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• Measurement of AN in p p-scattering for different center of mass energies:

1976 2002 1991 2008

4.9 GeV 6.6 GeV 19.4 GeV 62.4 GeV

3

NR - NL

NR + NL
AN = 

• Only two models consistently describing the data:
* TMDs (Transverse Momentum Dependent) distributions
* high-twist correlations

• Interpretation not yet completely satisfactory
• All available models predict AN goes to zero at 

high pT  values.
• BUT: not yet DATA at such kinematic region

• all available data coming from p p scattering
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Estimates from the Torino group (Anselmino et al.):
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.

from arXiv: 0911.1744
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• extracted from SIDIS data
for the p e      pi X  process at HERMES kinematics

• one can also measure the AN in ep  scattering
• it’s a much cleaner process involving only one 

quark channel
• equivalent to pp  scattering

• hard scale of the process given by pT

• it’s a clean test of TMD formalism
• DATA already exist
• and HERMES has a LOT of them!
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• hard scale of the process given by pT

• it’s a clean test of TMD formalism
• DATA already exist
• and HERMES has a LOT of them!
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colliders the asymmetries are much smaller and become larger only at the boundary of the safe kinematical regions,
where, for pions, both the Sivers and the Collins contributions play a role and the two mechanisms cannot be
disentangled.
The measurement of these predicted asymmetries allows a test of the validity of the TMD factorization, largely

accepted for SIDIS processes with two scales (small PT and large Q), but still much debated for processes with only
one large scale (PT ), like the one we are considering here. A test of TMD factorization in such processes is of great
importance for a consistent understanding of the large SSAs measured in the single inclusive production of large PT

hadrons in proton-proton collisions.
We stress once more that our predictions refer to large PT production, in the lepton-proton c.m. frame, at leading

perturbative order. It implies that, in order to compare experimental data with our results, one has to select large
PT , single-jet events, excluding those events containing a second jet in the opposite hemisphere w.r.t. to the primary
observed jet (containing the final observed hadron). This should avoid large PT jets (or hadrons) coming from next-to-
leading order partonic processes (hard pQCD corrections). Although these requirements might correspond to smaller
cross sections and difficult selection procedures, we believe that the relevance of testing TMD factorization in this
simple process justifies efforts in this direction and motivates our work.
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Appendix A: Kinematics

1. Hadron production

We work in the proton-lepton center of mass frame, with the incoming proton and lepton moving along the Zcm

axis and the outgoing hadron emitted in the (XZ)cm plane:

p =

√
s

2
(1, 0, 0, 1) (A1)

! =

√
s

2
(1, 0, 0,−1) (A2)

Ph = (Eh, PT , 0, PL) E2
h = P 2

T + P 2
L , (A3)

where s is the proton-lepton c.m. square energy and where we have assumed all particles to be massless. The
kinematical variables for the elementary underlying process result in (k⊥ = |k⊥|, p⊥ = |p⊥|)

pq =

(

x
√
s

2
+

k2⊥
2x

√
s
, k⊥ ,

x
√
s

2
−

k2⊥
2x

√
s

)

(A4)

! =

√
s

2
(1, 0, 0,−1) (A5)

p′q =
Eh +

√

E2
h − p2⊥

2z

[

1,
1

√

E2
h − p2⊥

(PT − px⊥,−py⊥, PL − pz⊥)
]

(A6)

!′ = pq + !− p′q , (A7)

with k⊥ being the intrinsic transverse momentum of parton q inside the parent proton and p⊥ being the intrinsic
transverse momentum of the detected final hadron h with respect to the fragmenting parton q′. The expression for
p′q has been obtained by requiring z to be the light-cone momentum fraction of the emitted hadron, z = P̃+

h /p̃′+q
as defined in the helicity frame of the fragmenting quark q′, which we will denote as S̃. With this kinematics, the
partonic Mandelstam invariants are

ŝ = xs

“
,,
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• forward spectrometer
• fixed gas target, transversely polarized H
• target spin direction reversed every 1-3 min
• Particle ID: RICH + TRD +  CALO + hodoscope
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of
“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum
and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis
that may not have been covered in this report.

