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Abstract

We present our results for inclusive instanton-induced cross-sections in deep-inelastic scattering, paying in particular
attention to the residual renormalization-scale dependencies. A ‘‘fiducial’’ kinematical region in the relevant Bjorken
variables is extracted from recent lattice simulations of QCD. The integrated instanton-contribution to the cross-section at

Ž .HERA corresponding to this fiducial region is surprisingly large: It is in the OO 100 pb range, and thus remarkably close to
the recently published experimental upper bounds. q 1998 Elsevier Science B.V. All rights reserved.

PACS: 11.15.Kc; 12.38.Lg; 13.60.Hb
Keywords: Instanton; Chirality violation; Deep-inelastic scattering; Cross-section

w x1. Instantons 1 are non-perturbative gauge field fluctuations. They describe tunnelling transitions between
degenerate vacua of different topology in non-abelian gauge theories like QCD. Correspondingly, instantons
and anti-instantons carry an integer topologigal charge Qs1 and Qsy1, respectively, while the usual
perturbation theory resides in the sector Qs0. Unlike the latter, instantons induce processes which violate

Ž . Ž . w xchirality Q in massless QCD, in accord 2 with the general chiral-anomaly relation. An experimental5

discovery of instanton-induced events would clearly be of basic significance.
The deep-inelastic regime is distinguished by the fact that here hard instanton-induced processes may both be

w x w xcalculated 3,4 within instanton-perturbation theory and possibly detected experimentally 5–8 . As a key
w x Ž .feature it has recently been shown 4 , that in deep-inelastic scattering DIS the generic hard scale QQ cuts off

instantons with large size r4QQy1, over which one has no control theoretically.
w xIn continuation of Ref. 4 , where the amplitudes and cross-sections of exclusiÕe partonic subprocesses

relevant for DIS were calculated, we summarize in the present letter the results of our finalized calculations of
Ž .the various inclusiÕe instanton-induced cross-sections Sections 2 and 4 . A detailed account of our calculations

w x w xwill be published elsewhere 9 . The essential new aspect as compared to our first estimates 7 is the strong
reduction of the residual dependence on the renormalization scale resulting from a recalculation based on an

w ximproved instanton density 10 , which is renormalization-group invariant at the two-loop level.

0370-2693r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
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Fig. 1. The leading instanton-induced process in the DIS regime of e" P scattering.

There has been much recent activity in the lattice community to ‘‘measure’’ topological fluctuations in lattice
w xsimulations 11 of QCD. Being independent of perturbation theory, such simulations provide ‘‘snapshots’’ of

the QCD vacuum including all possible non-perturbative features like instantons. They also provide crucial
support for important prerequisites of our calculations in DIS, like the validity of instanton-perturbation theory

Ž .and the dilute instanton-gas approximation for small instantons of size rFOO 0.3 fm. As a second main point
Ž .of this letter Section 3 , these lattice constraints will be exploited and translated into a ‘‘fiducial’’ kinematical

region for our predictions of the instanton-induced DIS cross-section based on instanton-perturbation theory.

Ž . "2. The leading instanton I -induced process in the DIS regime of e P scattering for large photon virtuality
Q2 is illustrated in Fig. 1. The dashed box emphasizes the so-called instanton-subprocess with its own Bjorken
variables,

QX 2
X 2 X 2 XQ syq G0; x s F1. 1Ž .X2 pPq

w x w x 1As can be inferred from Ref. 7 and will be detailed in Ref. 9 , the inclusive I-induced cross-section in
" Ž .unpolarized deep-inelastic e P scattering can be expressed in the Bjorken limit as

ds Ž I . d LL Ž I .
Xe P p p X X 2Ž I .

