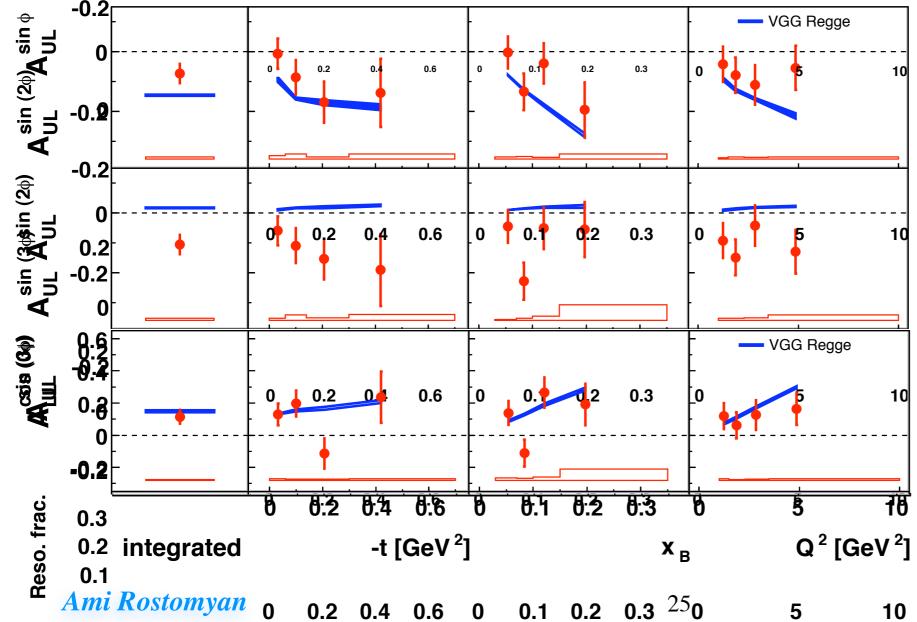
(pre-recoil data)

- HERMES Collaboration- Nucl. Phys. B842 (2011) 265

$$\sigma(P_{\ell}, P_{z}, \phi, e_{\ell}) = \sigma_{\mathrm{UU}}(\phi, e_{\ell}) \left[1 + P_{z} \mathcal{A}_{\mathrm{UL}}(\phi) + P_{\ell} P_{z} \mathcal{A}_{\mathrm{LL}}(\phi) + P_{\ell} \mathcal{A}_{\mathrm{LU}}(\phi) \right]$$

no separate access to DVCS and interference terms





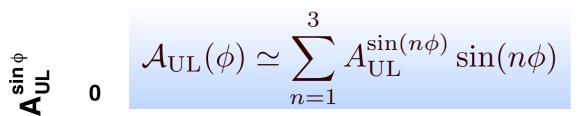
GPD \widetilde{H} : longitudinally polarized hydrogen target

(pre-recoil data)

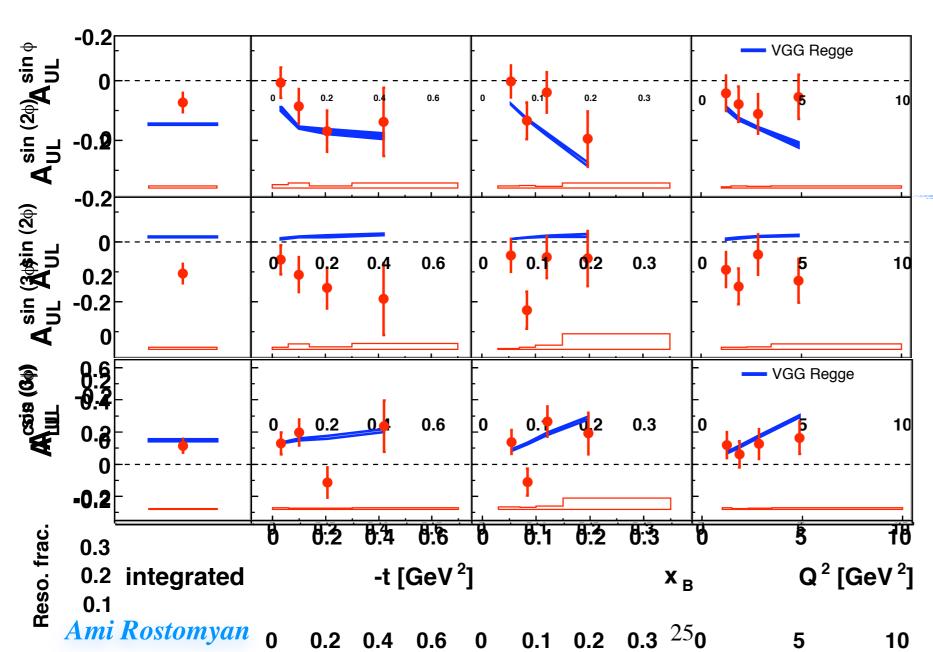
- HERMES Collaboration- Nucl. Phys. B842 (2011) 265

