The HERMES Recoil Detector

Commissioning Status and Analysis Prospects

Alberto Martínez de la Ossa University Of Colorado

DIS 2010 April 20 / 2010

Convitto della Calza, Firenze

Outline

Introduction:

- 1.1. The HERMES experiment.
- 1.2. The HERMES analyses.
- 1.3. HERMES with Recoil and Exclusivity.

2. HERMES Recoil Detector:

- 2.1. Description.
- 2.2. Status of commissioning.
- 2.3. Track reconstruction and PID.

3. Exclusive reactions with Recoil:

- 3.1. Deeply Virtual Compton Scattering.
- 3.2. Deeply Virtual Meson Production.

4. 'Tagged' Structure Functions:

- 4.1. Motivation and analysis description
- 4,2. Spectator protons with Recoil.
- 4.3. Kinematic selection and prospects.

5. Conclusions

The HERMES experiment

- Polarized Lepton beam at 27.5 GeV.
- Polarized target (reversed every 1-3min):
 - Longitudinally H,De,He Unpolarized H,

Transversely H

- De, Ne, Kr, etc
- Particle ID (RICH + TRD + Pre-Shower + CALO) Provide superb lepton/hadron separation.
- Tracking system: Resolution on kinematics ~ 1%

The HERMES analyses

Pioneer in the understanding of nucleons structure:

Inclusive DIS Structure of the nucleon

$$F_1(x), F_2(x), g_1(x), g_2(x)$$

Unpolarized structure functions

Spin-dependent structure functions

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + \Delta g + L_g$$

..Spin of Quarks: $\Delta\Sigma pprox rac{1}{3}$

Quark orbital momentum?

$$J^q = \lim_{t \to 0} \int_0^1 dx x \left[\frac{H^q}{H^q} + \frac{E^q}{H^q} \right]$$

Semi-Inclusive DIS Quark structure of the nucleon

in quark parton model..

Exclusive DISGeneral structure of the nucleon

- -Deeply Virtual Compton Scattering
- -Exclusive Mesons Production

described in terms of...

Generalized Parton Distributions.

The HERMES analyses

Pioneer in the understanding of nucleons structure:

Inclusive DIS Structure of the nucleon

$$F_1(x), F_2(x), g_1(x), g_2(x)$$

Unpolarized structure functions

Spin-dependent structure functions

Structure function of the Neutron?

 $F_2^n(x)$ can be accesible via tagging spectator protons in DIS off Deuterium.

Determination of $F_2^n(x)/F_2^p(x)$ would lead to important insights on quark dinamics on nuclei.

 $\Delta q(x)$ q(x)

Unpolarized Helicity

Transversity

Exclusive DIS General structure of the nucleon

- -**D**eeply **V**irtual **C**ompton **S**cattering
- -Exclusive Mesons Production

described in terms of...

Generalized Parton **Distributions.**

Exclusivity at HERMES (96-05)

Detected Particles:

- * DIS electron
- * **photon** (DVCS) or leading **meson** (DVMP).

recoiling **proton** undetected

Exclusivity by means of **Missing mass** technique

$$M_X^2 = (p + q - p_\gamma)^2$$

Exclusive Region

$$\cdots (-1.5)^2 < M_X^2 < (1.7)^2 GeV^2$$

Elastic BH $ep o ep \gamma$

associated BH $ep
ightarrow e\Delta^+ \gamma$ 12% Semi-Inclusive $ep
ightarrow e\pi^0 X$ 3%

15% background contribution

Exclusivity at HERMES (06-07)

Recoil Detector

Improves exclusivity:

- * Detecting the proton.
- * Pions and photons.

Substantially reduce associated BH contributions:

$$\begin{array}{c} \Delta^+ \to p\pi^0 \to p\gamma\gamma \\ \to \pi^+ n \end{array}$$

Background contribution below 1%

Experimental setup:

- * Unpolarized H and De targets.
- * Polarized e⁺ and e⁻ beam.

Available Statistics:

DIS events	Hydrogen	Deuterium
2006	32 M	7.6 M
2007	25 M	6.6 M
Total	57 M	14.2 M

Recoil Detector (RD)

Superconducting Solenoid (1T)

Photon Detector (PD):

* 3 layers of Tungsten/scintillator sandwich PID for proton tracks **P>0.6 GeV**. **Detects Photons!**

Fiber Detector (SFT):

- * 2 barrel with 4 layers of scintillating fibers.
- * 2 parallel and 2 stereo layers per barrel.