X, s x ,Q , 2Ž .Ž .Ý p pX X 2 X X 2
Xdx dQ dx dQp , p

X X X Ž .where p sq ,q denotes the virtual anti- quarks entering the I-subprocess from the photon side and psq,q, g
Ž . Ž I . X

Xdenotes the target partons c.f. Fig. 1 . The differential luminosity d LL , accounting for the number of p pp p
w x � 4collisions per eP collision, has a convolution-like structure 5 , involving x , y , x -integrations over theBj Bj

Ž . ) Ž . w x Ž I .Ž X .X
)target-parton density, f x rx, . . . , the g -flux, P y , and the known 7,9 flux P xrx , . . . of thep Bj g Bj p

parton pX in the I-background. We shall display the explicit form of the differential luminosity in Section 4.
Ž . Ž I . w xXThe simple relation 2 between ds and s , derived within I-perturbation theory 7,9 in the Bjorkene P p p

limit, is actually much less obvious than an inspection of the grossly oversimplified Fig. 1 may suggest. The
.derivation proceeds in two steps: i Using the Feynman rules of I-perturbation theory in momentum space, one

1 Ž . Ž . Ž . Ž .A sum over I-induced ^Q s2n and anti-instanton I -induced ^Q sy2n processes is always implied by the superscript I5 f 5 f

at cross-sections.
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Ž .calculates the manifestly gauge invariant inclusive eP cross-section, with the current quark being not a free
Ž . w x .parton, but rather described by the complicated quark propagator in the I-background as in Ref. 4 . ii One

Ž . Ž I .
Xindependently writes down the gauge invariant expression for the total cross-section s with an off-shellp p

external parton pX. In the Bjorken limit, when certain non-planar contributions may be neglected, one then finds
. . Ž .by comparison of i and ii the form 2 of the inclusive I-induced eP cross-section along with the explicit

expression for the flux-factor P X
Ž I ..p

w xWhile a more detailed description of this rather involved calculation has to be deferred elsewhere 9 , let us
Ž I .Ž X X 2 .Xsummarize next the state of the art evaluation of the I-subprocess total cross-section s x ,Q , whichp p

contains most of the crucial instanton-dynamics.
Ž .We start with the I-subprocess total cross-sections here only for the dominating case of a target gluon in a

2w x Ž .form 7,9 still exhibiting the complicated integrations over collective coordinates I-sizes r,r, . . . ,

R2 r
` ` b D V , X X0 1Ž I . 4 2 ž /rr rXs , dr dr d R D r ;m D r ;m rrm K Q r K Q rŽ . Ž . Ž .Ž . Ž .H H Hp g r r r 1 1

0 0

=

7r2

24p R r 1 a m 6Ž .s rXexp i pqq PR exp y V ,Ž . 2ž / 'a m rr r 4p R rŽ . 9 ps r � 0
Ṽ ,ž /rr r

=

2 n y1f X 4 X2 5R r 2 p Q pPqŽ .9r2
rr v , , 3Ž . Ž .3r22ž / Xrr r 3 a mŽ .s r pqqŽ .Ž .

X X X Ž .where p sq ,q . The most important quantities entering Eq. 3 are:
( ) w xØ The I-density D r ,m , which has the general form 2,12r

6 b D yD0 1 22p 2p r mŽ .r
D r ,m sd exp y , 4Ž . Ž .r 5ž / ž /a m a m rŽ . Ž .s r s r

w xwith m denoting the renormalization scale and 10r

b a m a mŽ . Ž .1 s r s r
D '1q ; D '12 b , 5Ž .1 2 0

b 4p 4p0

2 38in terms of the QCD b-function coefficients, b s11y n ; b s102y n . The power b D yD makes0 f 1 f 0 1 23 3

w x Ž . Ž 2 .the I-density renormalization-group invariant at the two-loop level 10 , 1rD d Drdm sOO a , in contrastr s
w x Ž . Ž .to the original one-loop expression 2 , corresponding to D s1 and D s0, with 1rD d Drdm sOO a .1 2 r s

w x w xThe constant d is scheme-dependent; in the MS-scheme it is given by 13 dsC exp y3 C qn C r2,1 2 f 3

with C s0.46628, C s1.51137, and C s0.29175.1 2 3

2 ˜Ž . Ž .For brevity, we display the cross-section 3 already after the saddle-point integration over the I-colour orientations. The function V ,
whose explicit form will be specified below, accounts for that.
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Ž .Note that the large, positive power of r in the I-density 4 would make the integrations over the I-sizes in
Ž .Eq. 3 infrared divergent without