$$\sigma(P_{\ell}, P_{z}, \phi, e_{\ell}) = \sigma_{\mathrm{UU}}(\phi, e_{\ell}) \left[1 + P_{z} \mathcal{A}_{\mathrm{UL}}(\phi) + P_{\ell} P_{z} \mathcal{A}_{\mathrm{LL}}(\phi) + P_{\ell} \mathcal{A}_{\mathrm{LU}}(\phi) \right]$$

no separate access to DVCS and interference terms



$$A_{ ext{LL}} = \sum_{n=0}^2 A_{ ext{LL}}^{\cos(n\phi)} \cos(n\phi)$$
 .



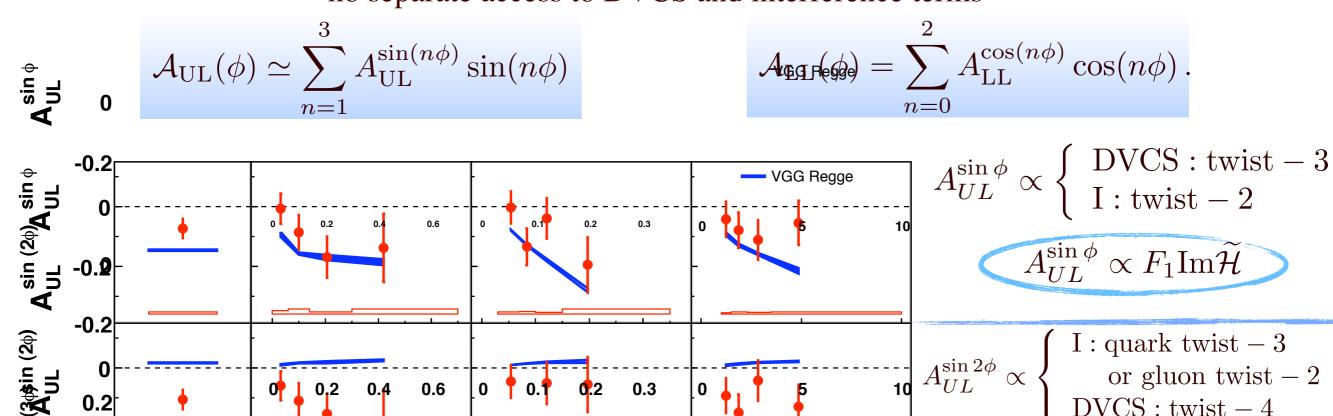
$$A_{UL}^{\sin\phi} \propto \begin{cases} ext{DVCS} : ext{twist} - 3 \\ ext{I} : ext{twist} - 2 \end{cases}$$
 $A_{UL}^{\sin\phi} \propto F_1 ext{Im} \widetilde{\mathcal{H}}$

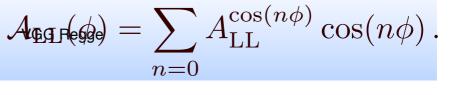
GPD H: longitudinally polarized hydrogen target

