FRONTIERS IN CONTEMPORARY PHYSICS - II Vanderbilt, March 5–10 2001 parallel session

Tests of perturbative QCD at HERA

Stefan Schmitt, DESY Hamburg

for the ZEUS and H1 collaborations

- The H1 and ZEUS experiments at HERA
- Inclusive measurements
 - Neutral current (structure functions, QCD interpretation)
 - Charged current (valence quarks)
- Exclusive measurements
 - Event shapes (NLO QCD, power laws)
 - Jets in DIS (α_s , gluon density)

The HERA storage ring at DESY

- 27.6 GeV e^+ or e^- beam
- 920 GeV proton beam
- center-of mass energy $\sqrt{s} = 320 \,\text{GeV}$

\rightarrow HERA performance steadily increasing

The H1 and ZEUS experiments

Omni-purpose experiments, similar to LEP or Tevatron detectors

the H1 detector

LAr calorimeter with high granularity

the ZEUS detector

Compensating high resolution uranium calorimeter

Neutral Current DIS

 $\frac{1}{Q^4}$: propagator F_2 : sum of quark densities xF_3 : valence quark contributions

QCD evolution of the structure function

- At a given Q₀ the structure function F₂(x, Q₀²) is not predicted by QCD
 → measure it
- Once the function $F_2(x, Q_0^2)$ is known, $F_2(x, Q^2)$ is predicted by QCD for $Q^2 > Q_0^2$

NC cross-section and scaling violation

 F_2 rising with Q^2

no Q^2 dependence quark looks like a pointlike object

HERA data: high Q^2 , low x, improved precision: 1% stat., 3% syst.

HERA F_2 QCD fits

NLO QCD fit of H1+BCDMS data: \rightarrow extract gluon-density and α_s

 $\alpha_s = 0.1150 \pm 0.0017(\text{exp}) \stackrel{+0.0009}{_{-0.0005}}(\text{model})$ $\pm 0.005(\text{scale})$

World average: $\alpha_s = 0.1184 \pm 0.0031$

With NNLO calculations: expected uncertainties from choice of remormalisation scale 0.002...0.003

High Q^2 NC cross-section for e^+p and e^-p collisions

At $Q^2 \approx M_Z^2$: Electroweak effects Constructive (e^-p) or destructive $(e^+p) \gamma Z^0$ interference \rightarrow measure $x\tilde{F}_3$ from the difference $\tilde{\sigma}^{\mathrm{NC}}(e^-) - \tilde{\sigma}^{\mathrm{NC}}(e^+)$

Measurement of the structure function xF_3

 \rightarrow Data is in agreement with predictions from QCD fits

9

Interpretation of $x\tilde{F}_3$ results

HERA $x\tilde{F}_3$ is dominated by the γZ interference $x\tilde{F}_3 \approx xF_3^{\gamma Z} = x\sum_q 2e_q a_q (q-\bar{q}) \approx x(\frac{2}{3}u_v + \frac{1}{3}d_v)$ Correction factor applied to νN data

Softer structure function for ep is expected from DGLAP evolution to $Q^2 = 1500 \,\text{GeV}^2$

QCD sum-rule: $\int_0^1 F_3^{\gamma Z} dx \approx 2 \times \frac{2}{3} + 1 \times \frac{1}{3}$ Data: $\int_{0.02}^{0.65} F_3^{\gamma Z} dx = 1.88 \pm 0.35 \text{(stat)} \pm 0.27 \text{(sys)}$ Expected: $\int_{0.02}^{0.65} F_3^{\gamma Z} dx = 1.1$

Charged Current DIS (W^{\pm} exchange)

Cross-section in leading order

$$\sigma_{\rm CC}^{e^+} \propto \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \frac{1}{x} \left[\sum x \bar{u}_i + (1 - y)^2 \sum x d_i\right]$$

$$\sigma_{\rm CC}^{e^-} \propto \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \frac{1}{x} \left[\sum x u_i + (1 - y)^2 \sum x \bar{d}_i\right]$$

 e^+p at large x: mainly d valence quarks e^-p at large x: mainly u valence quarks

Charged current cross-section

e^-p data

e^+p data

 \rightarrow Measure the valence-quark densities $xu_{\rm v}$ and $xd_{\rm v}$ at high Q^2

Valence quark distributions at high Q^2

extracted from e^+p and e^-p NC and CC data

Direct determination of the valence quark densities is in agreement with NLO QCD fit results.

Exclusive measurements

Derive QCD results from the hadronic final state

- look at event shape variables (thrust, ...) describe the data by NLO QCD plus power law corrections
- look at jets compare the data to NLO fits

Event shapes measured in DIS

Mean of event shape variables as a function of Q^2 (Thrust, jet broadening, jet mass, ...)

 \rightarrow The data are consistent with a fit to NLO calculation + power corrections

Event shape fit results

Fit with two free parameters: α_s and non-pert. parameter $\bar{\alpha}_0$

Expect the same fit results for all event shapes

Results: $\bar{\alpha}_0(\mu_I = 2 \,\text{GeV}) \approx 0.5 \pm 0.1$ comparable to e^+e^- results

 α_s compatible with world average

Note: theoretical uncertainties are not shown

Probing QCD with jets in DIS

 \rightarrow Extract α_s and the gluon density N.B.: $\mathcal{O}(\alpha_s^2)$ calculations are used in the fit Two hard scales:

- Momentum transfer Q^2
- Transverse momentum E_T in the jet-jet system

Dijet cross section as a function of Q^2 define jets with transverse energies (Breit-frame) $E_{T,1} > 8 \text{ GeV}, E_{T,2} > 5 \text{ GeV}$

- two-jet rates are described well by NLO fits
- differential jet rate increases with Q^2
- high precision over four orders of magnitude

What about three jets?

Check matrix elements of three-jet LO calculations (Dalitz variables, jet-jet angles, ...)

5 $GeV^2 < Q^2 < 100 GeV^2$

 $\rm M_{3jet}>25~GeV$, $\rm abs(cos\theta_3)<0.6$, $\rm X_3<0.9$

- pure phase-space model is excluded
- consistent with pQCD expectations

Fit the gluon-density from dijet data

By the boson-gluon fusion process the dijet rates are sensitive to the gluon-content of the proton

 \rightarrow excellent agreement with results from global fits to inclusive data (F_2)

Determination of α_s

determine α_s as a function of the scale μ \rightarrow observe the running of $\alpha_s(\mu)$ in a single experiment.

ZEUS: use Q^2 as renormalization scale H1: use $E_{\rm T}$ as normalization scale

Consistent results!

Recent α_s measurements at HERA

 \rightarrow Consistent picture of α_s measurements from HERA.

Summary and outlook

- Inclusive cross-sections probe QCD at very small distances (high Q^2) and at very low x (gluons in the proton) measure gluon density and α_s
- Compare e⁺p and e⁻p measure structure function xF₃ at high Q² → new connection to νN data
- Combining NC and CC data of both polarities
 → valence-quark densities of the proton
- Access pQCD at HERA using jets

 → independent determination of α_s and the gluon density

HERA upgrade (new data by the end of the year)

- expect luminosity increase ×5
 → improve statistically limited analyzes
- polarized lepton beam \rightarrow electroweak physics