

First Results from the Recoil Detector at HERMES

Roberto Pérez-Benito, Il Physikalisches Institut, University of Gießen on behalf of the **HERMES** Collaboration

Recoil Detector at HERMES

The primary goal of HERMES is to explore the spin of nucleon, disentangle different contributions to the nucleon's spin

$$\frac{1}{2} = \underbrace{\frac{\Delta \Sigma}{2} (\Delta u + \Delta d + \Delta s) + \underline{L_q}}_{J_q} + \underbrace{\Delta G + \underline{L_g}}_{J_g}$$

- The generalized parton distributions (GPDs) offer a possibility to derive the orbital angular momentum of the quarks L,q
- Deeply Virtual Compton Scattering (DVCS) process one of the cleanest hard exclusive process to access
- lacksquare Exclusive ho^{arrho} sensitive to $H_{q,g}$ and $E_{q,g}$ at the same order in α_s
- Ji Relation: $J_{q,g} = \lim_{t\to 0} \int_{-1}^{1} dx \, x \, \{H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)\}$
 - x±ξ parton longitudinal momentum fractions,
 - fraction of the momentum transfer,
 - invariant momentum transfer,
 - The Recoil Detector can measure recoiling protons (135-1400 *MeV/c*), improve tresolution and suppress background
 - To improve the measurement of exclusive processes a Recoil Detector was built for the **HERMES** experiment
 - Recoil detector installed for the last two years of data taking:
 - Unpolarized hydrogen target: 38 Mio DIS (41.000 DVCS)
 - Unpolarized deuterium target: 10 Mio DIS (7.500 DVCS)
 - 2 Beam helicities, positron beam

Superconducting Solenoid (1T)

inside HERA beam vacuum

Photon Detector (PD)

Fibre Detector (SciFi)

Silicon Detector (SSD)

5cm close to beam

HERMES at DESY

DRIFT CHAMBERS

- 27.6 GeV/c electron/positron beams with polarization up to 65%
- Unpolarized internal gas targets
- Tracking:

TARGET
CELL STEEL PLATE

- $\Delta p/p < 2\%$, $\Delta \theta < 0.6$ mrad
- Particle ID:
 - TRD, Preshower, Calorimeter (hadron/lepton) separation)

DVCS with Recoil Detector

 $e p \rightarrow e' p' \gamma$

from the kinematics in the forward spectrometer

use track with highest momentum and positive

for the moment, no PID used to select protons

Calculate kinematics of recoiling proton track

Select a correlated track in Recoil Detector

all track types: SSD only & "long" tracks

low t region

exists positive Recoil Track

recoil $|\Delta p|$ < 1 GeV/c cut

spectrometer

4000

2000

detect exactly one lepton and one photon in forward

Spacepoint in

Silicon & Fiber Detec<mark>to</mark>r

0.2 0.4 0.6 0.8

exactly one lepton & one photon in forward

 $\theta_{\text{meas}}(\text{Recoil})$ [rad]

 M_x^2 [$(GeV/c)^2$]

RICH (π,K,p separation)

HERMES DVCS analysis:

• $\Delta \Phi = \Phi_{measured} - \Phi_{cal}$.

• $\Delta p = p_{measured} - p_{cal}$

• $|\Delta p| < 1 \; GeV/c$

spectrometer

charge

Energy/momentum measurement

Recoil Detector Particle Identification

3 layers of Tungsten/Scintillator sandwich X+E

2 barrels with 4 layers of scintillating fibres

2 parallel and 2 stereo layers per barrel

16 double-sided sensors in 2 layers

distributions

 $p < \sim 0.6 GeV/c$: Silicon & Fibre Detector

 $p > \sim 0.6 GeV/c$: Silicon, Fibre & Photon Detector

Outlook

- First look at physics using Recoil Detector tracks
- Exclusive physics
- Improve event selection
- Use PID to select recoiling proton
- Further separation of associated background by using PD
- Include single hits in inner SSD to extend to lower t

Exclusive ρ^0 – Production $e p \rightarrow e' \pi^+ \pi^- p'$

• HERMES ρ^0 analysis:

GPDs(x,ξ,t)

- detect exactly one lepton, one $\pi^{\scriptscriptstyle +}$ and one $\pi^{\scriptscriptstyle -}$ in forward spectrometer
- Calculate kinematics of recoiling proton track
- from the kinematics in the forward spectrometer
- Select a correlated track in Recoil Detector
- use track with highest momentum and positive charge
- for the moment, no PID used to select protons
- all track types: SSD only & "long" tracks
- $\Delta \Phi = \Phi_{measured} \Phi_{cal}$.
- $\Delta p = p_{measured} p_{cal}$
- $|\Delta p| < 0.8 \; GeV/c$

