Quantenchromodynamik (QCD) bei hoher Gluondichte das Saturationsproblem

F. Schrempp, DESY

Plan

- 1. QCD bei Hoher Gluondichte
- 2. Instantonen und Saturation
- **BanssefnemmesuZ**.⁵

:WWW siv doiltlädre eiqoN

http://www.desy.de/~t00fri/talks/talks.html

- München, Mai 2004 -

1. QCD bei Hoher Gluondichte

1.1 Elemente der QCD

- Standard Modell der Teilchenphysik extrem erfolgreich!
- Rahmen: Theorie der starken
 Starken
 Schwachen
 Wechselwirkungen in Form einer

Relativistischen Quanten Feldtheorie, elementare Teilchen -> Felder

Elementare Materiebausteine: Quarks & Leptonen (Spin ¹/₂)

```
    ♣ Eichprinzip:
Form aller Wwn. aus der Forderung einer lokalen Eichsymmetrie! ⇒
    ♣ Existenz von Eichbosonen (Spin 1)
{Gluonen (g), Photon (γ), W<sup>±</sup>, Z<sup>0</sup>} als Trägerteilchen der Eichkräfte.
    • Eichtransformationen ⇔ verallgemeinerte Phasentransformationen
```

 $I = U \text{for } i = U^{\dagger} U = {}^{\dagger} U U : [\overline{T} \cdot (x) \overline{\flat} i] \text{ qx} = (x) U : (\text{nonoiseroR})$

Symmetrie unter Drehungen

- Ballon (Fig.): Lokale Rotationsinvarianz bedingt Kräfte!
- QuantenChromoDynamik (QCD):
- Quarks und Gluonen tragen "Farbladung", Quark q = {q q q}
 Triplett,
- Physik invariant unter nicht-abelscher Lie-Gruppe $SU(3)_{\mathrm{Farbe}}$ der Quark- und Gluonfelder!
- Quanteneffekte?

- Für $lpha \equiv rac{g^2}{4\pi} \ll 1 \Rightarrow$ Störungstheorie, Feynman-Graphen. . .
- Störungstheorie für starke "Farb" Wwn?? ⇐Vakuumpolarisationseffekte!

Eichkopplungskonstante $\alpha_s \Rightarrow laufende$ Kopplung $\alpha_s(Q^2)$, Q = relevante Impulsskala $\sim 1/Abstand$.

- QED: Abschirmung der elektrischen Ladung bei zunehmendem Abstand.
- : Gluonen tragen Farbladung \Rightarrow Gluon-Selbstwechselwirkung! \Rightarrow umgekehrter Effekt!:

Abschirmung der Farb-Ladung für kleine Abstände, $\lim_{Q^2 \to \infty} \alpha_s(Q^2) = 0! ("Asymptotic Freedom").$ **HERA! HERA! HERA!**

- Larbkopplung wächst "unbeschränkt" an für große Abstände ⇒ "Confinement"! Nur farbneutrale Bindungszustände der Quarks und Gluonen beobachtbar (Hadronen)!
- Aus Quarks werden hadronische Jets im Detektor!

AAAH isd sthoud Shore Cluondichte bei HERA

- Tiefunelastische eP Streuung: "Wiege" der störungstheoretischen QCD !
- Studium der Protonstruktur via "Elektronen Mikroskop" mit hochvirtuellen Photonen:

Wichtige Observable:

Proton Strukturfunktion $F_2(x, Q^2)$

• Prä-QCD : Bjorken- Scaling im naiven Parton Modell: Q^2 groß $\rightarrow F_2(x) = \sum_f e_f^2(x q_f(x) + x \overline{q}_f(x))$ Quarkdichten $q_{\{u,d,\dots\}}(x)$ im Proton

 QCD: Gluonen! :Wechselwirkung über störungstheoretische Elementarprozesse der QCD, da laufende QCD -Kopplung

 $(Asymptotische Freiheit!) \ll 1$

 $Q^{2} = -q^{2} = (k - k')^{2} = 4E_{e}E'_{e}\sin^{2}(\frac{2}{2});$

 $\frac{1}{Q} \sim \bot x \Delta$:gausöltuA slesversnert shoh

Bjorken-
$$x = \frac{2P \cdot q}{Q^2}$$
; $0 \le x \le 1$;

