Polarimeter offline analysis: recent developments

- Offline analysis concept: old/new fit
- Fit function and parameters
- Lepton beam and TPOL IP
- Energy pedestals and gain factors
- The calorimeter resolution
- The ηy transformation
- Pileup of Compton photons
- Analysis test using December 2006 data

Offline analysis concept: "old" fit

Basic Idea: describe 2-dimensional data histograms $(E \text{ vs } \eta)$ by analytical function with many parameters.

Analytical function: Compton cross-section folded with lepton beam parameters and calorimeter response.

"Old" offline fit by Jenny:

- three seperate fits to reduce number of parameters per fit: L+R (E), L+R (E, η), L-R (E, η)
- Extra η resolution term from MonteCarlo introduced (?)
- Lepton beam modelled by simple Gaussian
- No pileup
- No asymmetry in energy resolution U, D allowed
- Fit gives unreasonable values for some parameters (e.g. $S_1^{L,R}$)
- Unknown correlation of fit parameters from seperate fits
- Poor χ^2/N_{DF} for L+R fit
- Development stopped in 2003 (?)

Offline analysis concept: "new" fit

Basic Idea: describe 2-dimensional data histograms ($E \text{ vs } \eta$) by analytical function with many parameters.

Analytical function: Compton cross-section folded with lepton beam parameters, calorimeter response, Compton pileup.

"New" offline fit:

- Simultaneous fit of L (E, η) and R (E, η) histograms
- Lepton beam modelled by double-Gaussian
- Pileup of Compton photons (2 photons in one event) included
- Possibility to have a symmetric U and D resolution
- Possibility for asymmetric η response function
- Closer look at ηy transformation
- No need for extra η resolution term from MonteCarlo

Fit parameters

Analytical functions for L and R depend on:

	Parameter for L	Parameter for R	Common parameter
Normalisation	$N_L,N_L^{ m bgr}$	$N_R,N_R^{ m bgr}$	
Pileup	$N_L^{ m pileup}$	$N_R^{ m pileup}$	
Lepton polarisation			P_y, P_z
Laser beam	S_L^1,S_L^3	S^1_R,S^3_R	
Lepton beam			$y_{ m off},\sigma_y,y_{ m off2},r_\sigma,f_{ m tail}$
Energy offset			Δ_U,Δ_D
Gain factors			f_U,f_D
Calorimeter resolution			$\sigma_E,V_{ud},r_\eta,S_\eta$
Distance to IP			D_0
$\eta - y$ transformation			$y_s, y_E, R, A, p_1, \ldots p_N$

More parameters can be studied: alternative $\eta - y$ transformation, UD correlation, ... Not all parameters can be determined simultaneously:

for an parameters can be determined simulated by.

- S_L^3 and S_R^3 fixed to ± 1 or taken from optical measurements (not independent of p_y and p_z)
- Distance to IP D_0 and absolute scale of ηy transformation y_s are not independent
 - \rightarrow fix $D_0 = 65000 \,\mathrm{mm}$ or calibrate ηy from other sources

Lepton beam and TPOL IP

Energy pedestals and gain factors

Synchrotron radiation may cause energy offsets. Energie deposited in calorimeter is increased and energy sharing is distorted:

$$E_{\rm depos} = U_{\rm Compton} + D_{\rm Compton} + \Delta_U + \Delta_D$$

$$\eta_{\rm depos} = \frac{U_{\rm Compton} - D_{\rm Compton} + \Delta_U - \Delta_D}{U_{\rm Compton} + D_{\rm Compton} + \Delta_U + \Delta_D}$$

Imperfect calorimeter calibration requires gain factors on observed energies:

$$E_{\text{calib}} = E_{\text{uncal}} \left(\frac{f_U + f_D}{2} + \eta_{\text{uncal}} \frac{f_U - f_D}{2} \right)$$
$$\eta_{\text{calib}} = \frac{\eta_{\text{uncal}} \times (f_U + f_D) + f_U - f_D}{\eta_{\text{uncal}} \times (f_U - f_D) + f_U + f_D}$$

The Calorimeter resolution

Upper and lower halves are assumed to work as independent calorimeters.

Energy resolution $\frac{\delta U}{U} = \frac{\sigma_U}{\sqrt{U}}, \ \frac{\delta D}{D} = \frac{\sigma_D}{\sqrt{D}}.$ Expect $\sigma_U \approx \sigma_D \approx 25\% \,\text{GeV}^{\frac{1}{2}}.$

Transform to uncorrelated variables z (approximately equal to energy) and η .

$$\frac{1}{\sigma_E^2} = \frac{1}{2} \left(\frac{1}{\sigma_U^2} + \frac{1}{\sigma_D^2} \right)$$

$$V_{UD} = \frac{\sigma_D^2 - \sigma_U^2}{\sigma_D^2 + \sigma_U^2}$$

$$z = (U+D) \times (1+\eta \times V_{UD}), \quad \eta = \frac{U-D}{U+D}$$

Response is given by two **independent** Gaussians. Allow for extra term in η resolution and asymmetric Gaussian:

$$\sigma_z = \sqrt{z}\sigma_E$$

$$\sigma_{\eta} = \frac{\sigma_E r_{\eta} (1 \pm \eta S_{\eta}) \sqrt{1 - \eta^2}}{\sqrt{z}} \frac{(1 + \eta V_{UD})}{\sqrt{1 - V_{UD}^2}}$$

Stefan Schmitt

The ηy transformation

Compton beam folded with double-Gaussian is projected on calorimeter halves \rightarrow coordinate y. Unknown transformation $\eta = \eta(y)$ to predict energy sharing required for fit. But: Integral over y is transformed to η space:

Need **inverse** function $\eta(y) = y^{-1}(\eta)$ and its derivative $\frac{dy}{d\eta}$.