X X X X( ( )) Ž .Ø the form factors K Q r r : For large Q r r , the virtuality Q of the internal quark p in Fig. 1 provides1
Ž X . Ž X . w xan exponential cut-off, K Q r Aexp yQ r , in the integrations over the I-sizes 4 . These form factors1

) w x )where shown to arise naturally in step i above, which is manifestly gauge invariant 4 . In step ii one has to
X X w xadopt a gauge-invariant definition of the p p cross-section, since the incoming parton p is off-shell 14 .

w xThen one obtains exactly the Bessel-K form factors 9 , unlike naive, not manifestly gauge-invariant
definitions which lead in addition to these well-defined contributions to unphysical ones suffering from

w xinfrared divergent I-size integrations 15,16 .
Ž . Ž .Ø The functions V and v along with the integration over R summarize the effects of final-state gluons Vm

Ž .and final-state quarks v . The function V , appearing in the exponent with a large numerical coefficient,
4pra , and v, occurring with a high power, 2n y1, call for a precise evaluation. Hence, let us turn next tos f

describing their state-of-the-art evaluation.
It is very instructive to consider two alternative interpretations of the functions V , v, and the integration

variable R .m

Ø Total cross-section Õia summation of exclusiÕe cross-sections:
This is the cleanest and most straightforward method to arrive at the total cross-section. In this case one starts
with the familiar representation of the d Ž4.-function associated with energy-momentum conservation,

4 X XŽ4. 42 p d pqq y k s d R exp i pqq y k PR . 6Ž . Ž .Ý ÝHi iž / ž /
i i

The phase-space integration over the final-state gluonsrquarks is then performed by means of the basic
formula

d4k 1 1i Žq. 2 w xd k exp yi k PR s , 7Ž .Ž .H i i3 2 2yR q ieR2 p 2pŽ . Ž . 0

w xwith the help of which one finds 17

2 32R r rr rr r r
V , sy6 q12 q q . . . 8Ž .2 2 ž /ž / ž /ž /rr r r ryR q ieR yR q ieR0 0

3r22R r rr
v , s4 q . . . . 9Ž .2ž /ž /rr r yR q ieR0

Ž .The interpretation of the various terms contributing to the perturbative expansion of V in Eq. 8 is
Ž .illustrated in Fig. 2 left : The first term takes into account the summation and exponentiation of the

leading-order gluon emission, whereas the second term originates from the summation and exponentiation of
interference terms between the leading-order gluon emission and the gluon-propagator correction. The first

Ž .term contributing to the perturbative expansion of v in Eq. 9 just corresponds to the leading-order quark
emission.
In summary, the perturbative approach based on the exclusive amplitudes, as calculated within I-perturbation

2theory, yields the essential functions V and v as asymptotic expansions for small rrrR . Since r and r
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Fig. 2. Left: Graphical interpretation of an exclusive I-induced qX g cross-section in terms of perturbation theory in the I-background.
Ž . Ž .Curly lines ending at blobs denote LSZ-amputated quark zero modes classical I-gauge fields . Curly lines connected by an ellipse denote
LSZ-amputated gauge-field propagators in the I-background. Right: The II-valley action corresponding to the most attractive II-colour
orientation.

X X Žare conjugate to the virtuality Q and R is conjugate to the total momentum of the I-subprocess, pqq , c.f.
Ž . .Eq. 3 and Fig. 1 , we expect qualitatively

2 2X X X X 2 X2 2r;r;1rQ and R ;1r pqq ´ rrrR ; pqq rQ s1rx y1. 10Ž . Ž . Ž .

