Search for Leptoquarks and Lepton Flavor Violation

at HERA

- Introduction
- Searches for 1st generation Leptoquarks
- Searches for lepton flavour violation
- Summary

References:

ZEUS collab., DESY-05-016 H1 collab., DESY-05-087 H1 collab., H1prelim-04-162

Stefan Schmitt, DESY Hamburg 1 Li

Introduction

- Leptoquark (LQ): boson with baryonic and leptonic quantum numbers.
- Define Fermion number F = 3B + L
- LQ at HERA: single production
 - $-E_{cm} < 300$ GeV: resonant production (F=0 in e^+p and F=2 in e^-p)

 $-E_{cm} \gg 300$ GeV: contact interaction

- Search for 7 scalar and 7 vector LQs
- Production: coupling to e and u, d
- Decay: coupling to e, ν, μ, τ and q'

Stefan Schmitt, DESY Hamburg

 $\mathbf{2}$

HERA and the collider experiments H1 and ZEUS

- HERA: $e^{\pm}p$ collider, $E_{cm} = 319$ GeV
- HERA I: 100 pb⁻¹ in e^+p and 15 pb⁻¹ in e^-p

This talk: results from HERA I

- HERA II: luminosity upgrade and longitudinally polarised leptons.
 Data-taking ongoing (see talk by Hiroshi Kaji for first results)
- ZEUS/H1 experiments: multi-purpose detectors to record all types of *ep* reactions

3

Search for first-generation LQs

- Processes: NC: $ep \rightarrow eX$ CC: $ep \rightarrow \nu X$
- Look for enhancement

 in LQ mass spectra
 Irreducible background from
 deep inelastic scattering
 include interference terms in
 analysis
- No evidence for signal
- Set limits:
 2-dimensional analysis of mass and decay angle

Search for first-generation LQs: results

- Limits on the coupling λ as a function of the LQ mass M
- Coupling of EM strength corresponds to $\lambda = 0.3$: exclude masses of order 300 GeV
- for M < 300 GeV: resonant production
- for M > 300 GeV: smooth transition to contact interaction (coupling constant $\frac{\lambda^2}{M^2}$)
- BRW model: branching ratio NC/CC fixed

Stefan Schmitt, DESY Hamburg 5

First generation LQ: comparison to LEP and Tevatron

6

- Tevatron: pair production
- LEP: contact interaction
- HERA: single production and contact interaction Sensitivity at high masses and high couplings

Stefan Schmitt, DESY Hamburg

First generation LQ in more general models

- Look for LQ decaying to (e,jet) (NC) or (ν ,jet) (CC)
- Vary branching ratio $\beta_e = \frac{\lambda_e^2}{\lambda_e^2 + \lambda_\nu^2}$ with fixed eq coupling $\lambda = \lambda_e$
- at low mass:

Limit is approx. independent of β_e (because sensitivity in NC/CC is very similar)

- at high masses: transition to contact interaction
 - 4-fermion coupling $\lambda_{e\lambda}/\lambda^2 + \lambda^2$ λ^2

$$\frac{\lambda_e \sqrt{\lambda_e^2 + \lambda_{\nu}^2}}{M^2} = \frac{\lambda_e^2}{\sqrt{\beta_e} M^2}$$

Stefan Schmitt, DESY Hamburg

7

Lisboa, HEP 2005, 21st July 2005

HERA searches for lepton-flavour violation in LQ decays

Look for μ +jet or τ +jet. Low background, good sensitivity. No evidence for a signal \rightarrow set limits

Stefan Schmitt, DESY Hamburg 8 Lisboa, HEP 2005, 21st July 2005

Limits on lepton-flavour violating LQs

Limits on lepton-flavour violating LQs (2)

Plot: H1 mass limit for variable lepton-flavour violationg coupling and fixed $\lambda_{eq} = 0.3$ μ channel: masses up to 350 GeV excluded for $\mathcal{BR}(\mu) = 0.5$ Higher masses: contact interactions

Stefan Schmitt, DESY Hamburg 10 Lisboa, HEP 2005, 21st July 2005

Contact interaction limits on lepton-flavour violating LQs

- $M \gg 300$ GeV: contact interaction limits (4-Fermion interaction)
- Limit is set on

 $\frac{\lambda_{eq_{\alpha}}\lambda_{\mu,\tau q_{\beta}}}{M_{LQ}^2}.$

- Limit depends on initial/final state quark flavours $\alpha, \beta = 1, 2, 3$.
- HERA limits are complementary to low energy data Example:

 $\tilde{V}_0^R, \, \alpha, \beta = 1, 2$: limit $1.6 \,\mathrm{TeV}^{-2}$

 \rightarrow for $\lambda_{eu} = \lambda_{\tau c} = 1$ exclude $M < 790 \,\text{GeV}$

$e \rightarrow \tau$		ZEUS $e^{\pm}p$ 94-00 $\frac{\text{limits in}}{\text{TeV}^{-2}}$ $F = 0$					
lphaeta	$\begin{vmatrix} S_{1/2}^L \\ e^- \bar{u} \\ e^+ u \end{vmatrix}$	$S^R_{1/2} \\ e^-(\bar{u} + \bar{d}) \\ e^+(u+d)$	$egin{array}{c} ilde{S}^L_{1/2} \ e^- ar{d} \ e^+ d \end{array}$	V^L_0 $e^- ar d$ $e^+ d$	$V^R_0 \ e^- ar d \ e^+ d$	$egin{array}{c} ilde{V}^R_0 \ e^- ar{u} \ e^+ u \end{array}$	$V_1^L \\ e^{-}(\sqrt{2}\bar{u} + \bar{d}) \\ e^{+}(\sqrt{2}u + d)$
11	$\begin{array}{c} \tau \to \pi e \\ 0.4 \\ 1.8 \end{array}$	$ au ightarrow \pi e$ 0.2 1.5	$ au o \pi e$ 0.4 2.7	$ au ightarrow \pi e$ 0.2 1.7	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.2 \\ 1.7 \end{array}$	$\begin{array}{c} \tau \to \pi e \\ 0.2 \\ 1.3 \end{array}$	$ au ightarrow \pi e$ 0.06 0.6
12	1.9	au ightarrow Ke 6.3 1.6	$\begin{split} K &\to \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ 2.9 \end{split}$	au ightarrow Ke 3.2 2.1	au ightarrow Ke 3.2 2.1	1.6	$K ightarrow \pi u \overline{ u}$ $1.5 imes 10^{-4}$ 0.8
13	*	$B \rightarrow \tau \bar{e}$ 0.3 3.2	$B \rightarrow \tau \bar{e}$ 0.3 3.3	$B \rightarrow \tau \bar{e}$ 0.13 2.6	$B \rightarrow \tau \bar{e}$ 0.13 2.6	*	$B ightarrow au ar{e}$ 0.13 2.6
$2\ 1$	6.0	au ightarrow Ke 6.3 4.1	$K \rightarrow \pi \nu \bar{\nu}$ 5.8×10^{-4} 5.2	au ightarrow Ke 3.2 2.3	au ightarrow Ke 3.2 2.3	2.1	$K \rightarrow \pi \nu \bar{\nu}$ 1.5×10^{-4} 0.9
2 2	$\begin{array}{c} au ightarrow 3e \\ 5 \\ extbf{10} \end{array}$	au ightarrow 3e 8 5.6	au ightarrow 3e 17 6.5	au ightarrow 3e 9 3.4	au ightarrow 3e 9 3.4	$egin{array}{c} au ightarrow 3 \ {f 5.5} \end{array}$	au ightarrow 3e 1.6 2.1
2 3	*	$B \rightarrow \tau \bar{e} X$ 14 8.1	$B \rightarrow \tau \bar{e} X$ 14 7.8	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	*	$B \rightarrow \tau \bar{e} X$ 7.2 5.5
31	*	$B \rightarrow \tau \bar{e}$ 0.3 7.8	$B \rightarrow \tau \bar{e}$ 0.3 7.2	$V_{ub} \\ 0.12 \\ 2.5$	$B \rightarrow \tau \bar{e}$ 0.13 2.5	*	V _{ub} 0.12 2.5
3 2	*	$B \rightarrow \tau \bar{e} X$ 14 11	$B \rightarrow \tau \bar{e} X$ 14 10	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	*	$B \rightarrow \tau \bar{e} X$ 7.2 4.2
3 3	*	au ightarrow 3e 8 15	$\tau \rightarrow 3e$ 17 14	$\tau \rightarrow 3e$ 9 8.1	$\tau \rightarrow 3e$ 9 8.1	*	au ightarrow 3e 1.6 8.1

Stefan Schmitt, DESY Hamburg

11

Conclusions

- Searches at HERA for LQs in all lepton channels
 → no sign of LQ production found
- HERA limits on LQ production reach to 300 GeV and beyond for couplings of EM strength
- Complementary to LEP/Tevatron searches
- High sensitivity in the ν +jet channel: limits are independent of the LQ decay
- New limits in the μ +jet and τ +jet channel

Outlook

- HERA II data-taking ongoing: high luminosity and lepton polarisation
- \rightarrow continue to search for LQs