Anteil des Protonimpulses, den das am Photon gestreute Parton im Proton trägt.

$$\gamma P$$
-Energie² $W^2 = (q+P)^2 = Q^2(\frac{1}{x}-1) \Rightarrow$

Hochenergie-Streuung für x
ightarrow 0

- Scaling-Verletzung durch Gluonabstrah Lung, eine grundlegende Voraussage der
 CD -Störungstheorie (Fig: HERA F₂)!
- Gluondichte $\neq 0$ im Proton!
- Betrachte: Q^2 fest, $x \to 0$
- Scaling-Verletzung ⇔ Gluondichte

$$(\overset{1}{\operatorname{d}}\operatorname{F}_{2}^{\Sigma}\otimes \alpha_{s}\cdot x\operatorname{g}(x,Q^{2}))$$

• Eine der wichtigsten Entdeckungen bei HERA: Starkes, Q^2 -abhängiges Anwachsen der F2-Strukturfunktion und damit der Gluondichte für $x \Rightarrow 0$!

1.3 Saturation im Partonbild

Saturation der Gluondichte? Noch keine direkte experimentelle Evidenz bei HERA!

• Erhaltung der Wahrscheinlichkeit (Streu-Matrix unitär!): $F_2 \propto Q^2 \sigma_{\gamma^*P}$ kann nicht beliebig stark für $x \to 0$ d.h. $W \to \infty$ anwachsen!

llll

Froissart Schranke: $\sigma \leq \sigma_0 \, \mathcal{O}(\log^2 W) = \sigma_0 \, \mathcal{O}(\log^2 \frac{1}{x})$

- Verletzt durch (resummierte) QCD Störungstheorie (**BFKL**)! Terme $\propto (\alpha_s \log \frac{1}{x})^n$;
- Problematik aufgrund der Vernachlässigung von Wwn. der Partonen untereinander (kein freies Partongas für $x \to 0$)!
- Anzahl der Gluonen im Proton nimmt stark zu mit abnehmendem x d.h.zunehmender $\gamma^* P$ Energie W!
- "Ausdehnung" $\sim \frac{1}{Q}$ der Partonen nimmt zu mit abnehmenden Q^2
- Partonen im Proton überlappen bei $x \approx x_{Sat}(Q)$ bzw. charakteristischer Im- pulsekala $Q \approx Q_{Sat}(x)$!
- Nichtlineare Korrektionen zur üblichen Partonevolution! Anstieg der Gluonverteilung wird gedämpft, d.h. man erwartet einen Saturationszustand der Gluonen im Proton.

 Kleineres x

 Proton

llll

eeee

llll

lelle

Shurgrafion im Instanton-Hintergrund? 4.1

[F. Sch., J.Phys. G28 (2002) 915;
Proc. SEWM 2002, Heidelberg [hep-ph/0301177]; hep-ph/0401137;
A. Utermann, PhD-Thesis, DESY-THESIS-2003-029 (2003).]

• HERA Experimente für $x \to 0$ machen neuartiges, interessantes QCD -Regime zugänglich:

Gluonen im Proton der Fläche πR^2 mit $m{x}
ightarrow m{0}$ \Leftrightarrow System hoher Dichte und Wechselwirkungs-Wahrscheinlichkeit

$$\mathcal{P}_{g} = \sigma_{gg} \cdot n_{g} \sim \frac{\alpha_{s}(Q_{Sat}^{2})}{Q_{Sat}^{2}} \frac{xG(x, Q_{Sat}^{2})}{\pi R^{2}} \frac{xG(x, Q_{Sat}^{2})}{\lambda G_{Sat}} \gg \Lambda_{QCD}^{2} \quad \text{(c.f. HERA)}$$

- Trotz $\alpha_s(Q_{S_{at}}^2) \ll 1$, Zusammenbruch der QCD -Störungstheorie, da Gluon-WWn durch
- Grundlegende offene Fragen:
- $\mathfrak{Saturationsmeas} Q \approx \mathfrak{Q} = \mathfrak{Q}$

