SSA in inclusive hadron production at HERMES

Alejandro López Ruiz Department of physics and astronomy Universiteit Gent DIS' 10 Florence

OUTLOOK

- MOTIVATION
- HERMES
- METHOD
- RESULTS
- CONCLUSIONS

MOTIVATION

• Measurement of A_N in $p^{\uparrow}p$ -scattering for different center of mass energies:

- Only two models consistently describing the data:
 - *TMDs (Transverse Momentum Dependent) distributions
 - * high-twist correlations
- Interpretation not yet completely satisfactory
- All available models predict A_N goes to zero at high p_T values.
- BUT: not yet DATA at such kinematic region
- all available data coming from pîp scattering

$$A_{N} = \frac{N_{R} - N_{L}}{N_{R} + N_{L}}$$

MOTIVATION

A_N in inclusive hadron production:

- one can also measure the An in ept scattering
- it's a much cleaner process involving only one quark channel
- equivalent to pp[†] scattering

- hard scale of the process given by pt
- it's a clean test of **TMD** formalism
- DATA already exist
- and HERMES has a LOT of them!

Estimates from the Torino group (Anselmino et al.):

• extracted from SIDIS data for the $p^1e \rightarrow pi X$ process at HERMES kinematics

MOTIVATION

A_N in inclusive hadron production:

- one can also measure the An in ept scattering
- it's a much cleaner process involving only one quark channel
- equivalent to pp[†] scattering

- hard scale of the process given by pT
- it's a clean test of **TMD** formalism
- DATA already exist
- and **HERMES** has a LOT of them!

Estimates from the Torino group (Anselmino et al.):

from arXiv: 0911.1744

The measurement of these predicted asymmetries allows a test of the validity of the TMD factorization, largely accepted for SIDIS processes with two scales (small P_T and large Q), but still much debated for processes with only one large scale (P_T) , like the one we are considering here. A test of TMD factorization in such processes is of great importance for a consistent understanding of the large SSAs measured in the single inclusive production of large P_T hadrons in proton-proton collisions.

the HERMES

spectrometer

inclusive HADRON production

at HERMES

DIS variables:

$$Q^2 = -(k-k')^2$$

 $x_B = Q^2 / 2M(E-E')$

inclusive hadrons:

inclusive HADRON production

at HERMES

AT HERMES

a note about acceptance

single spin Asymmetry

sinPhi moments

more specifically:
$$A_{UT}(p_T,x_F,\phi) = \frac{\mathrm{d}^3\sigma_{UT}}{\mathrm{d}^3\sigma_{UU}}$$

from the sinPhi dependence:
$$\mathrm{d}^3\sigma_{UT} = \mathrm{d}^3\sigma_{UU} \, A_{UT}^{\sin\phi}(p_T,x_F) \sin\phi$$
 sinPhi amplitude

relation to the left-right asymmetry:

$$A_N = \frac{\int_0^{\pi} d\phi \, \sigma_{UT} \sin \phi}{\int_0^{\pi} d\phi \, \sigma_{UU}} = \frac{2}{\pi} \cdot A_{UT}^{\sin \phi}$$

all together:
$$A_{UT}(p_T,x_F,\phi) =$$

$$A_{UT}^{\sin\phi}(p_T,x_F)\sin\phi$$
 this is what we measure!

RESULTS

oneDim binning

RESULTS

oneDim binning

RESULTS

twoDim binning

CONCLUSIONS

previous measurements

- A_N in pîp scattering bigger than in epî scattering u-quark dominance in epî scattering explains
- the smaller size of pi- asymmetry.

CONCLUSIONS

theory

inclusive Hadrons

CONCLUSIONS

comparison to SIDIS

A_N resembles SIVERS effect

thanks!