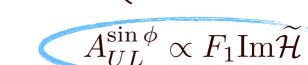
- HERMES Collaboration- Nucl. Phys. B842 (2011) 265

$$\sigma(P_{\ell}, P_{z}, \phi, e_{\ell}) = \sigma_{\mathrm{UU}}(\phi, e_{\ell}) \left[1 + P_{z} \mathcal{A}_{\mathrm{UL}}(\phi) + P_{\ell} P_{z} \mathcal{A}_{\mathrm{LL}}(\phi) + P_{\ell} \mathcal{A}_{\mathrm{LU}}(\phi) \right]$$

no separate access to DVCS and interference terms

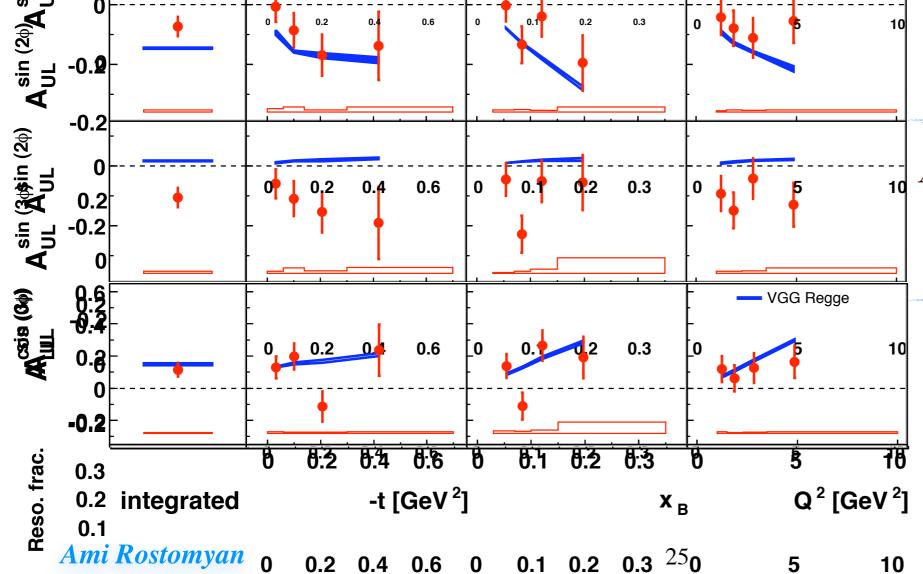






$$A_{UL}^{\sin 2\phi} \propto \left\{ egin{array}{l} {
m I: quark \ twist-3} \ {
m or \ gluon \ twist-2} \ {
m DVCS: twist-4} \end{array}
ight.$$