- Populärer Rahmen [McLerran et al]:
- Saturationszustand \Leftrightarrow Multigluon-Zustand hoher Besetzungszahl $\propto \frac{1}{\alpha_s}$: - "Farb-Glas Kondensat", assoziiert mit tim trainionation that assozier mit
- starkem klassischem nicht-perturbativem Gluonfeld $A_{\mu} \propto \frac{1}{\sqrt{\alpha_s}}$
- hochinteressant!
- Nicht-perturbative, explizit bekannte, starke klassische, ausgedehnte Fluktuationen des Gluonfeldes, $A^{(I)} \propto \frac{1}{\sqrt{\alpha_*}}$! (\Rightarrow Sektion 2)
- Realisieren nicht-triviale Topologie der Gluonfelder

:n9ger7 9lertn9Z 🐥

- Saturation im Instanton-Hintergrund?
- ` "Farb-Glas Kondensat" ⇔ QCD -" Sphaleron".?
- Zusammenhang zwischen der charakteristischen Lusdehnung $\langle \rho \rangle \approx 0.5$ fermi und Saturations- skala $1/Q_{\rm Sat}$?? (Figs rechts!)

2. Instantonen und Saturation

2.1 Topologische Objekte in der Feldtheorie

- Quanten-Feldtheorie in störungstheoretischer Näherung: enorm erfolgreich.
- Potenzreihen Entwicklung (des Feynman'schen Pfadintegrals) um triviale Feldkonfiguration $\Phi_i=0,$ für $g\ll 1$.
- Materiefelder <=> punktförmige, elem. Objekte (Teilchen).

Nicht-abelsche Eichtheorien

Nicht-lineare Feldtheorien

auch stabile, lokalisierte Lösungen mit raum (-zeit)licher Ausdehnung

Vortex-Lösungen, Monopole & Instantonen.

nonotilo**2**

Gemeinsam: Stabilität und Existenz ⇔ Nicht-triviale **Topologie** der Randbedingungen!

 \clubsuit Meue Störungstheorie um solche Lösungen \Rightarrow Einblick in wichtige Quanteneffekte außerhalb der üblichen Störungstheorie um $\Phi_i=0!$

2.2 Instantonen in der QuantenChromoDynamik

נ"muustand in QCD ("Vakuum"):

"Suppe" aus Gluonen und Quarks mit komplizierter, nicht-perturbativer Wechselwirkung.

Betrachte zunächst:

Topologie? $SU(3)_{color}$ Eichtheorie (nur Gluonfelder $A_{\mu}(x)$ ohne Quarks) \Leftrightarrow Topologie?

• Lokale Eichsymmetrie: $\forall \ U(x) \subset SU(3)_{
m color}$, ist die QCD Lagrange-Dichte

 $\left|\begin{array}{c} (x) \mathbf{U}(_{\mu} \mathcal{G}_{\frac{i}{\varrho}} + (x)_{\mu} A)(x)^{\mathbf{1}-\mathbf{U}} = (x)_{\mu}^{\ \gamma} A \Leftarrow (x)_{\mu} A \right| \text{ retrains the interval } [(x)_{\mu} A] \mathbf{\mathfrak{I}}$

• Gesucht: Mögliche Grundzustände,

 $charakterisiert durch endliche Wirkung <math>S = \int d^4x \mathcal{L}, \quad i.e. \ \mathcal{L}[A_\mu(x)] \xrightarrow{\infty} 0$

♦ Erfüllt durch triviale Feldkonfiguration $A_{\mu}(x) \equiv 0$, S = 0 (\Leftarrow übliche Störungstheorie). ♦ Viel zu restriktiv aufgrund lokaler Eichinvarianz \Rightarrow

$$\underbrace{\overset{(\mathbf{x})}{\overset{$$

Randbedingungen für Grundzungen

(Realistische, nicht-perturbative Gittersimulation, [Chu *et al.*'94], 3 **I**'nen und 2 **I**'nen erkennbar!)