Thus, strict I-perturbation theory for the total cross-section is only applicable for not too small xX.
Ø Total cross-section Õia optical theorem and II-Õalley method:

w xIn this approach, one evaluates 18 the total cross-section from the imaginary part of the forward elastic
Ž II .Ž .scattering amplitude induced by the instanton-anti-instanton II -valley background, A . In this case, Rm m

stands for the separation between I and I, and V is identified with the interaction between I and I,

Ž II .V,S j y1. 11Ž . Ž .

aŽ II . Ž II .s w xIn the valley approximation, the II-valley action, S ' S A , is restricted by conformal invariance tom4p

w xdepend only on the ‘‘conformal separation’’ 19

2yR q ieR r r0
j' q q , 12Ž .

rr r r

w x Ž Ž ..and its functional form is explicitly known 15,20 Fig. 2 right .
Ž Ž ..Note that for all separations j , the interaction between I and I is attractiÕe c.f. Fig. 2 right : The

II-valley corresponds to a configuration of steepest descent interpolating between an infinitely separated IrI
pair and a strongly overlapping one, annihilating to the perturbative vacuum.
Analogously, the function v is now identified with the fermionic oÕerlap integral for which an integral

w xrepresentation was found in Ref. 21 , which we were able to perform analytically,

3 56B , 1Ž .2 2 3 3 1 2(v j s F , ;4;1y ; z' jq j y4 . 13Ž . Ž .ž /2 1 2 2 23r2 2ž /z z
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˜Finally, the function V arising from the integration over the relative II-colour orientations has been
w x 3estimated in Ref. 16 by assuming for simplicity an orientation dependence of the valley action

w xcorresponding to a dipole-dipole interaction 22 ,

dV jŽ .
Ṽ j ,j . 14Ž . Ž .

dj

Ž . Ž .The leading terms in the asymptotic expansions of the II-interaction 11 and the fermionic overlap 13 for
large conformal separation,

6 4
4 7r2V j sy qOO ln j rj , v j s qOO ln j rj , 15Ž . Ž . . Ž . Ž . Ž .Ž . Ž .2 3r2j j

2Ž . Ž .exactly reproduce the known perturbative results 8 and 9 for small rrrR . This illustrates the power of
the II-valley method to effectively sum up the gluonic final-state tree-graph corrections to the leading

4 w xsemi-classical result 17 .
˜ Ž . Ž . Ž .We shall thus take the valley expressions for V , v and V , Eqs. 11 , 13 and 14 , to smoothly extrapolate

somewhat beyond strict I-perturbation theory.
Let us add, however, that the full content of the valley approximation is not essential in this context. It is

mostly the shift in the expansion variable

rr rr 1
´ ' 16Ž .2 2 2 2 jyR q ieR yR q ieR qr qr0 0

Ž . Ž .making the leading terms 15 qualitatively adequate down to fairly small j R3 , in contrast to the strict
Ž . Ž .I-perturbative expansions 8 and 9 .

Ž .The collective coordinate integration in the cross-section 3 is perfectly suited for a saddle-point eÕaluation.
Ž .To this end, we collect the most-relevant factors in Eq. 3 in the following effective exponent,

4p
X X 2 Ž II . 2yG' i pqq PRy Q rqr y yD b ln rrm S j yD ln rrm . 17Ž . Ž . Ž . Ž .Ž . Ž .1 0 r 2 rž /a mŽ .s r

Ž . Ž X . Xw xIn arriving at Eq. 17 we have used the asymptotic form K Q r Aexp yQ r for the Bessel-K functions,1
XŽ . Ž . Ž .anticipating that, for small a m , the dominant contribution to Eq. 3 will come from the region Q r r 41.s r

Note that the parameters D and D allow us to trace the impact of the two-loop improvement of the I-density,1 2
w xwith the one-loop expression 2 corresponding to D s1 and D s0. This is to be contrasted with previous1 2

w xrelated studies which either ignored the crucial renormalization-scale dependences altogether 15,16 or were
w x Ž Ž . .still too crude for a study of the associated uncertainties 7 c.f. also Fig. 3 left below .

3 w xThe saddle-point corresponds to the most-attractive II-orientation. We have checked 9 that taking into account the exact orientation
w xdependence of the valley action 20 gives numerically a very similar result.