unexpected large value



Hadron structure 2013

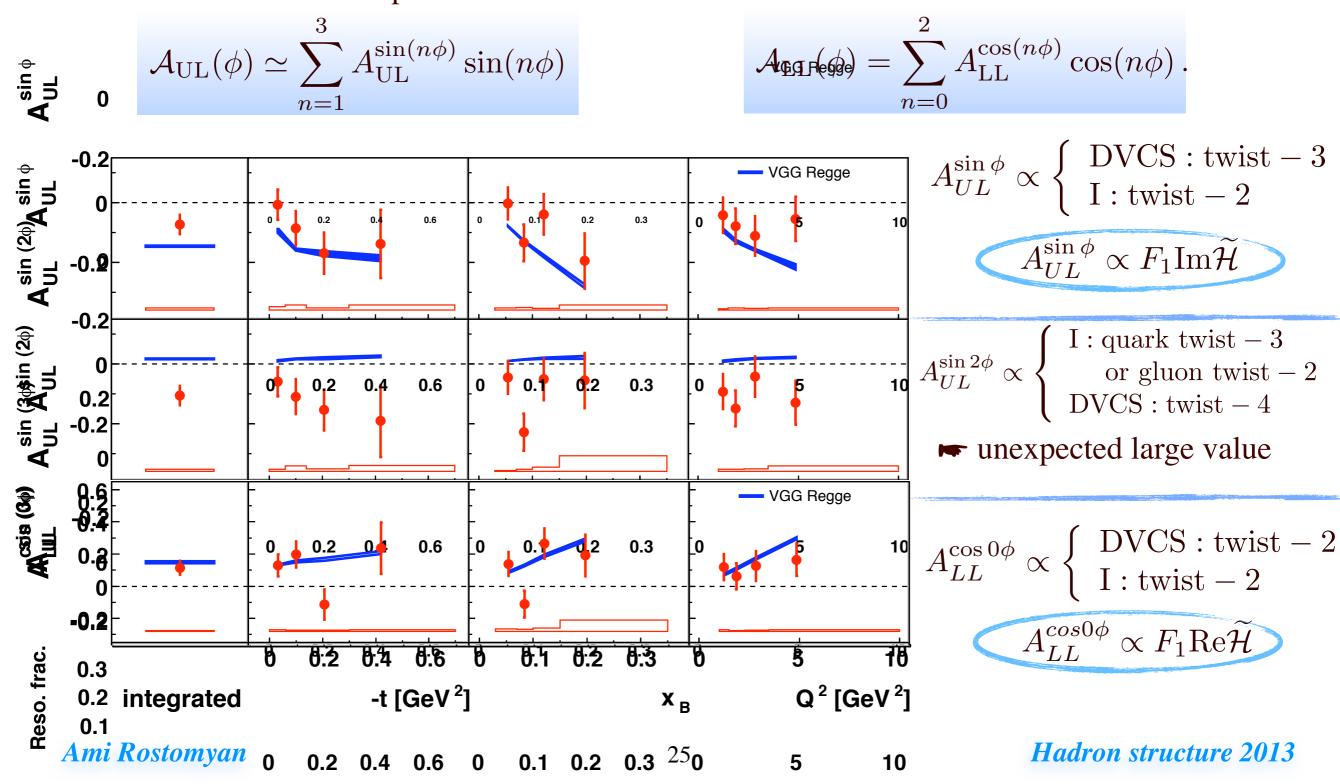
(pre-recoil data)

GPD \widetilde{H} : longitudinally polarized hydrogen target

- HERMES Collaboration- Nucl. Phys. B842 (2011) 265

$$\sigma(P_{\ell}, P_{z}, \phi, e_{\ell}) = \sigma_{\mathrm{UU}}(\phi, e_{\ell}) \left[1 + P_{z} \mathcal{A}_{\mathrm{UL}}(\phi) + P_{\ell} P_{z} \mathcal{A}_{\mathrm{LL}}(\phi) + P_{\ell} \mathcal{A}_{\mathrm{LU}}(\phi) \right]$$