> • Möglische Grundzustands-Eichfelder $\vec{\Lambda}_{\infty}[U(\vec{x})]$: (Homotopie-) Klassen von Abbildungen $\{\vec{x}\} \Rightarrow \{U_n\}$, charakterisiert durch topologische Windungszahl $\mathbf{n} = 0, \pm 1, \pm 2, \dots$

topologische Ladung $\mathbf{Q} = \Delta n \Rightarrow \Leftrightarrow$ Gluonfelder $A_{\mu}(x)$ tragen ganzzahlige, erhaltene

 $4 \sim viele$, energetisch degenerierte aber topologisch inäquivalente klassische Grundzustände (Fig)!

:(\overline{I}) notnetzenl-itn ${\sf A}$,(I) notnetzenl

[Belavin et al. '75, 'La to nivelea]

- eudergänge zwischen benachbarten Vakua \diamond Tunnel Ubergänge zwischen benachbarten Vakua \diamond
- b4 ni) nəgundələ Feldgleichungen (in 4d Euklidischer Raum-Zeit, d.h. für imaginäre Zeit !)
- Micht-perturbative, topologisch nichttriviale Fluktuationen der Gluonfelder, lokalisiert ("instantan") in Zeit und Raum

- München, Mai 2004 -

2.3 Instanton-Störungstheorie

Ringwald, F. Sch., Phys. Lett B438 (1998) 217; hep-ph/9812359]

$\mathbf{T} \gg (\mathcal{D})^s \mathbf{n}$	$\tau \gg (2\pi)^s n$	Parameter
$\sqrt{(0,1)} = \sqrt{(0,1)}$	$(0, 0) \leq 1$	kleiner
$S_{\mathcal{O}} - \sigma^{s}$	$o - \mathcal{I}_{\mathcal{O}}$	Mirkung
$\overline{u_{\overline{c}}} - {}_{(I)}S$	0 - S	əleminim
$A_{\mu}^{(\mathbf{I})}(x;U,\boldsymbol{\rho}) = \frac{-i}{\sqrt{4\pi\alpha_s}} \frac{1}{\sigma} \frac{1}{\sigma_{\mu} \overline{\sigma_{\mu}} \overline{\sigma_{\mu}}} \frac{1}{\sigma} \frac{1}{\sigma_{\mu} \overline{\sigma_{\mu}} \overline{\sigma_{\mu}}} \frac{1}{\sigma} \frac{1}{\sigma_{\mu} \overline{\sigma_{\mu}} \overline{\sigma_{\mu}}} \frac{1}{\sigma} \frac{1}{\sigma}$	$0 \equiv (x)_{\mu} A$	un
klassische QCD-Instanton Lösung:	muuxeV "səleivirt"	Entwicklung
$5 \boldsymbol{u}_{\mathrm{Elavours}}$	0	Chiralitätsverletzung
Störungstheorie	Störungstheorie	
-notnetenl	9d2ildÜ	

- $\sigma_{\mu} = (-i\vec{\sigma}, 1)$, $\bar{\sigma}_{\mu} = (i\vec{\sigma}, 1)$, wobei $\vec{\sigma}$ die 2×2 Pauli-Matrizen sind und $x = x_{\mu}\sigma^{\mu}$ etc.
- Kollektive Koordinaten: ρ = Instanton-Ausdehnung, Farborientierungsmatrizen U.
- I-Wirkung unabhängig von ρ , U! Observable involvieren stets Integrale über alle kollektive Koordinaten

Aahmen der Instanton - Störungstheorie der Aerden. 2 HERA Experimente. . .