4 w xSome initial-state and initial-state - final-state corrections might exponentiate as well 23 . These are not taken into account by the
valley action.
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X Ž .The corresponding saddle-point in R , r and r is most easily found in the p g centre-of-mass c.m.m
) ) ) ) ) ) )Ž .'system. One finds R s yi r j y2 ,0 and r sr , where j and r are the solutions of them

following saddle-point equations,
X1yx( Ž II .X1 4p dS jŽ .x )X

) )Q r y y2 D b ln r m s0 , 18Ž .Ž .1 0 r
)) ž /2 a m dj' Ž .j y2 s r

X1 1yx
X

) ) Ž II . )'j y2 y1 Q r qD b S j yD s0 . 19Ž . Ž .( X 1 0 2ž /2 x

Ž .Upon evaluating the integrand in Eq. 3 at the saddle-point and taking into account the integration over the
Ž . 5Gaussian fluctuations about the saddle-point , we may finally express the cross-section entirely in terms of
Õ) 'QX

r ) and j ) ,
7r2

)'12 j y 2 D bŽ . 1 0X 2 Ž I . 2 15r2 ) ) 2 )˜ ˜XQ s s d p j q 2 Õ q 4S S y 2 ÕŽ .Ž .Ž .p g
)16 ž /˜j2 D SŽ .

3
) ) 5j y 2 ÕŽ .2n y1

) f=v jŽ .
˜D SŽ .29r2 1) ) ) ) )˜ ˜ ˜ ˜ ˜ ˜'Õ y S j q 2 Õ y 4S S y Õ y 2 D S q S S y Õ D lnŽ . Ž . Ž .Ž . Ž .2

)( ž /ž /j y 2'
19r2

)4p 4p Õ mrŽ II . ) ˜= exp y S j y 2 1 y ln S ,Ž . Xž /ž /ž /Ž . Ž .a m a m Qs r s r

X X(32 a m 1 x 1yxŽ . Ž .s rX 2 X 2Ž I . Ž I . Ž I . Ž I .
X X X X XQ s s Q s , s s 1yd s , 20Ž .Ž .q q p g q q q q q q

) )3 4p Õ v jŽ .
where we have introduced the shorthands

d
) Ž II . ) ) )S̃ j 'D b S j yD , D f j ' f j . 21Ž . Ž . Ž . Ž . Ž .Ž .1 0 2

)dln j y2Ž .
X Ž .For completeness, we have listed also the corresponding expression for the q q cross-section 21 .

Ž . Ž . w xWhat remains is to solve the saddle-point equations, 18 and 19 . An analytical solution 9 in the
Ž X . X X Ž .asymptotic regime a Q ™0, x and m rQ fixed, confirms our qualitative expectations 10 . In particulars r

X
) ) )' 'one finds, asymptotically, R rr s j y2 ™2r 1rx y1 . However, for experimentally accessible values

of the virtuality QX, the corrections to the asymptotic result are quite large and the corresponding analytical
expressions complicated. Hence, we only present here the results corresponding to a numerical solution of the
saddle-point equations.

Ž .In Fig. 3, we display the residual renormalization-scale dependencies of the I-subprocess cross-sections 20
Ž . Xand 21 over a large range of m rQ . Apparently, we have achieved great progress in stability and hencer

Ž . Ž .predictivity by using the two-loop renormalization-group invariant form of the I-density D r,m from Eqs. 4r
Ž .and 5 : The residual dependence on the renormalization scale m turns out to be strongly reduced as comparedr

Ž .to the one-loop case D s1,D s0 .1 2

5 Ž .We have checked that our result for the Gaussian integrations coincides, for the one-loop case ^ s1,^ s0 , with the1 2
w xcorresponding result quoted in Ref. 16 .
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Ž . Ž . Ž .Fig. 3. Renormalization-scale dependences of the I-subprocess cross-sections for a target gluon, Eq. 20 , left and a target quark, Eq. 21 ,
both for n s3.f

w x ² : X Ž . XIntuitively one may expect 4,16,3 m ;1r r ;Q rb sOO 0.1 Q . Indeed, this guess turns out to matchr 0
X Ž I . Ž Ž ..Xquite well our actual choice of the ‘‘best’’ scale, m s0.15 Q , for which Es rEm ,0 c.f. Fig. 3 left . Wer q g r

