Summary of "Spin" session **PIS 2011**, Newport News

* pdfs and the longitudinal spin structure

* TMPs and the transverse spin structure 3D picture in the (x, k_T) space

* GPDs and the spin sum rule 3D picture in the (x, b_T) space

- Ami Rostomyan & Oleg Eyser -

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \Delta q(x,Q^2).$$

DIS 2011, Newport News, USA

- Vincent Sulkovsky (Hall A)-

semi-inclusive deep inelastic scattering

Jefferson Lab³

test of the factorization

- Hamlet Mkrtchyan -

- P-/D⁺ ration evaluated from pion cross see for ratio
- fragmentation functions do not depend on x las expected)
- depend on z, in agreement with HERMES and EMC results
 - Ami Rostomyan & Oleg Eyser -

Monday, August 22, 2011

quark helicities

- Josh Rubin -

Assuming:

Charge conjugation symmetry of fragmentation functions:

On the Deuteron:

Different models with different assumptions. Good agreement.

DIS 2011, Newport News, USA

- Ami Rostomyan & Oleg Eyser -

quark helicities

8

- Josh Rubin -

Assuming:

Charge conjugation symmetry of fragmentation functions:

On the Deuteron:

DIS 2011, Newport News, USA

- Claude Marchand-

$$A_1^{h (p/d)}(x, z, Q^2) \approx \frac{\sum_q e_q^2 \Delta q(x, Q^2) D_q^h(z, Q^2)}{\sum_q e_q^2 q(x, Q^2) D_q^h(z, Q^2)}$$

Unpolarized PDF: MRST04 F.F: DSS parametrization, $\Delta s = \Delta \overline{s}$

PLB 693(2010)227

 $\Delta s(SIDIS) = -0.01 \pm 0.01(stat) \pm 0.01(syst)$ @ 0.003<x<0.3

•Tentative extraction of $R_{SF}=D_s^{K}/D_u^{K}$ from K multiplicities

 \rightarrow better constrain Δs obtained from SIDIS

- Ami Rostomyan & Oleg Eyser -

semi-inclusive double spin asymmetries

Monday, August 22, 2011

semi-inclusive double spin asymptotic small P_T for π^+ . Jefferson Lab³

- Josh Rubin -

$$A_{1}^{h} = \frac{\sigma_{1/2}^{h} - \sigma_{3/2}^{h}}{\sigma_{1/2}^{h} + \sigma_{3/2}^{h}}$$

= $\frac{\sum_{q} e_{q} D_{q}^{h}(z, p_{h\perp}) \Delta q(x)}{\sum_{q'} e_{q'} D_{q'}^{h}(z, p_{h\perp}) q'(x)}$

0.2<z<0.35 0.35<z<0.5 Each x-bin 0<*p*_{*b*⊥}<0.3 leadingtra 0.3<*p*_{*h*}[⊥]<0.5 $0.5 < p_{h\perp} < 1.0$ mid-rapidity

could be positive for moderate P_T (ignoring the first data - Sucheta Jawalkar-0.15 0.5 < z < 0.9 possible interpretation of the P_T -dependence of the pin asymmetry may involve different widths of

sverse momentum distributions of quarks with 0.05 different flavor and polarizations [45] resulting from dif-0 ferent orbital motion of quarks polarized in the direc--0.05 tion of the proton spin and opposite to it [46, 47]. In -0.1 Fig. 2 the measured of the mared with salful HERMES Collabor

0.1

of the Torino trong 145 Higher-twist observables, such as longitudinal Highest energy hadron & he ratio of widths in k for partonic helicity, gre and for for target SSAs, are important for the influenced by fewest $q\overline{q}$ patrix $f_{the tributions with the tributions with the tribution tribution to the tribution to$

direction. tribution from exclusive processes. At large $\frac{SSA}{z \neq 0}$ The standard precedure for the extraction of the dif $c \cdot 1$ The sin 2

DIS 2011, Newport News, USA

PH*ENIX

probing the sea through W production

TMDs and the 3D image of the nucleon: (x, k_T)

12

DIS 2011, Newport News, USA

	6	2	quark			
			U	L	Т	
	n	U	f_1 \bigcirc		h_1^{\perp} (r) - (.)	
	C	L		<i>g</i> ₁ 😮 - 🛞	h_{1L}^{\perp} $\textcircled{-}$	
	e o n	т	f_{1T}^{\perp} - () ()	g_{1T}^{\perp}	$h_1 - \bigcirc \bigcirc +$ $h_{1T}^{\perp} - \bigcirc \bigcirc +$	
6-φs	Sivers effect ∞ f _{1T} [⊥] (x, p _T ²) ⊗ D ₁ (z, k _T ²) • correlation between parton transverse momentum and nucleon transverse polarization • requires orbital angular momentum • p ₁ • p ₂			$\frac{ct}{z, k_T^2}$	$\mathbf{f}_{P_{hi}}$	

- Ami Rostornyan & Oleg Eyser -

Sivers and Collins effects

- Kalyan Allada (Hall A)-

previous measurements for pions and kacing from themes

- Collins and Sivers effects observed
- * new results from Hall A
- consistent with zero collins amplitude
 - kinematical suppressed at JLAB kinematics
- * hint for non-zero Sivers effect for π^+
 - along with proton and deuteron data will help to constrain the d-quark Sivers DF

DIS 2011, Newport News, USA

Cahn and Boer-Mulders effects

quark U L т n f_1 0 U u g_1 ($\)$ 8 С e т f_{1T}^{\perp} - (0 $g_{1T} = ($ n

$$\sigma_{UU}^{\cos(\phi)} \propto \left[f_1 \otimes D_1 + h_1^{\perp} \otimes H_1^{\perp} + \dots \right] / Q$$
$$\sigma_{UU}^{\cos(2\phi)} \propto h_1^{\perp} \otimes H_1^{\perp} + \left[f_1 \otimes D_1 + \dots \right] / Q^2$$