no separate access to DVCS and interference terms



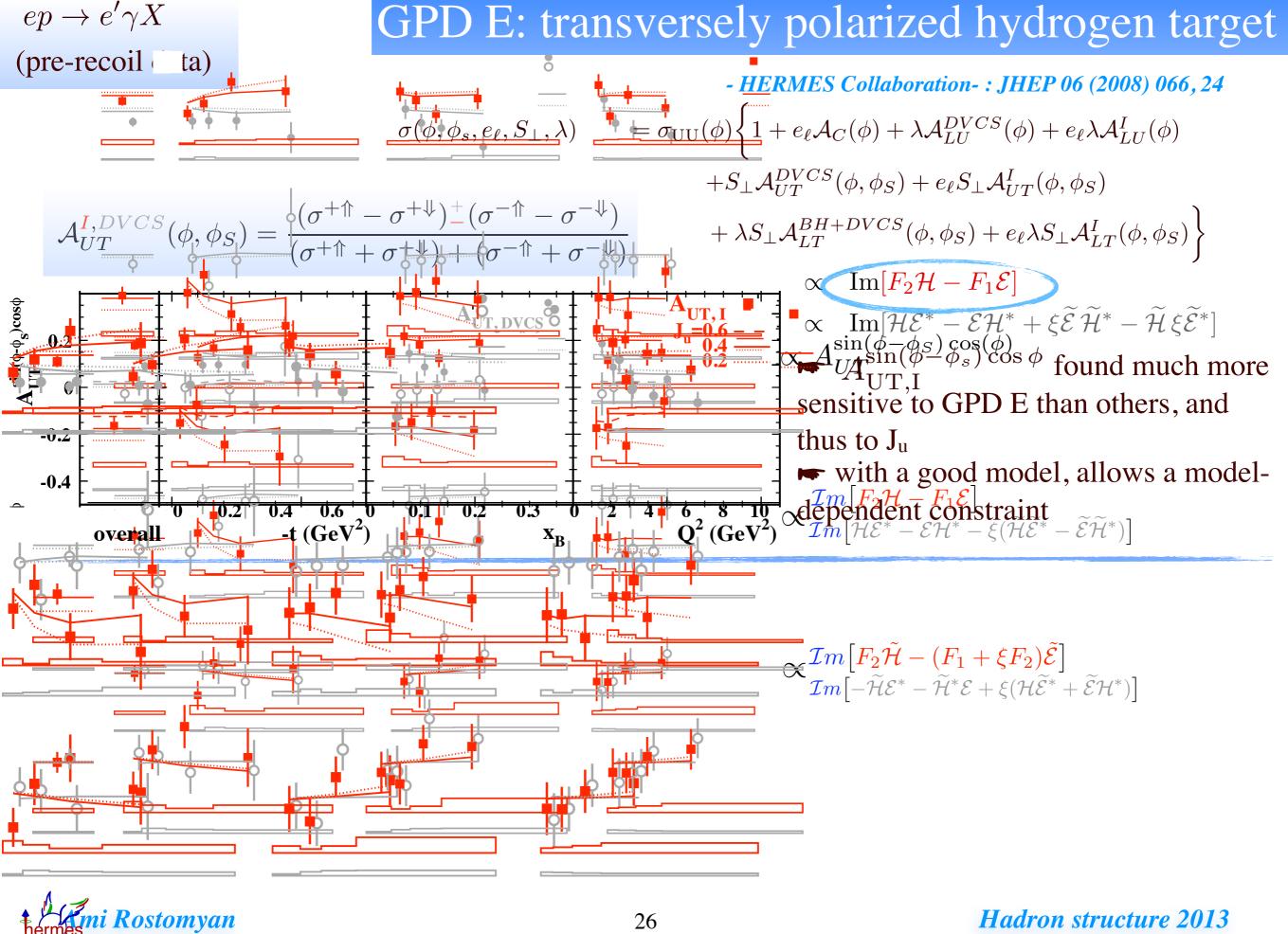
 $ep \to e' \gamma X$

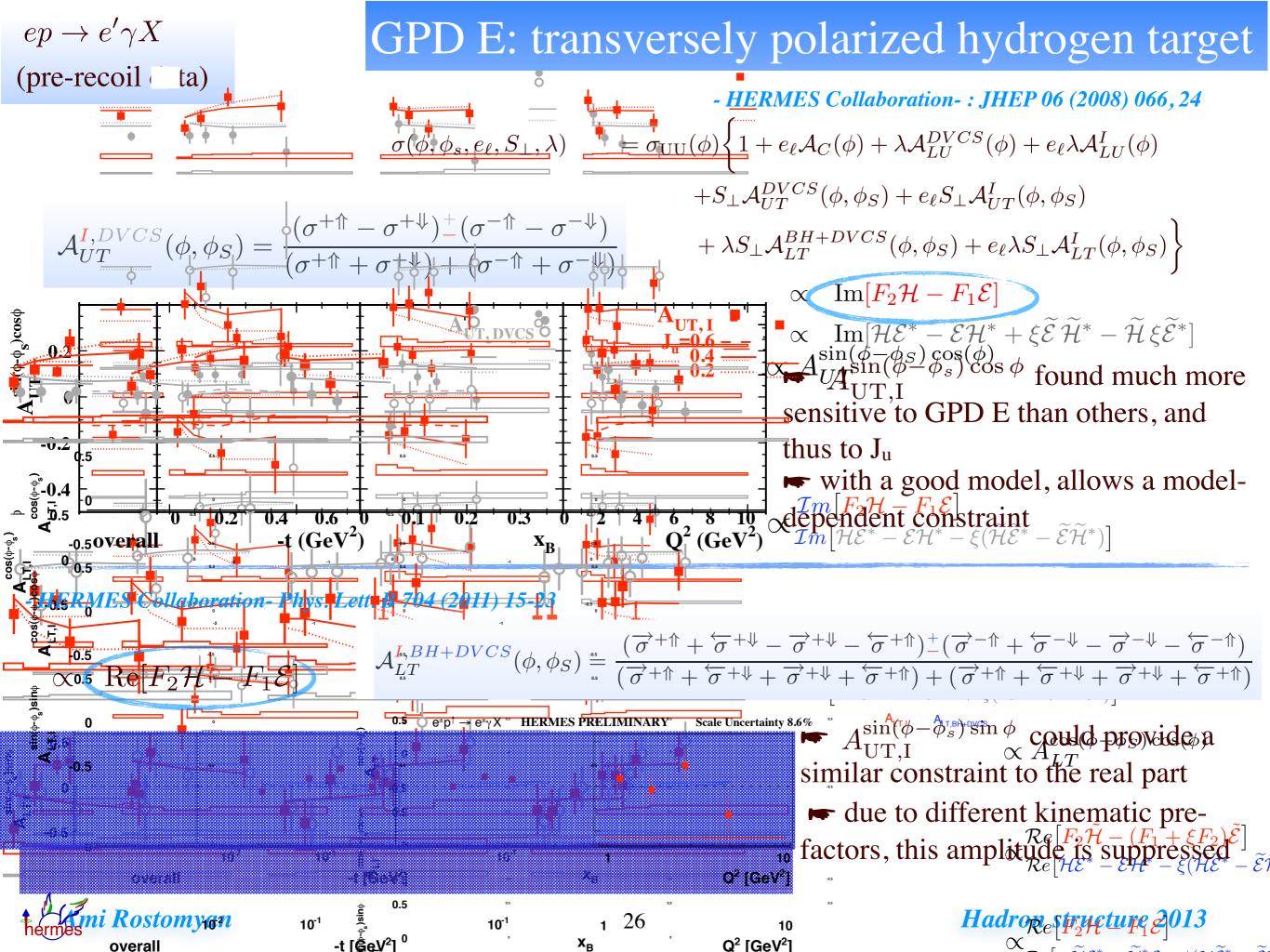