The asymmetry was calculated as

AUT (pT , xF , φ) =

N↑

L↑
P

− N↓

L↓
P

N↑

L↑ +
N↓

L↓

, (2.1)

where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis
was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning
was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same
binning was used for kaons and pions making comparisons and interpretations easier. See
Table 1 for details. For the 2D analysis, see section 4.2.

The differential yield for a given target spin direction (↑ upwards or ↓ downwards)
can be expressed as

d3N↑(↓)

dpT dxF dφ
=

[
L↑(↓) d3σUU + (−)L↑(↓)

P d3σUT

]
Ω(pT , xF , φ)

= d3σUU

[
L↑(↓) + (−)

L↑(↓)
P Asin φ

UT (pT , xF ) sin φ
]

Ω(pT , xF , φ). (2.2)
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Here, σUU is the unpolarized cross section, L↑(↓) is the total luminosity in the ↑ (↓)
polarization state, L↑(↓)

P =
∫

L↑(↓)(t) P (t) dt is the integrated luminosity weighted by the
magnitude P of the target polarization, and Ω is the detector acceptance efficiency. The
sin φ azimuthal dependence derivates from the integration of the spin-dependent part of
the cross section over all leptonic variables [11]; Asin φ

UT refers to its amplitude.
With the use of Eq. (2.2), it can be approximated, for small differences of the two

average target polarizations 〈P ↑(↓)〉 = L↑(↓)
P /L↑(↓), as

AUT (pT , xF , φ) % Asin φ
UT sin φ +

1

2

〈P ↓〉 − 〈P ↑〉
〈P ↑〉〈P ↓〉 . (2.3)

Variable Bins Bin borders

pT 10 [0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 3.0] GeV

xF 10 [-0.01, 0.1, 0.13, 0.17, 0.2, 0.23, 0.27, 0.3, 0.37, 0.43, 1]

φ 20 [0.0, 0.27, 0.54, 0.81, 1.08, 1.35, 2.02, 2.29, 2.56, 2.83,
3.10, 3.37, 3.64, 3.91, 4.18, 4.45, 5.17, 5.44, 5.71, 5.98, 6.29] rad

Table 1: Binning in the kinematic variables pT and xF . For the azimuthal angle φ, the
binning was carefully selected to avoid having bins with no (or very low) statistics due
to the gap in the acceptance around the beam pipe.

As shown in Table 2, 〈P ↑〉 and 〈P ↓〉 are the same for all data taking periods.

Year 〈P ↑〉 〈P ↓〉 〈∆P 〉 ∆Apol
UT

2002 0.783 0.783 0.041 5.24%

2003 0.795 0.795 0.033 4.15%

2004 0.737 0.737 0.056 7.53%

2005 0.705 0.705 0.065 9.24%

all 0.713 0.713 0.063 8.81%

Table 2: Average target polarizations for the data sets used in this analysis. The last two
column contain the average uncertainty on the measurement of the target polarization,
and the relative uncertainty which is transferred to the asymmetries.

The relation between the sinφ amplitude Asin φ
UT and the left-right asymmetry AN can

be easily obtained, in the case of a detector with full 2π-coverage, as

AN =

∫ π

0 dφσUT sin φ∫ π

0 dφσUU
= 2

π · Asin φ
UT . (2.4)

3
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Figure 1: Overview of measured SSAs in inclusive hadron production.

are undefined, like xB, Q2 or φS. A natural choice, an equivalent to the previous set of
“leptonic” variables, is to use instead:

• pT , the transverse momentum of the hadron,

• , xF = 2pL/
√

s, related to the longitudinal momentum pL of the hadron

• φ, the azimuthal angle about the beam direction between the hadron momentum
and the “upwards” target spin direction.

The reader is also reffered to Florian’s thesis[10] for further information on the analysis
that may not have been covered in this report.
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where N↑(↓) are the number of events measured in bins of pT and φ. The complete analysis
was analogously performed in bins of xF and φ.

