Risetime analysis: machine calculations

Maximum polarisation during risetime calibration:

$$P_{\rm max} = P_{\rm ST} \times \frac{\tau_{\rm ST}}{\tau_{\rm ST} + \tau_{\rm dep}} + P_{\rm kin}$$

Built-up time during risetime calibration:

$$\tau = \tau_{\rm ST} \times \frac{\tau_{\rm ST}}{\tau_{\rm ST} + \tau_{\rm dep}}$$

For given machine and machine energy: $P_{\rm ST}$ and $\tau_{\rm ST}$ precisely known.

Flat machine (no spin rotators): $P_{kin} = 0$

 \rightarrow relation $P_{\text{max}} = \tau \times \frac{P_{\text{ST}}}{\tau_{\text{ST}}}$ for polarimeter calibration

Non-flat machine: $P_{kin} \neq 0$ and depends on alignment (i.e. can not be predicted).

Solution: calculate P_{max} (including $P_{\text{kin}} = 0$) and τ for a set of machines with random alignment errors. For each machine, scale alignment errors such that P_{max} equals 58% (observed P_{max}).

Relation
$$P_{\text{max}} = \tau \times \left[\left\langle \frac{P_{\text{max}}}{\tau} \right\rangle_{\text{random}} \pm \text{RMS}(\frac{P_{\text{max}}}{\tau}) \right]$$

Caution: machine calculations are 1st order perturbation theory only.

Stefan Schmitt

Machine calculations: results

... using the program SLICK (Author Desmond Barber, HERA configuration prepared by D. Barber and M. Vogt).

• $\frac{P_{dep}}{\tau} = \frac{P_{ST}}{\tau_{ST}}$ depends on Machine energy (approx $\frac{2.5\%}{100 \text{ MeV}}$). Confirmed by independent calculation of D. Barber

• $P_{\text{max}} = P_{\text{dep}} + P_{\text{kin}}$ shows larger spread, correlation to energy completely washed out.

Result: $\left\langle \frac{P_{\text{max}}}{\tau} \right\rangle = (0.0408 \pm 0.0003) \frac{\%}{\text{s}}$ in first order perturbation theory, calculated for $P_{\text{max}} = 58\%$.

Risetime analysis

hatched: statistical precision yellow: theory error

- First risetime curve not usable (starting polarisation not measured)
- Using new calibration constant, average analysing power is well compatible with one

Result: $AP = 1.0033 \pm 0.0062_{stat} \pm 0.0075_{theor}$

valid for beam conditions and -energy during RT calibration, in lowest order perturbation theory.