(pre-recoil data)

GPD E: transversely polarized hydrogen target

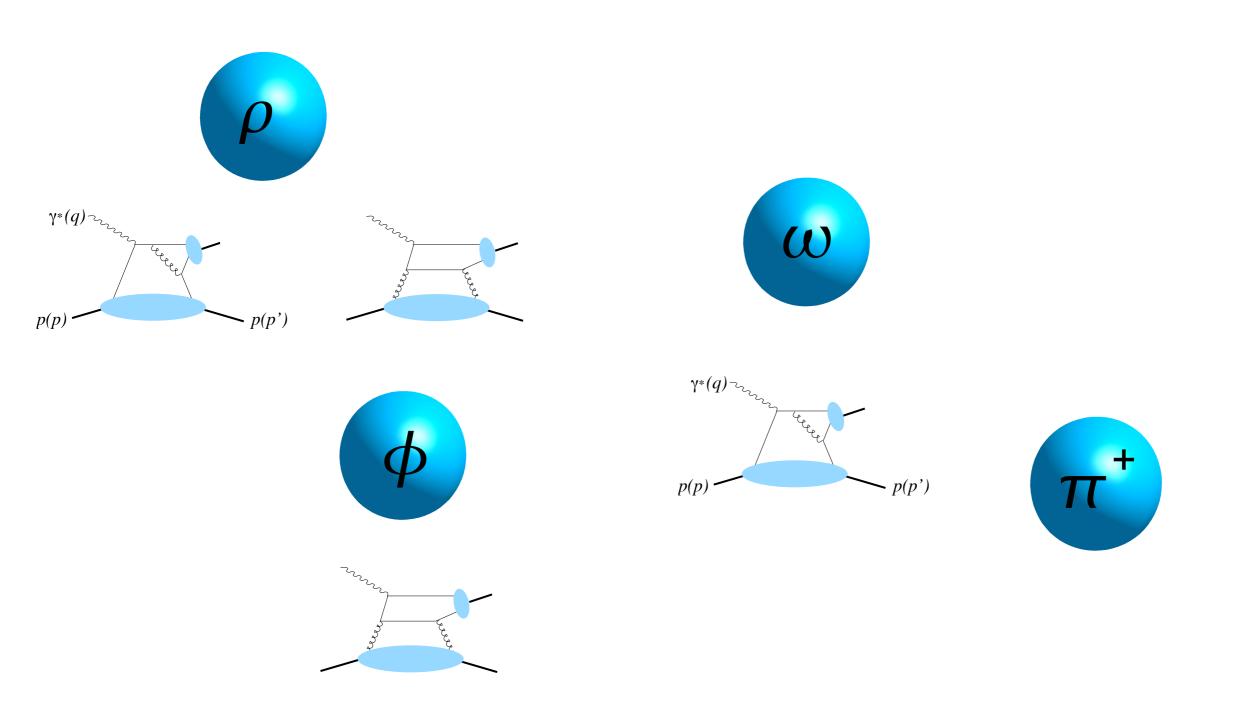
- HERMES Collaboration -: JHEP 06 (2008) 066, 24