Given the extense set of data collected (about 120 million tracks), a much finer binning
was chosen in comparison to what other (SI)DIS analyses at Hermes allow. The same
binning was used for kaons and pions making comparisons and interpretations easier. See
Table 1 for details. For the 2D analysis, see section 4.2.
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.
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FIG. 2: Estimates ofAN vs. xF for the p↑ ! → πX process at HERMES (
√
s # 7 GeV). Left panel: Sivers effect at PT = 1.5 GeV;

central panel: Sivers effect at PT = 2.5 GeV; right panel: Collins effect at PT = 2.5 GeV. The computation has been performed
according to Eqs. (16), (17) and (18) of the text, adopting the Sivers functions of Ref. [14] and the transversity and Collins
functions of Ref. [22], as extracted from SIDIS and e+e− data, the unpolarized PDFs of Ref. [83] and the FFs of Ref. [84]. In
the left panel we also show, for charged pions, the statistical uncertainty bands coming from the extracted Sivers functions [14].

Our results are given for the kinematical configurations of HERMES, COMPASS, JLab at 12 GeV, and a hypo-
thetical ENC future machine operating at an energy

√
s = 50 GeV. For hadron production, the Sivers and Collins

contributions are shown separately. We plot AN as a function of xF at fixed PT values; these should be chosen as the
hard scale of the process, ensuring a large momentum transfer in the hard scattering, say Q2 > 1 GeV2. In collinear
cases, at LO, it might suffice to have PT > 1 GeV; however, with TMD factorization, one has to be more careful, as
PT might be partially generated by intrinsic k⊥. We have checked that a value of PT = 2.5 GeV corresponds to a
safe Q2 > 1 GeV2 region in the whole range of xF , while PT = 1.5 GeV implies a safe Q2 region only for backward
production, xF

<∼ 0. We give predictions for these two values of PT .
Notice also that for positive xF the minimum of x is given, roughly, by xF . This implies that for xF > 0.2 –

0.3 we should employ the parameterizations of the Sivers and transversity functions in a region where they are not
constrained by SIDIS data. For this reason we will give our theoretical estimates of AN only up to xF # 0.2. On the
other hand, for negative xF the minimum of x is controlled by the ratio xT = 2PT /

√
s, implying that at moderate

c.m. energies (i.e.
√
s # 10 – 20 GeV) and PT # 1 – 2 GeV, we are sensitive to the valence region of the polarized

proton, i.e. the region where the Sivers (and the transversity) functions reach their maxima.
Let us comment in details our results.

• We first stress some aspects peculiar to the p↑! → hX process. As in SIDIS processes at leading order accuracy,
only one partonic subprocess, q ! → q !, is active, with a simple 1/t̂2 dependence (a much simpler dynamics
than in the p p → hX case). However, since the lepton plane is not identified (we do not require the detection
of the outgoing lepton), one cannot access, separately, the Sivers and the Collins effects. Nevertheless, in the
backward region (w.r.t. the proton direction) the variable |û| becomes smaller and so does the partonic spin
transfer cross section ∝ M̂0

1 M̂
0
2 [see Eqs. (8) and (9)], entering the Collins contribution to AN [second term

on the r.h.s. of Eq. (17)]. This implies a strong dynamical suppression of the Collins effect (reinforced by the
integration over the azimuthal phases) at largely and moderately negative values of xF , leaving active mainly
the Sivers contribution. Notice that, contrary to what happens in the p p → hX process, no û-channel in the
partonic process is present; moreover the variable t̂ strongly depends on φ, the azimuthal phase of the Sivers
effect [first term on the r.h.s. of Eq. (17)].

• In Fig. 2 we present our estimates, separately, for the Sivers and Collins contributions to AN at HERMES
kinematics. More precisely, we show the Sivers effect at PT = 1.5 GeV (left panel) and at PT = 2.5 GeV
(central panel) and the Collins effect at PT = 2.5 GeV (right panel). The Collins effect at PT = 1.5 GeV (not
shown) is almost negligible in the kinematical region considered. For charged pion production at PT =1.5 GeV
(left panel) the statistical uncertainty bands as resulting from our fit [14] are also shown.