Dia-loqibdrs7 as Day

• Das "Farbdipol" Bild stellt einen intuitiven Rahmen für das Studium des Saturationsproblems für $x \rightarrow 0$ dar.

das Quark trägt

[Nikolaev & Zakharov '90; Mueller '94]

sloqibd
ıs Hansversale Ausdehnung des ($q\bar{p}p$)-Farbdipols
 : ${\boldsymbol{\eta}}$

neb sezingmi-notod ${\sf A}$ neb libutignol seb liethA :z

• Intuitiv im Proton (P) Ruhesystem: Das virtuelle Photon γ^* fluktuiert dominant in einen ($\bar{q}\bar{q}$)-Farbdipol für $x \to 0$ lange vor der Wechselwirkung, wobei

 $T_{q\bar{q}}$ - Formation $\gg T_{(q\bar{q})} P$ - Wechselwirkung \rightarrow Faktorisierung

$$\sigma_{L,T}(x, \mathbb{Q}^2) = \int_1^0 dz \int d^2 \mathbf{r} |\Psi_{\gamma^*}^{L,T}(z, \mathbf{r})|^2 \sigma_{\mathsf{DP}}(\mathbf{r}, \ldots)$$

- $|\Psi_{L,T}^{\gamma \to q\overline{q}}(z, r)|^2 = Betragsquadrat der Wellenfunktion eines longitudinalen (L) bzw. trans$ versalen (T) Photons, berechenbar in QCD -Störungstheorie.
- $\sigma_{\text{DP}}(\mathbf{r}, \ldots) = (q\bar{q})$ -Farbdipol-P Wirkungsquerschnitt. Enthält die wesentlichen nichtperturbativen Beiträge (Proton!)

• Einfachster Zugang im Rahmen der QCD -Störungstheorie: ($r^2 \sim 1/Q^2$ klein) Zweigluonenaustausch [Frankfurt et al '93]:

$$\mathcal{Q}_{\mathsf{Db}}(\mathbf{L}, \mathbf{X}) = \frac{3}{\mathcal{L}_{\mathbf{X}}} \mathcal{O}_{\mathbf{x}} \mathbf{X} \mathbf{g} \left(\mathbf{X}, \frac{\mathbf{r}_{\mathbf{X}}}{\mathbf{X}} \right) \mathbf{P}^{\mathbf{2}} + \mathcal{O}(\mathbf{r}^{\mathbf{T}})$$

 $\sigma_{\text{DP}}(\mathbf{r}, x)$ zeigt "Farbtransparenz" d.h. $\sigma_{\text{DP}} \to 0$ für $\mathbf{r} \to 0$, Anstieg mit der Fläche $\pi \mathbf{r}^2$ des Dipols.

- **Erwartung**: Wenn r oberhalb der Saturationsskala $R_{Sat}(x) \sim \frac{1}{Q_{Sat}(x)}$, Anstieg in r flacht aus und σ_{DP} strebt konstantem Grenzwert zu
- Sehr erfolgreiche, ökonomische Modelle mit Saturation, z.B. [Golec-Biernat & Wüsthoff, '99],
 Deschreiben die exp. Daten äußerst effizient.

 \bullet Transversale Ausdehnung des $q\bar{q}$ -Farbdipols: \bullet

Scharf-definierte Ausdehnung des Instantons im Hintergrund:

(.gi] nenoitelumizettersimulationen (Fig.) \Rightarrow 0.5 dermi \Rightarrow 0.5 dermi

Frage: "Saturierende" geometrische Form?

- Fläche des Farbdipols Fläche des Instantons, während für ∞
- $\boldsymbol{\iota} \lesssim \langle \boldsymbol{b} \rangle$: $\boldsymbol{\Omega}^{\mathrm{Db}}_{(\boldsymbol{I})}(\boldsymbol{\iota}, \cdots) \sim \boldsymbol{\mu}_{\boldsymbol{\Sigma}}$ ∞ $\mathbf{L} \lesssim \langle \mathbf{b} \rangle$: $\mathbf{Q}_{\mathrm{Db}}(\mathbf{L}, \dots) \sim \mathbf{u} \langle \mathbf{b} \rangle^{2}$
- Start: Große \mathbb{Q}^2 & Schnitte \Rightarrow I-Störungstheorie strikt gültig \Rightarrow
- ins Farbdipol Bild [Moch, Ringwald & Schrempp, Nucl. Phys. B '97; Ringwald & Schrempp, Phys. Lett. B '98], • Transformation unserer Resultate für I-induzierte, tiefunelastische eP Prozesse
- von Gitterersimulationen Gitter Beschränkungen/Schnitte überflüssig! Vorsichtige Erhöhung der Farbdipol-Größe r in Richtung hadronischer Dimensionen mit Hilfe.