$$\sigma(\phi, \phi_s, e_{\ell}, S_{\perp}, \lambda) = \sigma_{\text{UU}}(\phi) \left\{ 1 + e_{\ell} \mathcal{A}_C(\phi) + \lambda \mathcal{A}_{LU}^{DVCS}(\phi) + e_{\ell} \lambda \mathcal{A}_{LU}^{I}(\phi) + S_{\perp} \mathcal{A}_{UT}^{DVCS}(\phi, \phi_S) + e_{\ell} S_{\perp} \mathcal{A}_{UT}^{I}(\phi, \phi_S) + \lambda S_{\perp} \mathcal{A}_{LT}^{I}(\phi, \phi_S) + \lambda S_{\perp} \mathcal{A}_{LT}^{I}(\phi, \phi_S) + e_{\ell} \lambda S_{\perp} \mathcal{A}_{LT}^{I}(\phi, \phi_S) \right\}$$

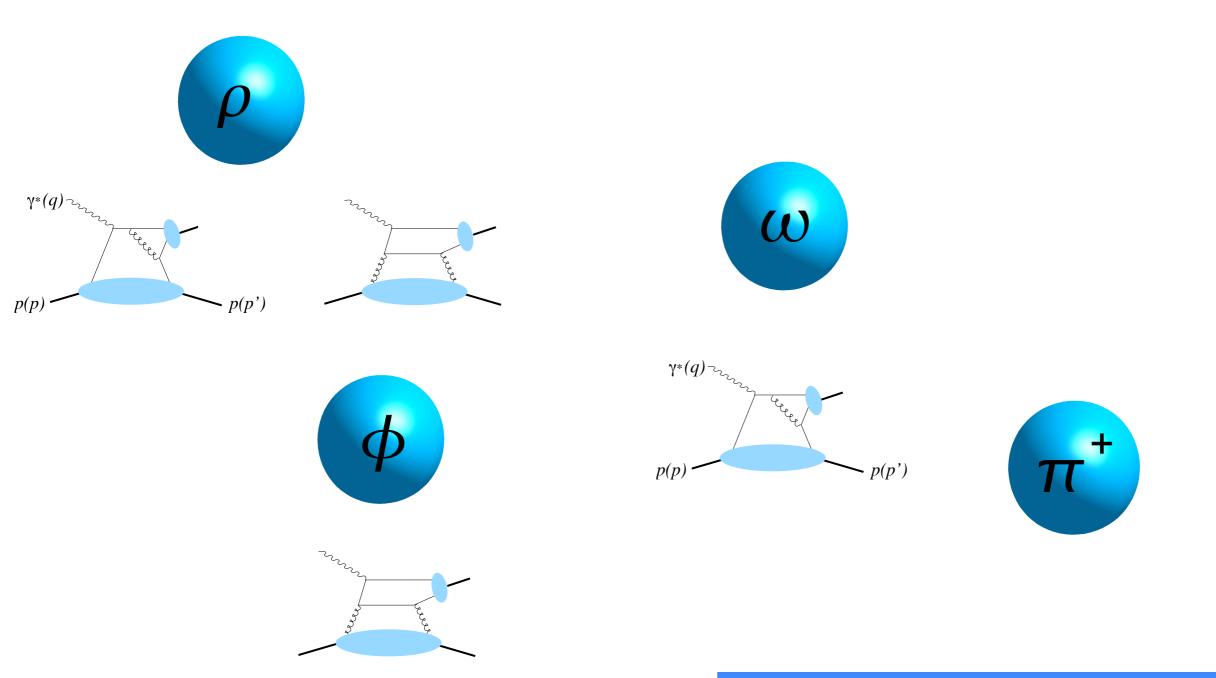