Ž Ž ..also note that the cross-sections for a target gluon Fig. 3 left are about two orders of magnitudes larger than
Ž Ž ..the cross-sections for a target quark Fig. 3 right . Henceforth, the latter are neglected.

Ž I . X 2 Ž . X
XOur quantitative results on s are shown in detail in Fig. 4, both as functions of Q left and of xq g

Ž . ) Ž . ) ) Ž .right . The dotted curves indicating lines of constant r left and of constant R rr right nicely illustrate
Ž . X 2 X

)
Xthe qualitative relations 10 : For growing Q and fixed x , smaller and smaller instantons, r ;1rQ , are

Ž .probed and the cross-sections decrease rapidly, mainly because of the large powers of r in the I-density 4 . For
X X 2

) )decreasing x and fixed Q , on the other hand, the II-separation R in units of the I-size r decreases and the
cross-section increases dramatically. In the language of the II-valley method the latter originates mainly from
the attractive interaction between instantons and anti-instantons.

Ž .3. We have seen that the collective coordinate integrals in 3 are dominated by a single, calculable
Ž ) ) ) . Ž X X.saddle-point r , R rr , in one-to-one relation to the conjugate momentum variables Q , x . This effective

one-to-one mapping of the conjugate I-variables allows for the following important strategy: We may determine

Ž . X 2 Ž . X Ž .Fig. 4. The instanton-subprocess cross-section 20 , for n s3, both as functions of Q left and x right . The dotted curves are lines off
) ) )Ž . Ž .constant I-size r left and of constant II-separation R in units of the I-size r right .



( )A. Ringwald, F. SchrempprPhysics Letters B 438 1998 217–228 225

quantitatiÕely the range of validity of I-perturbation theory and the dilute I-gas approximation in the instanton
Ž Ž . . Ž .collective coordinates rFr , RrrG Rrr from recent non-perturbative lattice simulations of QCDmax min

and translate the resulting constraints via the mentioned one-to-one relations into a ‘‘fiducial’’ kinematical
Ž X X X X .region Q GQ , x Gx .min min

In lattice simulations 4d-Euclidean space-time is made discrete; specifically, the ‘‘data’’ from the UKQCD
w xcollaboration 24 , which we shall use here, involve a lattice spacing as0.055y0.1 fm and a volume

3 w 3 3 x 4Vs l P l s 16 P48y32 P64 a . In principle, such a lattice allows to study the properties of anspace time
Ž . 1r4ensemble of anti- instantons with sizes a-r-V . However, in order to make instanton effects visible, a

Ž .certain ‘‘cooling’’ procedure has to be applied first. It is designed to filter out dominating fluctuations of short
Ž .wavelength OO a , while affecting the topological fluctuations of much longer wavelength r4a comparatively

little. For a discussion of lattice-specific caveats, like possible lattice artefacts and the dependence of results on
w x‘‘cooling’’ etc., see Refs. 11,24 .

Ž Ž .. Ž .The first important quantity of interest, entering I-induced cross-sections c.f. Eq. 3 , is the I-density D r ,
Ž . Ž . 6 Ž .Eq. 4 . This power law, D r Ar , of I-perturbation theory is confronted in Fig. 5 left with recentN n s0f

lattice ‘‘data’’, which strongly suggests semi-classical I-perturbation theory to be valid for rQr ,0.3 fm.max
2 2Ž .Next, consider the square of the total topological charge, Q s nyn , along with the total number of charges,