[im191] q sessond-notnstan

G.0

NKOCD

 $\frac{d n_{I+\bar{I}}}{d^4 x d\rho}$

07

09

fermi⁻⁵

• Einfachster, **I**-induzierter Prozeß
$$\gamma^* + g \rightleftharpoons \overline{q_R} + \overline{q_R}$$

 $\diamond \text{ Ausgangspunkt: [Moch, Ringwald & Schrempp, Nucl. Phys. B507 (1997) 134]} \qquad \diamond \mathbb{A}^{1,m}_{L,T}(y,t,Q^2) = \int_x^1 \frac{dy}{y} \left(\frac{x}{y}\right) g\left(\frac{x}{y},\mu^2\right) \int dt \frac{d\delta^{\gamma,\frac{9}{2}}}{dt}(y,t,Q^2)$

$$Q^{2} = \left\{ Q^{2}, -t, -u \right\} \text{ "grob"}: \text{z.B.} \left[\underbrace{\frac{d}{\delta}}{dt} \underbrace{\frac{d}{\delta}}{dt$$

 \diamond Integral $\mathcal{R}(\mathcal{Q}) = \int_{\infty}^{0} d\rho D(\rho) \rho^5 (\mathcal{Q}\rho) \mathsf{K}_1(\mathcal{Q}\rho)$ Schlüssel zur Fortsetzung zu kleineren \mathcal{Q}

 \diamond In I-Störungstheorie, I-**Größenverteilung**, $D(\rho) = D_{I-pert.}(\rho) \propto \rho^{6-\frac{2}{3}n_f}$, bekannt ['t Hooft '76] aber nur gültig für $Q \Rightarrow 0$!

 \diamond Für hinreichend große Q unterdrückt $(Q\rho) R_1(Q\rho) \sim e^{-Q\rho}$ große Instantonen $\Rightarrow \mathcal{R}(Q)$ endlich und I-Störungstheorie anwendbar!

 $\diamond \text{ Strategie: } D_{\mathbf{I}-\mathsf{pert.}} \Rightarrow D_{\mathsf{Gitter}} \Rightarrow (0) = \int_0^\infty d\rho \ D_{\mathsf{Gitter}}(\rho) \rho^5 \approx 0.3 \text{ fermi endlich}$

$$\mathsf{Mit Variablentransformation} \qquad (y, t) \Leftrightarrow \underbrace{(y, t)}_{\mathsf{und 2d-Fouriertransformation}} \land \\ \end{split}$$

• erhält man Darstellung entsprechend dem Farbdipol Bild:

$$\int_{\mathbb{T}}^{x} \frac{\hbar}{q \, \hbar} \{ \dots \} \int d\mathbf{r} \frac{d\mathbf{r}}{q \, \mathfrak{o}_{\mathcal{I}_{x}^{+} \frac{\partial}{\partial}}} \Rightarrow \int d\mathbf{r} d\mathbf{r} \int d\mathbf{r}_{\mathbf{r}} \mathbf{h} \left(| \boldsymbol{\Lambda}_{\boldsymbol{\Gamma}^{+} \mathbf{I}} |_{\mathbf{r}} \, \boldsymbol{\sigma}_{(\mathbf{I})}^{\mathrm{Db}} \right)$$