Cahn effect:

Cahn Effect kinematical effect due to transv. momentum of partons in the nucleon

 k_T

 $y)^{2}]$

• Boer-Mulders effect: Boer-Mulders TMD

gluon polarization $S_N = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

rocess:

esons

kinematics

or h⁻h⁻

<1 (GeV/c)2]

)⁻²

gluon polarization 2006 Asymmet

- Claude Marchand -

0.06

0.04

0.02

-0.02

Online polarization

15

10

DIS 2011, Newport News, USA

17

- Ami Rostomyan & Oleg Eyser -

20

25

30

-0.7 < n < 0.9

TAR

70

35 p_T (GeV/c)

80

17

DIS 2011, Newport News, USA

- Ami Rostomyan & Oleg Eyser -

GPDs and the 3D image of the nucleon: $(x, \vec{b_T})$

 Sensitivity of different final states to different GPDs

- For spin-1/2 target 4 chiral-even leading-twist quark GPDs: $H, E, \widetilde{H}, \widetilde{E}$
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

3

DIS 2011, Newport News, USA

S. Yaschenko, DVCS with the HERMES Recoil Detector

deeply virtual Compton scattering

Beam-Charge Asymmetry

Beam-Spin Asymmetry

Transverse Target-Spin Asymmetry

Transverse Double-Spin Asymmetry

Longitudinal Target-Spin Asymmetry

Longitudinal Double-Spin Asymmetry

+ BCA and BSA on nuclear targets

2011, Newport News, USA

deeply virtual Compton scattering

- Aram Movsisyan-

DIS 2011, Newport News, USA

-0.2

-0.1

0

Amplitude Value

0.1

 $\mathcal{R}e\mathcal{H}$

-0.3

 $A_{LT,I}^{\cos(\phi - \phi_s)\cos\phi}$

 $\bm{A}_{UL}^{\boldsymbol{sin}\,\boldsymbol{\varphi}}$

 $\bm{A}_{\text{UL}}^{\text{sin}(2\varphi)}$

 $\bm{A}_{LL}^{\text{cos}(0\varphi)}$

 $\bm{A}_{LL}^{\cos\varphi}$

 $\bm{A}_{LL}^{\bm{cos(2\varphi)}}$

- Ami Rostomyan & Oleg Eyser -

 $\mathcal{I}m\,\widetilde{\mathcal{H}}$

0.3

0.2

DIS 2011, Newport News, USA

- Ami Rostomyan & Oleg Eyser -

- Sergey Yaschenko-

- Sergey Yaschenko-

JLab Kinematic Coverage

summary

Monday, August 22, 2011

 $dr W(r, n) = |\phi(n)|^2$

pion charge asymmetry difference

- Marco Contalbrigo -

beath spin asymmetries

- Christian Schill -

beath spin asymmetries

π', eff, preliminary

π⁺, e1f, preliminary

π⁰, e1f, preliminary

π⁰, HERMES (2007)

Model Prediction

#*, CLAS e1c (2004)

Monday, August 22, 2011

DIS 2011, Newport News, USA

- Christian Schill -

Dealin Swimey 1 as y 11111 CUI yw (Mev) LU

ALU

0.08

 χ^2 / ndf

р0

p1

5.062 / 10

 0.002041 ± 0.002104

 0.02681 ± 0.003148

- Christian Schill -ALU Sin QL COMPASS ⁶LiD (25% of 2004 data) Fit function: $p0 + p1 \sin \Phi$ 0.05 $O^2 > 1 \text{ GeV}^2$ -0.05

OMP.

'eli

1200

helicity amplitude ratios of exclusive ρ^0 production

Deuteron

- Morgan Murray-

Real Part follows a/Q with $a=1.11\pm0.03$ GeV as expected!

Imaginary Part follows bQ with b=0.34±0.02GeV⁻¹ (fit has no basis in theory)

DIS 2011, Newport News, USA

hermes helicity amplitude ratios of exclusive ρ^0 production

- Morgan Murray-

Existence established to 20σ (integrated extraction) Magnitude of U₁₁ is 2.5x smaller than T₀₀

19

V

inclusive hadron agymmetries p

inclusive hadron agymmetries p

Jefferson Labametry 4 results on worm-gear DF Hall B

- Sucheta Jawalkar -

two photon exchange

- Todd Averett (Hall A) -

DIS 2011, Newport News, USA

DIS 2011, Newport News, USA

- Nilanga Liyanage (Hall A)-

$$\Gamma_2(Q^2) = \int_0^1 dx \ g_2(x,Q^2) = 0$$

H.Burkhardt and W.N. Cottingham Annals Phys. <u>56</u> (1970) 453.

• Sum-rule satisfied for the leading twist part (g_2^{WW}) be definition; so if there is any violation, it is all due to higher-twist

Jefferson Lab³

- Andrey Kim -

exclusive π^0 production

- Ami Rostomyan & Oleg Eyser -

exclusive vector meson production

^{ki} - $|T_{00}| \sim |T_{11}| \gg |T_{01}| > |T_{10}| \gtrsim |T_{1-1}|,$

- Morgan Murray-

- Ami Rostomyan & Oleg Eyser -

TMPs and the 3D image of the nucleon: (x, k_{I})

58

results on worm-gear DF from HERMES, COMPASS, Hall A

DIS 2011, Newport News, USA

results on worm-gear DF from HERMES, COMPASS, Hall A

DIS 2011, Newport News, USA

results on worm-gear DF from HERMES, COMPASS, Hall A

- Ami Rostomyan & Oleg Eyser -