Fit requirement: $\frac{dy}{d\eta} > 0$ for any choice of y and fit parameters.

$$y = y_{\text{scale}}(E) \times \int_0^{w(\eta)} dw' \left(1 + p_1 {w'}^2 + \dots\right)^2$$

Slope at $\eta = 0$: $y_{\text{scale}}(E) = y_s + y_E \times (\sqrt{E} - 3.2)$. Simple form: $y_E = 0$

w transformation valid near center of calorimeter:

$$w(\eta) = \eta \left(1 + \frac{A\eta^2}{R^2 + \eta^2} \right)$$

Explicit form of ηy transformation with one correction parameter p_1 :

$$y(\eta, E) = y_{\text{scale}}(E) \times w(\eta) \times (1 + \frac{2}{3}p_1 w(\eta)^2 + \frac{1}{5}p_1^2 w(\eta)^4)$$

Stefan Schmitt

Pileup of Compton photons

Compton interaction rate is 50 KHz, bunch-crossing rate is 10 MHz.

 \rightarrow Compton interaction probability 0.5%

If the event has already been triggered, there is a 0.5% probability to find a second Compton photon.

 $E = E_1 + E_2$ and $\eta = \frac{\eta_1 \times E_1 + \eta_2 \times E_2}{E}$

 \rightarrow the Spectrum is shifted to higher energies and the η asymmetry is diluted.

Numerical evaluation: integrate over E_2 and η_2 for each E_1 and η_1 bin

 \rightarrow very expensive in terms of computing time if number of histogram bins is large.

Present strategy: combine 2x2 (E, η) -bins into a new bin: (12×44) bins with 4.8 < E < 16.2and $-0.7 < \eta < 0.7$.

Summary: fit function

- Fold L, R Compton cross-section with double-Gaussian beam (ϕ integration)
- Fold result with η response function (assumetric Gaussian, η integration)
- Fold result with Energy response function (Gaussian, z integration)
- Fold result with itself (pileup, (η, E) integration)

- non-colliding bunches: small statistics, use parameters from colliding bunches
- χ^2/N_{DF} improved compared to earlier attemps
- Still not completely satisfactory
- Agreement between online/offline of order 3 – 4%, depending on number of fit parameters (systematics)
- Offline fit predicts lower polarisation.

- Offline fit parameters nicely correlated with corresponding online parameters
- Observed offset in beam position
- pileup expected to have quadratic dependence on beam current
- Gain factors determined very differently for online
 - \rightarrow no strong (anti-)correlation

- Optical measurements consistent with $S_3^{LR} = \pm 1$
- Calorimeter measurements for S_1^{LR} look reasonable
- Longitidinal component of beam polarisation size 100 mrad completely excluded by machine design.
 → fit artefact, constrain p_z to zero

Analysis test using December 2006 data (4)

- U offset compatible with zero \rightarrow synchrotron radiation in lower part of calorimeter
- Energy resolution compatible with test-beam
- Relative η resolution compatible with 1 \rightarrow constrain to 1
- η resolution is not symmetric: smaller width for η_{obs} pionting to calorimeter center
- V_{UD} of order 2%: calorimeter photon statistics is better for Dpart

Strange shape of distribution: fit artefact?

- Small/large beam size coincides with helicity flip
- Secondary beam $r_{\sigma} = 1.8$: $\sigma_{y,2} = \sigma_y \times (1+1.8^2) = \sigma_y \times 4.2$ Approx. compatible with HERA machine parameters
- Secondary beam $f_{\text{tail}} = 0.15$: normalisation $f^2 = 2.3\%$ Expected order of magnitude
- secondary beam position compatible with zero?

- y_s expected to be correlated with mirror position to be studied further
- Energy dependence is small \rightarrow constrain to zero
- Strange double-peak structure for other parameters: fit artefact.

Analysis test using December 2006 data (7)

- Average correlation matrix
- ηy parameters seem overconstrained
- little correlation for P_y and P_z Expect no big change by constraining other parameters

Analysis test using December 2006 data (7)

Try to eliminate unneeded parameters:

- Background normalisation (not shown)
- p_z : longitudinal polarisation
- r_{η} : independent η resolution
- y_E : energy-dependent ηy transformation

 χ^2/N_{DF} changes from 1.17 to 1.2

offline/online changes from 0.961 to 0.972

Summary

- Fit is working technically
- Still rather high χ^2 : impossible to include all beam and detector effects in analytic form
- Offline result approx 3 4% lower than online
- Systematic effect from changing parameter set: 1-2%