: imposible to the intuitive two terms of the terms of terms

$$(\text{mit } \hat{Q} = \sqrt{z(1-z)} Q)$$

$$\times \left\{ \int_{0}^{\infty} d\rho D_{\text{Gitter}}(\rho) \rho^{5} \left(\frac{1}{d_{r}^{2}} \left(2_{r}^{n} \frac{1}{\delta_{r}} x \, g(x, \mu^{2}) \frac{\pi^{8}}{\delta_{r}} x \, g(x, \mu^{2}) \frac{\pi^{8}}{12} \right) \right\} \times \left\{ \int_{0}^{\infty} d\rho D_{\text{Gitter}}(\rho) \rho^{5} \left(\frac{-\frac{d}{d_{r}^{2}} \left(2_{r}^{n} \frac{X_{1}(\hat{Q}\sqrt{r^{2}+\rho^{2}/2})}{\hat{Q}\sqrt{r^{2}+\rho^{2}/2}} \right)}{K_{0}(\hat{Q}r)} - (z \leftrightarrow 1-z) \right) \right\}^{2},$$

$$Mit - \frac{d}{d_{r}^{2}} \left(2_{r}^{n} \frac{X_{1}(\hat{Q}\sqrt{r^{2}+\rho^{2}/2})}{\hat{Q}\sqrt{r^{2}+\rho^{2}/2}} \right) = \left\{ \frac{-K_{1}(\hat{Q}\rho\sqrt{r^{2}})}{(2\rho\sqrt{1-z})} \prod_{i=1}^{n} \frac{r^{2}}{\rho^{2}/z} \otimes 1 \right\}^{2},$$

$$(2r)^{2} \frac{K_{1}(\hat{Q}\sqrt{r^{2}+\rho^{2}/2})}{\hat{Q}\sqrt{r^{2}+\rho^{2}/2}} \right) \approx \left\{ \frac{-K_{0}(\hat{Q}r)}{K_{0}(\hat{Q}r)} \prod_{i=1}^{n} \frac{r^{2}}{\rho^{2}/z} \otimes 1 \right\}^{2}$$

$$(2r)^{2} \frac{r^{2}}{\hat{Q}\sqrt{r^{2}+\rho^{2}/2}} \sum_{i=1}^{n} \frac{1}{\rho^{2}/2} \sum$$

$$\frac{\sqrt{p}^{2}}{\langle p \rangle^{2}} \ll 1; \quad \left(\mid \Psi_{L,T} \mid^{2} \sigma_{\text{DP}} \right)^{(I)} = \mathcal{O}(1) \quad \text{aber winzig} \quad (\text{in pQCD} : \left(\mid \Psi_{L} \mid^{2} + \mid \Psi_{T} \mid^{2} \right) \sigma_{\text{DP}} = \mathcal{O}(1))$$

$$\frac{\sqrt{p}^{2}}{\sqrt{p}} \gg 1; \quad \left(\mid \Psi_{L,T} \mid^{2} \sigma_{\text{DP}} \right)^{(I)} \approx \mid \Psi_{P,T} \mid^{2} \left(1^{2} \frac{1}{\alpha_{s}} x \, g(x, \mu^{2}) \frac{\pi^{8}}{12} \left(\int_{0}^{\infty} d\rho D_{\text{Gitter}}(\rho) \rho^{5} \right)^{2} \right)^{2}$$

- Realistischer Prozess: $\gamma^* + g \stackrel{(I)}{\rightleftharpoons} n \stackrel{(I)}{\Leftarrow} n + (q_R + \overline{q}_R) +$ Gluonen
- $(*p + \overline{p} \leftarrow \gamma \text{ noiseiscossid noton Photon Dissosiation } \gamma \rightarrow \overline{q} + q^*) \land (\circ ff \text{shell-Quark } q^* \text{ aus Photon Dissosiation } \gamma \rightarrow \overline{q} + q^*)$
- A state of the state of

♦ Variablen: Energie: $E = \sqrt{(q'+p)^2}$, q^* -Virtualität: Q^{'2} = $-q^{'2}$ ♦ Schen Instantonen und Antiinstantonen:

Weiterer, wichtiger Baustein des *I*-Kalküls: $I\overline{I}$ -Wechselwirkung $\Omega_{Valley}^{I\overline{I}}(R,...)$: $-1 \leq \Omega_{Valley}^{I\overline{I}}(R,...) \leq 0$, analytisch bekannt! [Khoze & Ringwald '91; Verbaarschot'91] I-Störungstheorie: formal gültig für $\sqrt{R^2} \gg \sqrt{p\overline{p}}$ $\forall alley Methode könnte viel weiter gelten, typisch bis$ *I* $und <math>\overline{I}$ sich berühren? $\Leftrightarrow \Omega_{Valley}^{I\overline{I}} \approx -\frac{1}{2}$ oder $\sqrt{R^2} \approx \sqrt{p\overline{p}} \in Gittersimulationen!$