N snqn. For a dilute gas, the number fluctuations are poissonian and correlations among the n and ntot
² 2 : Ž .distributions absent, implying Q rN s1. From Fig. 5 right , it is apparent that this relation, characterizingtot

the validity of the dilute I-gas approximation, is well satisfied for sufficiently small instantons. Again, we find
r ,0.3 fm, quite independent of the number of cooling sweeps. For increasing r R0.3 fm, the ratiomax max
² 2 :Q rN rapidly and strongly deviates from one.tot

Crucial information about a second quantity of interest, the II-interaction, may be obtained as well from the
2w x Ž .lattice 11,24 . Quite generally, it is found that the semi-classical attraction for large R r rr turns into a

6 2² Ž .: Ž .non-perturbative repulsion for smaller separations in units of the sizes, such that in vacuum R r rr sOO 1 .
Thus it seems a reasonable extrapolation to use the attractive, semi-classical valley result for the II-interaction

Ž . Ž ) ) .V , Eq. 11 , down to a minimum conformal separation j ,3, corresponding to R rr ,1.min min

Finally, by means of the discussed saddle-point translation, these lattice constraints may be turned into a
Ž .‘‘fiducial’’ kinematical region for our cross-section predictions in DIS c.f. Fig. 4 ,

r ) F r ) , 0.3 fm;¶max X XQ G Q , 8 GeV;min) ) •R R ´ 22Ž .X X½ x G x , 0.35.G , 1 min
) ) ßž /r r min

w xUnlike DIS, where only small instantons are probed, in the I-liquid model of Ref. 27 more emphasis is
placed on the physics associated with larger instantons. For I-ensembles including also larger I-sizes R0.3 fm,

w xthe various recent lattice results 11,24–26 do not, however, unanimously support the liquid picture.

Ž . Ž X X.4. Experimentally, in deep inelastic eP scattering at HERA, the cuts 23 must be implemented via a Q , x
w xreconstruction from the final-state momenta and topology 8 , while theoretically, they are incorporated into our

w xI-event generator 6 ‘‘QCDINS 1.6.0’’ and the resulting prediction of the I-induced cross-section in DIS at

6 ² : ² : w x ² Ž .: w x ² Ž .: w xPublished ratios range from R r r ,0.83 24 , Rr r q r ,0.59 25 to Rr r q r ,1 26 .
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Ž . Ž . Ž .Fig. 5. Support for the validity of I-perturbation theory for the I-density D r left and the dilute I-gas approximation right for
w xr-r ,0.3 fm from recent lattice data 24 .max

Ž I . X w xXHERA. The latter is connected to the I-subprocess cross-sections s by the differential p p luminosity 9p p
Ž Ž ..c.f. Eq. 2 ,

Ž I .
X

2
X

2 xX x yd LL 2pa e dx dx dy x xBj maxp p p Bj Bj BjŽ I .
X

)s P y P , . . . f , . . . . 23Ž . Ž .H H H Xg Bj p pX X 2 X 2 ž / ž /S x x y x xdx dQ x x x yBj BjBj min Bj min Bj min

Ž 4 2 . 2
XHere S ,9=10 GeV for HERA denotes the c.m. energy squared of the eP collision, e is the electricp

Ž . 2
)charge squared of the current anti- quark in units of the electric charge squared, e s4pa , and P denotesg

the familiar Weizsacker-Williams-type photon flux,¨
2

)P y s 1q 1yy ry , 24Ž . Ž .Ž .ž /g Bj Bj Bj

2 Ž . Ž .with y sQ r Sx . Furthermore, f x rx, . . . denotes the density of the target parton p in the proton,Bj Bj p Bj

with the dots standing for the factorization scale, and, finally, the factor P X
Ž I . accounts for the flux of virtualp

Ž . X X w x Žanti- quarks p in the I-background entering the I-induced p p-subprocess from the photon side 7,9 c.f. Fig.
.1 ,

x QX x QX 3 x 1 1 QX 2

Ž I . Ž I .
X XP , x , 'P , x , , 1q y y . 25Ž .X X X Xq q 3 2ž / ž / ž /x Q x Q x x x16 p Q