Track reconstruction and PID for proton tracks **P>0.25 GeV**

Silicon Strip Detector (SSD):

- * 16 sensors
- * Inside HERA vacuum
- * 5 cm. close to beam.

Track reconstruction and PID for proton tracks **P>0.09 GeV**

The RD offers a large azimuthal acceptance (76%) and minimum reconstructible proton momentum of **90 MeV**

Status of Commissioning

RAW data processing algorithms:

- Pedestal and noise studies.
- Crosstalk corrections.
- Signal processing algorithms to hit detection.

Alignment and Calibration:

- Alignment and Calibration of each sub-detector
- Efficiencies studies.

Event Reconstruction:

- Tracking algorithms.
- Particle Identification.
- Pasive material corrections.
- Mapping of detector acceptance.

Ready for physics analyses

High-Energy Protons (1111): p>200 MeV/c

* Momentum via bending in Magnetic field

Medium-Energy Protons (X111): 145 MeV/c MeV/c <math>* Momentum via dE/dx

Low Energy Protons (XX11): 125 MeV/c MeV/c

* Momentum via sum of energy deposits

Lowest Energy Protons (XXX1): 90 MeV/c MeV/<math>c

- * Momentum via energy deposit
- * Production vertex from DIS lepton.

Outlook in Track reconstruction

- 1. Geometric track finder. Find helices compatibles with beam.
- 2. Every possible track reconstructed under different hypothesis.
 - Particle hypothesis.
 - Track topology (Stopped or through going).
- Geometrical information (bending) used in conjunction with energy depositions to improve reconstruction.
- 4. Quality of tracking estimated (χ^2).

Momentum resolution **Below 15%** in whole kinematic range

A 3D view of the reconstruction of a 4 space points proton.

Particle identification

proton/pion separation from energy deposits in each subdetector:

Likelihood formalism to combine all PIDs

$$PID_i \equiv \log \frac{\mathcal{P}_p(\Delta E_i, p)}{\mathcal{P}_{\pi^+}(\Delta E_i, p)}$$

i denotes different sub-detectors

DVCS analysis with Recoil:

1. Forward Spectrometer:

- * Selection of $e\gamma$ topologies.
- * Calculate 'missing' p and ϕ .

DVCS analysis with Recoil:

1. Forward Spectrometer:

- * Selection of $e\gamma$ topologies.
- * Calculate 'missing' p and ϕ .

2. Recoil Detector:

- * Select proton track candidate.
- * Look for "DVCS" correlations:

$$\Delta \phi = \phi_{meas} - \phi_{calc}$$
$$\Delta p = p_{meas} - p_{calc}$$

DVCS analysis with Recoil:

1. Forward Spectrometer:

- * Selection of $e\gamma$ topologies.
- * Calculate 'missing' p and ϕ .

2. Recoil Detector:

- * Select proton track candidate.
- * Look for "DVCS" correlations:

$$\Delta \phi = \phi_{meas} - \phi_{calc}$$
$$\Delta p = p_{meas} - p_{calc}$$

* Apply exclusivity cut:

$$|\Delta p| < 1 GeV/c$$

Background levels < 1%

.. Event Selection refinements:

Kinematic fitting:

- Tracks in Recoil are re-fitted under a certain global kinematic hypothesis: DVCS
- * Validity of hypothesis is checked in terms of the χ^2 of the fit.
- * Selection of DVCS proton candidate with smallest χ^2 .

Missing mass distribution:

- * No requirement for Recoil
- Positively charged track in Recoil
- * Kinematic fit probability <1%
- * Kinematic fit probability >1%

Results and status for DVCS:

- Excellent performance in Monte Carlo.
- * Data behaves as expected.
- * Systematics studies are in progress.

Exclusive Mesons with Recoil

'Tagged' Neutron Structure Function

Measuring the effective Structure Function of the Neutron by means of 'tagging' spectator protons of electron DIS off Deuterium

$$e+d \rightarrow e+X+p_{spec}$$

Scheme of electron DIS off Deuterium: The detection of the spectator proton allows to 'tag' the initial nuclear state of the neutron

Structure functions at $x \rightarrow 1$ limit?:

* Structure functions are dominated by valence quarks.

$$\frac{F_2^n}{F_2^p} \approx \frac{1 + 4d/u}{4 + d/u}$$

The Study of this ratio allow to discriminate between different models:

- * Simplest SU(6) $\rightarrow \frac{1}{2}$ -
- * 1-gluon exchange among spectator guarks → 0
- * Quark spin collinear with the nucleon $\rightarrow 1/5$

'Tagged' Neutron Structure Function

Measuring the effective Structure Function of the Neutron by means of 'tagging' spectator protons of electron DIS off Deuterium

EMC Effect: Structure functions of free nucleons are altered when in a nuclear environment.