- Ausgangspunkt: I-Störungstheorie 🕀 Valley-Methode [Ringwald & F. Sch., '98], E klein "Beson Prozedia" mus golene eigetente finitachsten Prozeß"
- $O_{\mathrm{DP}}^{\mathrm{DP}}$ involviert nun zusätzliche Integrationen über \overline{H} und $\overline{R}_{\mu} \in \mathbf{Gluonen}$:
- $I(\frac{\Omega}{M})_{\mu}^{*}$ in the set of the set - Im interessanten Bereich weicherer Impulsüberträge Q'^2 gilt $\rho \approx \langle \rho \rangle$ und R_{μ} -Integral
- Masse M_{Sph} des QCD -Sphalerons als Skala für die I-Subprozess Energie El
- $|V_{\rm Sph}| \equiv |V_{\rm Sph}|$ tim euseV- QCD netrednoschen benachbarten QCD -Vacua mit = 1.5
- $M_{\mathsf{Sph}} \approx \frac{3\pi}{4} \frac{1}{\alpha_s} \frac{1}{\alpha_s} \frac{1}{\alpha_s} \approx 2 3$ GeV [Ringwald & F. Sch. '94; Diakonov & Petrov '94]

- $_{\text{Ad}} M \approx \mathbf{A}$ isd mumixeM –
- $\Omega_{\text{valley}}^{II}$ gültig bis zum QCD -Sphaleron

. ▼ ■

 $\Omega_{\rm II}^{\rm valley}$

II-distance distribution in vacuum

Lattice data: UKQCD

 $A_{\text{Bead}} q \approx \text{mircl} 0 \approx q - \frac{1}{2} h \cdot \hat{L}$

S.1

• Mit Endzustands-Gluonen: E, R_{μ} -Integrale dominiert durch QCD -Sphaleron Peak, und

$$\Rightarrow \ \sigma_{(\mathbf{I})}^{\mathrm{DP}} \overset{\mathcal{O}}{\to} \infty \ \pi \left(\int d\rho \ D_{\mathrm{Gitter}}(\rho) \rho^{5} \right)^{2} = \pi \mathcal{R}(\mathbf{0})^{2}$$

sodaß der Saturations-Grenzwert des "Farbglas"-Kondensats dem QCD - Sphaleron
 entspricht, einem klassischen, kohärenten Multi-Gluon Zustand!

BaussefnemmesuS. **S**

- Der bei HERA entdeckte starke Anstieg der Gluondichte für kleine Bjorken-x, machte ein neuartiges, hochinteressantes Regime der QCD zugänglich
- Trotz $\alpha_s \ll 1$ stößt die QCD -Störungstheorie hier an ihre Grenzen. Nicht-perturbative, klassische Ansätze starker Gluonfelder mit hoher Besetzungszahl im Saturationsgrenzwert vielversprechend: Instantonen.
- Farbdipol-Bild als intuitiver Rahmen beim Studium des Saturationsproblems
- Ergebnisse des Instantonzugangs: Saturation im Instanton-Hintergrund!
- imrəf $\delta.0 \sim 90$ Saturationstall ədəsitəri Askala $\langle \rho \rangle$ tim $\langle \frac{1}{\langle \rho \rangle} \sim \frac{1}{\beta s c}$ bisk anton-Größe ~ 0.5 fermi
- proportional der Fläche $\pi \langle \rho \rangle^2$ des Instantons im Hintergrund!
- ♦ "Farbtransparenz" $\propto \pi r^2$ (Dipolfläche) für $r \to 0$, analog QCD -Störungstheorie.
- Subglas-Kondensat" ⇔ QCD-Sphaleron, kohärenter klassischer Multi-Gluonzustand!
- Offen & interessant: x-Abhängigkeit der Saturationsskala $Q_{\mathrm{Sat}}(x)$