The largest AN values obtained correspond to the x region (of the polarized proton distributions) where the
Sivers functions, for u and d quarks, reach their maxima. It is interesting to note that the sizable value of AN

for π− production (larger than the corresponding Sivers contribution to AUT in SIDIS) is due to the dominance
of the d quark with a small contamination from the u quark. This is related to the fact that the light-cone
momentum fraction z is always bigger than the maximum between |xF | and xT , implying, at moderate and
large |xF |, a dominance of the leading fragmentation functions.

theory

• note different kinematical configuration :

protons moving 
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 Z direction

6

B. Large PT jet production

We consider also the most interesting case of SSAs for the inclusive process p↑ ! → jet + X . Although it is a
difficult process to detect experimentally and might require future higher energy and luminosity machines, it would
certainly give the most direct access to the Sivers effect, as the lack of any fragmentation mechanism forbids other
contributions. Even more difficult, the observation of both a jet and a final hadron inside the jet (with a measurement
of its transverse momentum p⊥), would allow a direct detection of the Collins effect [82].
In the case of the p↑ ! → jet +X process, with no observation of a single final particle, Eq. (4) simplifies to:

Ej dσ(p,S)+!→jet+X

d3Pj
=

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û)

× ρq/p,Sλq ,λ
′
q
f̂q/p,S(x,k⊥)

1

2
M̂λq,λ!

;λq,λ!
M̂∗

λ′
q,λ!

;λ′
q,λ!

, (21)

while Eq. (16) becomes:

Ajet
N =

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û) [Σ(↑)− Σ(↓)]q!→q!

jet

∑

q,{λ}

∫

dx

16 π2x s
d2k⊥ δ(ŝ+ t̂+ û) [Σ(↑) + Σ(↓)]q!→q!

jet

· (22)

In this case the kinematics is very simple and is shown explicitly in appendix A2. For a generic azimuthal direction
φS of the transverse spin ST , the Sivers function, Eq. (19), can be written as:

∆Nfq/p↑ (x, k⊥) ST · (p̂× k̂⊥) = ∆Nfq/p↑ (x, k⊥)

(

sinφS
kx⊥
k⊥

− cosφS
ky⊥
k⊥

)

= ∆Nfq/p↑ (x, k⊥) sin(φS − φ) , (23)

and the Σ kernels in Eq. (22) are

∑

{λ}

[Σ(↑)− Σ(↓)]q!→q!
jet =

1

2
∆Nfq/p↑(x, k⊥) sin(φS − φ)

[

|M̂0
1 |2 + |M̂0

2 |2
]

(24)

∑

{λ}

[Σ(↑) + Σ(↓)]q!→q!
jet = fq/p(x, k⊥)

[

|M̂0
1 |2 + |M̂0

2 |2
]

. (25)

The elementary amplitudes are the same as given in Eqs. (8) and (9).

III. ESTIMATES FOR AN

We have computed the SSA, AN , as defined in Eq. (12) or (14), for the large PT production of pions and jets in
p↑! → hX and p↑ ! → jet + X processes, according to the expressions given, respectively, in Eqs. (16)-(18) and in
Eqs. (22), (24) (with φS = π/2), and (25).
Analogous results for the case of leptons moving along the Zcm axis, ! p↑ → h (jet)+X , in the same chosen hadronic

frame (that is, keeping fixed the definitions of xF = 2PL/
√
s and of the ↑, ↓ transverse polarization directions) can

be easily obtained using rotational invariance:

A !p↑→h(jet)+X
N (xF ,PT ) = −A p↑!→h(jet)+X

N (−xF ,PT ) . (26)

We have used the Sivers distributions as parameterized and extracted – from SIDIS data – in Ref. [14]; even if
the Sivers functions, being related to final state interactions [72], are expected to be process dependent [23], they
should be the same in SIDIS and the (related) processes considered here, which all originate from the same q ! → q !
elementary interaction and subsequent quark fragmentation. Similarly, we have used the transversity distributions
and Collins functions as parameterized and extracted in Ref. [22]. The unpolarized parton distribution functions
(PDFs) and fragmentation functions (FFs) are taken respectively from Refs. [83] and [84].

electrons moving 
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