Ž I . ŽThe I-induced cross-section in DIS at HERA, s , subject to kinematical cuts x Gx ; y GyHERA Bj Bj min Bj max Bj
X X X X . Ž . XGy ; x Gx ; Q GQ , is then obtained by integrating Eq. 2 over the appropriate range of x andBj min min min

QX 2.
Let us point out that the factorization of the eP cross-section for fixed xX and QX 2 into a sum of differential

luminosities and I-subprocess cross-sections, is essential for the possibility to place different cuts on the
Bjorken variables of the eP and the pX p system, respectively. Of particular interest is x <xX . Such cutsBj min min

Ž 2 . Ž y3 y3permit to explore essentially the full accessible x , x,Q range in DIS at HERA, down to 10 ,10 ,10Bj
2 . Ž . Ž X X 2 .GeV , say. By placing in this region the additional cuts 23 on x ,Q , I-searches benefit from the high

statistics at small x , while the theoretical control is retained over the I-dynamics.Bj
w x Ž .In Ref. 3 , on the other hand, only the infrared safe pieces of the I-induced contributions to the

Ž I .Ž 2 .parton-structure functions, FF x,Q , were estimated in one step by means of configuration space techniques.2 p

In our momentum space language, the authors have implicitly integrated over QX 2 and xX, with x FxFxX F1.Bj
w x w x XHence, the results of Ref. 3 can only be applied 5 to relatively large x sx ;0.35.Bj min min
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Nevertheless, as an important check of our calculations, we have also calculated the infrared-safe, I-induced
contributions to the parton-structure functions, by integrating our asymptotic results over xX and QX 2 and
retaining only the contributions from the upper QX 2-integration limit AQ2. Within the common range of

w xvalidity 9 of various employed approximations, we find perfect agreement with the gluon-structure function
w xquoted in Ref. 3 .

Fig. 6 displays the finalized I-induced cross-section at HERA, as function of the cuts xX and QX , asmin min

obtained with the new release ‘‘QCDINS 1.6.0’’ of our I-event generator. Only the target gluon contribution has
Ž .been taken into account. For the minimal cuts 23 extracted from lattice simulations, we specifically obtain

s Ž I . xX G0.35,QX G8 GeV ,126 pb; for x G10y3 ; 0.9Gy G0.1. 26Ž . Ž .HERA Bj Bj

Ž . y1Hence, with the total luminosity accumulated by experiments at HERA, LLsOO 80 pb , there should be
Ž 4.already OO 10 I-induced events from this kinematical region on tape. Note also that the cross-section quoted in

Ž . Ž .Eq. 27 corresponds to a fraction of I-induced to normal DIS nDIS events of

s Ž I .
HERAŽ I . y3f s sOO 1 %; for x G10 ; 0.9Gy G0.1. 27Ž . Ž .Bj BjŽnDIS.sHERA

w xThis is remarkably close to the published upper limits on the fraction of I-induced events 29 , which are also on
the one percent level.

There are still a number of significant uncertainties in our cross-section estimate. For fixed QX- and xX-cuts,
one of the dominant uncertainties arises from the experimental uncertainty in the QCD scale L. We used in the

Ž3.two-loop expression for a with n s3 massless flavours the value L s282 MeV, corresponding to thes f MS
Ž4. Ž3.w xcentral value of the DIS average for n s4, L s234 MeV 28 . If we change L within the allowedf MS MS

Ž .range, f"65 MeV, the cross-section 27 varies between 26 pb and 426 pb. Minor uncertainties are associated
Ž .with the residual renormalization-scale dependence c.f. Fig. 3 and the choice of the factorization scale. Upon

Ž .varying the latter by an order of magnitude, the changes are in the OO 20 % range.
By far the most dominant uncertainty arises, however, from the unknown boundaries of the fiducial region in

Ž X X. Ž .x ,Q c.f. Fig. 6 . Here, the constraints from lattice simulations are extremely valuable for making concrete
predictions.

Ž .Fig. 6. Instanton-induced cross-section at HERA n s3 .f
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