High Q^{2} Charged and Neutral Current Cross Sections

at HERA I and HERA II

- Introduction
- Cross-sections
- Measurement of $x F_{3}$
- Local extraction of $x u$ and $x d$
- HERA II and polarization
- Polarized cross-sections at high Q^{2}

Data taking with H1 and ZEUS at HERA

- HERA: $e^{ \pm} p$ collider $E(e)=27.6 \mathrm{GeV}$, $E(p)=920 \mathrm{GeV}, \sqrt{s}=319 \mathrm{GeV}$
- Two collider experiments H1 and ZEUS
- HERA I (1994-2000):
- $100 \mathrm{pb}^{-1} e^{+} p$ per experiment
- $15 \mathrm{pb}^{-1} e^{-} p$ per experiment
- HERA II (since 2003):
- Luminosity upgrade
$-\mathcal{O}\left(50 \mathrm{pb}^{-1}\right)$ per experiment
- Polarized positrons

$$
\left\langle P_{R}\right\rangle=32 \% \text { and }\left\langle P_{L}\right\rangle=-40 \%
$$

DIS at high Q^{2}

Neutral current

Kinematic variables:

- Momentum transfer squared Q^{2}
- Fraction of proton momentum x carried by struck quark
- Inelasticity $y=\frac{1-\cos \theta^{\star}}{2}$

Relation $Q^{2}=s x y$

CC and NC Cross-sections

HERA

Neutral current:

$$
\frac{d^{2} \sigma_{\mathrm{NC}}}{d x d Q^{2}} \sim \alpha_{\mathrm{em}}^{2} \frac{1}{\left(Q^{2}\right)^{2}} \frac{1}{x} \tilde{\sigma}_{\mathrm{NC}}
$$

Charged current:

$$
\frac{d^{2} \sigma_{\mathrm{CC}}}{d x d Q^{2}} \sim G_{F}^{2} M_{W}^{4} \frac{1}{\left(Q^{2}+M_{W}^{2}\right)^{2}} \frac{1}{x} \tilde{\sigma}_{\mathrm{CC}}
$$

Q^{2} dependence driven by propagator
NC and CC cross-sections are of similar size for $Q^{2} \approx M(W, Z)^{2}$

Reduced cross-sections $\tilde{\sigma}_{\mathrm{NC}}$ and $\tilde{\sigma}_{\mathrm{CC}}$: sensitive to proton structure, QCD

Reduced NC cross-section

HERA Neutral Current at high x

$$
\begin{gathered}
\tilde{\sigma}_{\mathrm{NC}}=Y^{+} F_{2} \mp Y^{-} x F_{3}-y^{2} F_{L} \\
Y^{ \pm}=1 \pm(1-y)^{2}
\end{gathered}
$$

DGLAP equation $\rightarrow Q^{2}$ evolution of structure functions $F_{2}, x F_{3}, F_{L}$

Main contribution is F_{2}^{em}

$$
\begin{gathered}
F_{2}=F_{2}^{\mathrm{em}}+\text { el. weak terms } \\
F_{2}^{\mathrm{em}}=\sum e_{q}^{2}(q+\bar{q})
\end{gathered}
$$

Sum of sea and valence quarks, dominated by u quarks at high x

Difference between $e^{+} p$ and $e^{-} p \rightarrow x F_{3}$, relevant at high Q^{2} only

Contribution from F_{L} at high y only

Measurement of $x F_{3}$

$$
x F_{3} \sim \sigma_{\tilde{\mathrm{N}}}{ }^{-}-\sigma_{\tilde{\mathrm{N}}}{ }^{+}
$$

Main contribution from γZ interference:

$$
x F_{3}=x F_{3}^{\gamma Z}+Z-\text { exchange }
$$

Quark content

$$
\begin{aligned}
x F_{3}^{\gamma Z} & \sim \frac{Q^{2}}{Q^{2}+M_{Z}^{2}} x G_{3} \\
x G_{3} & =\sum e_{q} a_{q}(q-\bar{q})
\end{aligned}
$$

Only valence quarks contribute.

Compares well to QCD extrapolation of fixed-target and low Q^{2} data

Reduced Charged current cross-sections

HERA Charged Current

$e^{-} p$ scattering:

$$
\tilde{\sigma}_{\mathrm{CC}}^{-} \sim x u+(1-y)^{2} x \bar{d}
$$

High x : dominated by u quarks
$e^{+} p$ scattering:

$$
\tilde{\sigma}_{\mathrm{CC}}^{+} \sim(1-y)^{2} x d+x \bar{u}
$$

High x : dominated by d quarks, but suppressed by helicity factor $(1-y)^{2}$ and $x u \approx 2 x d$

Local extraction of $x u$ and $x d$ from NC and CC cross-sections

Direct measurement compares well to results from QCD fits.
d quark still statistically limited
\rightarrow requires more $e^{+} p$ data

Polarized lepton beam at HERA II

- HERA: polarization is produced in the ring (Sokolov-Ternov effect)
- Spin-rotators transverse pol. in the arcs longitudinal pol. for physics
- Typical HERA II polarisation is 40%, built-up time 30 minutes.
- Monitoring by two independent Compton polarimeters

HERA II results on polarized CC cross-sections

HERA II

Cross-section has linear dependence on polarization

$$
\sigma_{\mathrm{CC}}^{ \pm}(P)=(1 \pm P) \sigma_{\mathrm{CC}}^{ \pm}(0)
$$

Data are consistent with SM expectation No hint for right-handed charged currents.
talk by K. Nagano (electroweak session)

QCD: possibility to enhance CC cross-section by choosing appropriate sign of polarisation

HERA II results on polarized NC cross-section
ZEUS

$$
\tilde{\sigma}_{\mathrm{NC}}^{ \pm}(P)=Y^{+} F_{2}^{\mathrm{em}}+Y^{+} F_{2}^{\gamma Z}(P) \mp Y^{-} x F_{3}^{\gamma Z}(P)
$$

$$
+Z \text {-exchange }
$$

Electroweak terms are sensitive to polarization at high Q^{2}

$$
\begin{aligned}
& F_{2}^{\gamma \mathrm{Z}}(P) \sim \frac{Q^{2}}{Q^{2}+M_{Z}^{2}}\left(P a_{e}-v_{e}\right) \sum e_{q} v_{q}(q+\bar{q}) \\
& \mp x F_{3}^{\gamma \mathrm{Z}}(P) \sim \mp \frac{Q^{2}}{Q^{2}+M_{Z}^{2}}\left(P v_{e}-a_{e}\right) \sum e_{q} a_{q}(q-\bar{q})
\end{aligned}
$$

New possibility to disentangle individual quark flavours at high Q^{2}

HERA II results on polarized NC (continued)

ZEUS

Measurement still statistically limited.
Difference between left-handed and right-handed data not yet sufficient for dedicated QCD studies

Require high integrated luminosity and high degree of polarisation

Full HERA II program: constrain u, d, \bar{u}, \bar{d} quark densities measure axial and vector couplings of u and d.

Summary

HERA I inclusive cross-section data at high Q^{2} analyzed

- Proton structure well measured over a wide kinematic range
- Only the region of highest x and highest Q^{2} is statistically limited
- Measurement of $x G_{3}$
- Local extraction of u and d PDF at high x
- d quark at high x requires more $e^{+} p$ data

HERA II data-taking ongoing

- First results with polarized positrons
- High specific luminosity, plan to collect $\mathcal{O}\left(1 \mathrm{fb}^{-1}\right)$
- Polarization \rightarrow new tool for QCD at high Q^{2}
- Running with $e_{L, R}^{-}$after summer 2004