W. Melnitchouk et al. Phys. Lett. B335, 11 (1994)

Differential cross section:

$$\frac{\mathrm{d}^5 \sigma}{\mathrm{d}x \; \mathrm{d}Q^2 \; \mathrm{d}\vec{p}} = \frac{2\pi\alpha^2}{Q^4} \frac{1 + (1 - y)^2}{x} F_2^n \rfloor_{tag}(x, Q^2, p) \cdot n(p)$$

W. Melnitchouk et al. Z. Phys. A359, 99 (1997).

Deuteron spectral function

'Tagged' Structure Function

'Tagged' Neutron Structure Function

How to access the structure function ratio?

$$\frac{F_2^n \rfloor_{tag}(x, Q^2, p)}{F_2^p(x, Q^2)} = \frac{N_{RD}^d(x, Q^2, \vec{p}) / \mathcal{L}_{RD}}{N_{incl}^p(x, Q^2) / \mathcal{L}_{incl}} \cdot \frac{1}{V_{RD}(\vec{p})} \cdot \frac{1}{n(p)}$$

via its relation with inclusive DIS off Hydrogen.

Needs to know spectator protons spectrum

How to measure n(p)?

1. **Combined measurements** of Deuterium and Hydrogen:

$$n(p) = rac{N_{RD}^d(p) - rac{\mathcal{L}_{RD}^d}{\mathcal{L}_{RD}^p} \cdot N_{RD}^p(p)}{\mathcal{L}_{RD}^d V_{RD}(\vec{p})}$$

Assuming background protons from fragmentation are the same for H and De.

2. **Direct approach**: Use region without non-spectator protons.

Hadrons coming from fragmentation and DIS related process are mostly in forward direction: **Select protons on backward hemisphere**

Simple spectator model:

Lacombe et al. PL B101 (1981) 139

- *Minimum momentum 90 MeV/c
- *Energy acceptance 30%
- *Geometrical acceptance **57%**

Spectator protons in Recoil Detector

Accessible spectator spectrum with Recoil Detector: 30 %

Full HERMES MonteCarlo Simulation:

- * Electron DIS interactions off Deuterium.
- * Spectator proton added to electron-neutron processes.
- * Full simulation of detectors effects.

Explore spectators and background kinematics to maximize tagging efficiency and minimize background contributions

Exploit different kinematics of spectators:

- * Spectators are shifted to low momentum values
- * Background protons are mainly in forward hemisphere

Full HERMES MonteCarlo Simulation:

- * Electron DIS interactions off Deuterium.
- * Spectator proton added to electron-neutron processes.
- * Full simulation of detectors effects.

Explore spectators and background kinematics to maximize tagging efficiency and minimize background contributions

Exploit correlation with DIS electron:

- * Spectators are uncorrelated with DIS
- * Hadrons from fragmentation collinear with virtual photon
- * Hadrons from decays are shifted from main interaction vertex

The potential discriminating power of all kinematic variables is combined together using advanced pattern recognition tools:

Likelihood, neural net, boosting methods, etc. efficiently find regions in kinematic space quasi-free of non-spectators.

Spectator proton tagging performance for a Multi-Layer Perceptron (MLP):

A selection cut of **MLP>0.** reduce background levels below **3%** while keeping signal efficiency around **75%**.

'Tagged' Structure Function: Expectations

A fast estimation of expected precision:

in absence of nuclear effects:

$$\frac{F_2^n}{F_2^p} = 2\frac{\sigma^d}{\sigma^p} - 1 - \dots$$

Error calculations via cross section ratio:

- * Full Hydrogen statistics
- * 2.5% of Deuterium statistics:
 - * **5%** total acceptance for spectators (at backward angles)
 - * **50%** for DIS on Neutron.

Incoming improvements

- * The inclusion of 2006 data will provide approx. double statistics.
- * Sophisticated signal selection techniques offer three times larger signal selection efficiency

Conclusions

HERMES Recoil Detector is ready for first physics analyses:

Tracking and PID capabilities exhibit optimal performance.

First approach to physics analyses looks promising:

- Exclusive reactions (DVCS and EMP) can be measured with negligible background levels.
- Neutron structure function can be accessed via spectator proton tagging.