Polarimeter analysis: status

- Present understanding of Polarimeter systematics as summarized in a polarimeter note (July 12, 2007)
- Ongoing activities
 - Polarimeter meeting once per two weeks
 - Global survey of LPOL/TPOL ratio started (O. Eyser)
 - Risetime calibration: calculations by the machine group (D. Barber, M. Vogt)
 - TPOL: Monte Carlo tuning (R. Ciesielski), offline fit (S. Schmitt)
 - LPOL: systematic studies of all analysis steps (HERMES)
 - LPOL cavity: analysis (N. Coppola, C. Pascaud)

1

Present understanding of Polarimeter systematics

Comparison of TPOL and LPOL: Width of LPOL/TPOL= 1 ± 0.04 does not match quadratic sum of known time-dependent systematics from LPOL (1.1%) and TPOL (2.4%) \rightarrow systematic error from unknown source 3%

Recommendations by the POL2000 group

Use weighted mean of both polarimeters where possible to minimize systematic error (procedure described in the writeup).

Resulting errors $\frac{\Delta P}{P}$: TPOL only: 4.2% LPOL only: 3.6% LPOL, TPOL avg: 3.4% Question to the Collaboration: what precision really is required in the end?

Known LPOL and TPOL systematics

TPOL error source	$\frac{\Delta P}{P}(\%$
Electronic noise	< 0.1
Calorimeter calibration	< 0.1
Background subtraction	< 0.1
Light polarisation	0.1
Focus correction	1.0
Compton beam centering	0.4
Interaction region	0.3
Interaction point	2.1
Absolute scale	1.7
Total HERA II error	2.9

LPOL error source	$\frac{\Delta P}{P}(\%)$
Analyzing power	1.2
– response function	(0.9)
- single to multi photon extrapolation	(0.8)
Long term stability	0.5
Gain mismatch	0.3
Laser light polarisation	0.2
Pockels cell misalignment	0.4
Electron/Laser beam interaction region	0.8
Total HERA I error	1.6
Extra uncertainty for new calorimeter	≤ 1.2
Total HERA II error	2.0

Ongoing activities

- Polarimeter meeting once per two weeks
- Global survey of LPOL/TPOL ratio started (O. Eyser)
- Risetime calibration: calculations by the machine group (D. Barber, M. Vogt)
- TPOL: Monte Carlo tuning (R. Ciesielski), offline fit (S. Schmitt)
- LPOL: systematic studies of all analysis steps (HERMES)
- LPOL cavity: analysis (N. Coppola, C. Pascaud)

Summary

- Present Polarimeter error: $\frac{\Delta p}{P} = 3.4\%$ if both polarimeters are averaged properly
- Systematic error is dominated by 3% from unknown error source (deduced from LPOL/TPOL comparison)
- Question to the collaborations: how precise do we have to be?
- Ongoing activities:
 - Global survey of LPOL/TPOL ratio \rightarrow hunt for the unknown error source
 - Risetime calibration with improved machine calculations \rightarrow improve TPOL calibration
 - TPOL offline analysis: improve and re-evaluate systematic errors
 - LPOL analysis: double crosss-check all analysis steps, nothing found yet
 - LPOL cavity: independent cross-check of both TPOL and LPOL polarimeters