

The HERMES Recoil Detector

Yves Van Haarlem for the **Hermes** Collaboration University of Gent, Department of Subatomic and Radiation Physics, B-9000 Gent

To study exclusive Deep Inelastic Scattering (DIS):

- Establish exclusivity at event level
- Cut in non-exclusive background < 1%:
- -Main source: intermediate Δ -resonance production
- -Higher resonances removed by invariant mass cut

HERMES built a Recoil Detector able to detect:

- Protons:
- -Recoil protons (50-600 MeV/c)
- -Protons from Δ -resonances (< 1.4 GeV/c)
- Pions (< 800 MeV/c)
- Photons (from π^0 decay)

(Momentum ranges containing most statistics)

Photon Detector

- Detect photons coming from $\Delta^+ \to p\pi^0$
- From inside out (302 mm long):

6mm Tungsten	-1^{st} layer: 60 bars
omm rungsten	· ·
11mm Scintillator Bars	with beam
3mm Tungsten	-2^{nd} layer: $+45^{\circ}$ with
11mm Scintillator Bars	beam (44 bars)
3mm Tungsten	-3^{th} layer: -45° with
11mm Scintillator Bars	beam (44 bars)

⇒ Enables tracking

- Provides cosmic trigger
- Cosmic Test:

Detector Performance / Plans

• Detector is finished

- Cosmic test data taken till sept 2005
- Preparing for final installation NOW
- Dec 05 Jan 06 Installation in HERA
- 18 months data taking with $e^+ e^-$ beam

Silicon Detector

- Detect low momentum protons up to 0.5 GeV/c
- Polar acceptance $0.4 < \theta < 1.35$ rad
- $\bullet \phi$ resolution is 0.031 rad
- \Rightarrow Placed inside beam vacuum (10⁻⁹ mbar) close to the
- \Rightarrow Lowest proton momentum detectable is 135 MeV/c
- 16 double sided silicon sensors:

- Size: 99x99 mm
- \bullet 300 μ m thick TIGRE sen-SOTS
- 128 strips/side (\perp):
- $-758 \ \mu \mathrm{m}$ pitch
- $-56 \mu m$ separation
- \Rightarrow Tracking with 222 μ m res.: max two space points

• Deposited energy is a steep function of § momentum (Bethe Bloch $1/\beta^2$ area) ⇒ Momentum measurement

• Cosmic Test:

Scintillating Fiber Detector

- Detect recoil protons ranging from 0.25 to 1.6 GeV/c
- Polar acceptance $0.7 < \theta < 1.35$
- ϕ resolution is 0.008 rad
- Consist of two 26 cm long barrels (SciFi1 and SciFi2):

- -SciFi1:
 - * Scintillating fibers $(1 \mathrm{mm})$
 - *Every fiber is read out
- -SciFi2:
- *Two adjacent fibers in each layer \rightarrow one readout channel
- \Rightarrow Particle tracking with resolution < 300 μ m: max two space points

- Magnetic field causes deflection of charged particles ⇒ Momentum measurement
- Cosmic Test:

