

H1: status and prospects

H1 detector status

Recent H1 physics results

Summary and conclusions

H1 detector status

Detector performance after the 2003 shutdown

- ñ Data taking, background conditions
- ñ First Data

Status of repaired/new components

- ñ CIP (Central Inner Prop. Chamber)
- ñ VFPS (Very Forward Proton Spectrometer)
- ñ FTT (Fast Track Trigger)

Stefan Schmitt, University of Zürich

H1 high Q^2 events

PT=50 GeV Q2=6000 GeV2

PT(e)=95 GeV Q2=14000 GeV2

Charged current with 2 jets

First HERA data at high Q² with polarized positron beam

Neutral current

Data taking, background conditions

Data taking has started

Background similar to Feb 2003

Naccum conditioning worked
Background is dominated by p-beamgas
Present limit: 30x60 mA²

Extrapolate CJC currents: factor 3 improved vacuum needed to run at HERA II design currents

First data

D* reconstruction

J/ ψ from e⁺e⁻ and $\mu^+\mu^-$

Tracking detectors

CIP: status after shutdown

Reconstruct vertex position for L1 trigger, seperate ep collisions from background

pointing geometry enables
fast track finding for L1 triggerChamber and readout (optical links, FPGA
based trigger) working well, hit
efficiency close to 100%

CIP vertex trigger is used to trigger ep events and to veto non-ep events from collimators C5a, C5b

Repair was a success — CIP has become a vital part of the H1 trigger

VFPS installation

Very Forward Proton Spectrometer installed in HERA tunnel (at 220 m). Build for precise measurements of diffractive reactions Data taking started last week. Commissioning with proton beam ongoing.

Fast Track Trigger

FTT: reconstruct tracks from 12 layers of CJC wires

Provide Trigger information on

- ñ L1 (2 s): coarse tracks
- ñ L2 (20 s): vertex-fitted tracks
- ñ L3 (100 s): invariant masses

FTT hardware installed, readout working Trigger programming (FPGA, DSP) ongoing

Recent H1 physics results

53 papers sent to EPS 2003 — HERA I data still providing many new results

New results and publications since the last PRC

- p -> Y at high ltl
- DVCS
- Beauty in photoproduction
- NLO treatment of diffractive final states
- Event Shapes in DIS
- Squarks in R-parity violating SUSY
- Generic Search for new physics
- Search for superlight gravitino

- Search for Contact Interactions
- Diffractive J/ψ Production at high ltl
- Multi-electron production
- Search for Single Top
- Dijets and azimuthal decorrelations at low x
- Multi-muon production

B-identification based on p_{T}^{rel} and lifetime information (CST).

Progress: precision, differential distributions

H1 and ZEUS in agreement. Data 1.8 above NLO.

Diffraction and NLO QCD in DIS

Diffractive PDFs extracted from F_2^{D} assuming factorisation + NLO QCD Does it describe diffractive dijet and charm production?

Diffraction and NLO QCD in DIS

Event shapes in DIS

Sensitive to s and hadronisation effects $_{0}^{}$ Example: $\tau = (1$ -thrust) H1 analysis: fit differential distributions with NLO + NLL + PC

Event shapes in DIS

R_{P} violating SUSY — squark search

Coupling of em strength: exclude squark up to 275 GeV. All e⁺p and e⁻p data at CM-energy 320 GeV included. New: perform scan in tan() for mSUGRA model i-v

e - v

е – е е – µ

 $\mu - \mu$

j-γ

 $e - \gamma$

 $\nu - \gamma$

 $\gamma - \gamma$

i-i-i

e-i-i

j-j-v e-e-i

e – i – v

 $\mu - j - \nu$ $j - j - \gamma$

e – j –γ

 $i - v - \gamma$

e - i - i - i

j – j – j – v

e - i - i - i - i

Generic search for new physics

Events

-+-

-+

•

Reconstruct high- p_T objects (e, $,\mu,\nu,jet$) $p_T > 20 \text{ GeV}, 10^\circ < \theta < 140^\circ$

Scan invariant mass and sum of transverse momenta, find "most interesting" region

Use full HERA I luminosity: 115 pb⁻¹ Overall good agreement with SM in 25 search channels

Model-independent search confirms excess in μ - ν -jet channel studied in other analyses.

H1 General Search

•

SM

H1 Data (prelim.)

Summary and Conclusions Detector working well – first data looks good Congratulations to HERA for the promising startup HERA I data still is a rich source for new analyses (e.g. QCD tests, searches for new physics) Exciting physics program has started with HERA II: ñ New detector components ñ High luminosity and polarisation

Goal: exceed HERA I luminosity before next big shutdown

Long-term goal: collect 1 fb^{-1} of data + low energy run

H1 CJC currents history