given channel probes specific GPD flavour

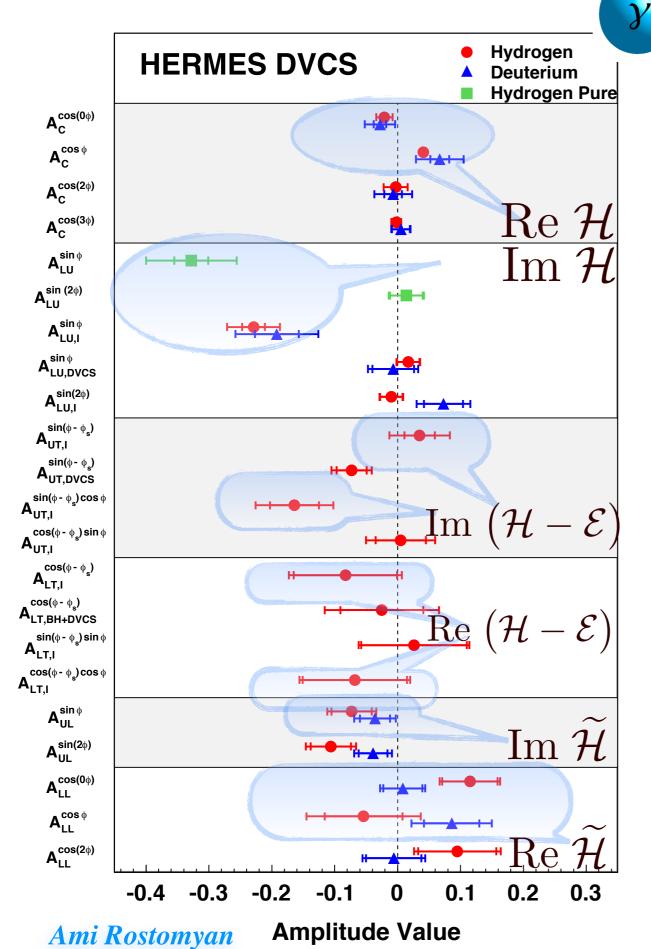


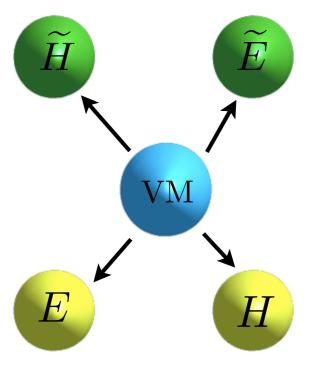
given channel probes specific GPD flavour

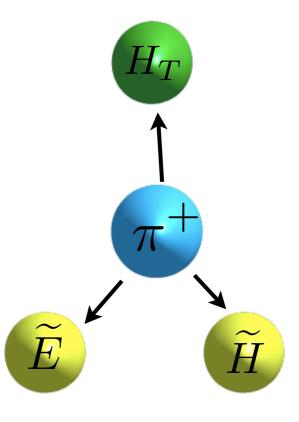


✓ see the talk by W. Augustyniak

halftime report







- HERMES has been the pioneering collaboration in TMD and GPD fields
- still very important player in the field of nucleon (spin) structure
 - polarized e^{+/-} beams
 - pure gas target

- good particle identification
- recoil detector