Stefan Schmitt H1 collaboration meeting June 25, 2003

Polarimeters at HERA: overview

- Introduction
- The transverse polarimeter (TPOL)
- The longitudinal polarimeter (LPOL)
- The LPOL cavity

Introduction: Polarisation and polarimeters at HERA

- Built-up of polarisation in ≈ 30 min (Sokolov-Ternov effect)
- Transverse polarimeter (TPOL) is located near HERA-B
- Longitudinal polarimeter (LPOL) is located between HERMES spin rotator
- LPOL Fabry-Perot cavity successfully installed during shutdown

The HERA polarimeters

Two polarimeters are running in parallel (redundancy, syst. checks)

- 1. Near HERA-B: the transverse polarimeter (TPOL) $\Delta P = 1\% \oplus 3\%$ per minute, avg over all bunches
- 2. Near HERMES:
 - (a) either the "old" logitudinal polarimeter (LPOL) $\Delta P = 1\% \oplus 2\%$ per minute, avg over all bunches
 - (b) or the new laser cavity, built by Orsay (LPOL cavity)

- DAQ upgrade in 2000–2001 (new H1 lumi electronics)
- Measure double-differential cross-section $\frac{d^2\sigma}{dydE}$ Online-analysis: use mean $\langle y \rangle$ at a fixed energy
- Position y measured from energy asymmetry $\eta = \frac{U-D}{U+D}$
- Systematics limited by non-linear ηy transf.
- Converter and silicon, fiber detector for online-cal. of $\eta(y)$
- New offline analysis: calibration from the calorimeter data alone

The longitudinal polarimeter (LPOL)

- Longitudinal polarisation influences $\frac{d\sigma}{dE}$
- Multi-photon mode: pulsed high-intensity LASER, energy of 1000 photons add up to $\langle E \rangle$ seen in the calorimeter
- Polarisation determined from $\frac{\langle E \rangle_L \langle E \rangle_R}{\langle E \rangle_L + \langle E \rangle_R}$
- Systematics limited by calorimeter linearity, laser timing

The LPOL cavity

- Measure $\frac{d\sigma}{dE}$ with high precision statistical error negligible, good control of syst. uncertainties
- Amplify 1W Laser in a Fabry-Perot resonator (cavity) to increase probability of Compton scattering
- Read calorimeter and fill histogram at 10.4 MHz
- Offline analysis: fit spectra. Possible online analysis: use $\langle E \rangle$