

PDF and α measurements at HERA

XII Quark Confinement and the Hadron Spectrum

from 29 August 2016 to 3 September 2016 Europe/Athens timezone

HCHS2016 Thessaloniki, Greece

Stefan Schmitt, DESY For the HERA collaborations H1 and ZEUS

Outline

- The HERA collider
- Deep-inelastic scattering
- Data combination
- The combined HERA data
- The HERAPDF2.0 fit
- Jet production and $\alpha_{_{_{S}}}$

The HERA collider

- World's only ep collider 1992-2007
- 920 x 27.6 GeV (√s=320 GeV)
- Two collider experiments, H1 and ZEUS
- Integrated Luminosity:
 ~2×0.5 fb⁻¹
- e⁺p and e⁻p data

Deep-inelastic scattering

- Inclusive processes
 - Neutral current (NC)
 - Charged current (CC)
- Momentum transfer Q²
- Inelasticity y
- Bjorken-x

exchanged 4-momentum:

$$q=e-e'=X-p$$

Kinematic variables

$$Q^{2} = -q^{2}$$

$$y = \frac{pq}{pe}$$

$$x = \frac{Q^{2}}{sy}$$

Deep-inelastic scattering

- Inclusive processes
 - Neutral current (NC)
 - Charged current (CC)
- Momentum transfer Q²
- Inelasticity y
- Bjorken-x

"Reduced" cross section: Double-differential cross section divided by couplings and kinematic factors

→ structure functions

NC reduced cross section

$$\sigma_{r,NC}^{\pm} = \tilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \, \tilde{F}_{3} - \frac{y^{2}}{Y_{+}} \, \tilde{F}_{L}$$

CC reduced cross section

$$\sigma_{r,WC}^{\pm} = Y_{+}W_{2}^{\pm} \mp Y_{-}xW_{3}^{\pm} - y^{2}W_{L}^{\pm}$$

helicity factors

$$Y_{\pm} = 1 \pm (1 - y)^2$$

Parton densities

- Structure functions are related to parton densities
- The precision measurements from HERA are the backbone of proton parton density determinations
- Parton densities are essential for predictions at hadron colliders

HERA datasets collected over 15 years

- Two experiments H1 and ZEUS
- 41 datasets with over 2900 individual cross section measurements
- Measurements in e⁻p, e⁺p; NC,
 CC; low and high Q²
- Four centre-of-mass energies: 225, 251, 300, 318 GeV

Data Set		x _{Bi} (Grid	Q^2 [Ge]	V ²] Grid	£	e^{+}/e^{-}	\sqrt{s}	$x_{\rm Bi}, Q^2$ from	Ref.
		from	to	from	to	pb^{-1}		GeV	equations	
HERA I $E_p = 820 \text{GeV}$ and	$1E_p = 920$	GeV data sets								
H1 svx-mb [2]	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301,319	13,17,18	[3]
H1 low Q^2 [2]	96-00	0.0002	0.1	12	150	22	e^+p	301,319	13,17,18	[4]
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	19	[5]
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	14	[5]
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e^-p	319	19	[6]
H1 CC	98-99	0.013	0.40	300	15000	16.4	e^-p	319	14	[6]
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319	13	[7]
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	19	[7]
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	14	[7]
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	13	[11]
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	13, 19	[12]
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	13	[13]
ZEUS NC [2] high/low Q^2	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	21	[14]
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	14	[15]
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^{-p}	318	20	[16]
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e^-p	318	14	[17]
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	20	[18]
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318	14	[19]
HERA II $E_p = 920$ GeV data sets										
H1 NC ^{1.5} p	03-07	0.0008	0.65	60	30000	182	e^+p	319	13, 19	[8] ¹
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e^+p	319	14	[8] ¹
H1 NC ^{1.5} p	03-07	0.0008	0.65	60	50000	151.7	e^-p	319	13, 19	[8]1
H1 CC ^{1.5} p	03-07	0.008	0.40	300	30000	151.7	e^-p	319	14	[8] ¹
H1 NC med $Q^2 *y.5$	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	13	[10]
H1 NC low $Q^2 *y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	13	[10]
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318	13,14,20	[22]
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e^+p	318	14	[23]
ZEUS NC 1.5	05-06	0.0076	0.65	200	30000	169.9	e^-p	318	20	[20]
ZEUS CC 1.5	04-06	0.005	0.65	280	30000	175	e^-p	318	14	[21]
ZEUS NC nominal *9	06-07	0.013	0.008343	7	110	44.5	e^+p	318	13	[24]
ZEUS NC nominar ** ZEUS NC satellite **	06-07	0.000092	0.008343	5	110	44.5	e^+p e^+p	318	13	[24]
		0.000071	0.008343	3	110	44.3	e p	316	13	[24]
HERA II $E_p = 575 \text{GeV}$ da		0.00065	0.65	25	900	E 4	-+	252	12 10	FO1
H1 NC high Q^2 H1 NC low Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ p	252	13, 19	[9]
	07	0.0000279	0.0148	1.5	90	5.9	e ⁺ p	252	13	[10]
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	$e^+_{\perp}p$	251	13	[24]
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e ⁺ p	251	13	[24]
HERA II $E_p = 460 \text{GeV}$ da		0.00001	0.65	9.5	995	110			10.10	
H1 NC high Q ²	07	0.00081	0.65	35	800	11.8	e ⁺ p	225	13, 19	[9]
H1 NC low Q ²	07	0.0000348	0.0148	1.5	90	12.2	e ⁺ p	225	13	[10]
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e^+p	225	13	[24]
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	13	[24]

Data combination

- The 2927 measurements are averaged to about 1307 combined cross sections
- Point-to-point correlated systematic uncertainties
 - → "cross-calibration" effects
- Up to 6 measurements contribute to a single point

EPJ C75 (2015) 12, 85

Data combination

- The 2927 measurements are averaged to about 1307 combined cross sections
- Point-to-point correlated systematic uncertainties
 - → "cross-calibration" effects
- Up to 6 measurements contribute to a single point

EPJ C75 (2015) 12, 85

Combined Neutral Current dataset

- Four e[†]p datasets at different centre-ofmass energies
- One e⁻p dataset
- Main improvements wrt HERA-I data:
 - Reach to lower sqrt(s)
 - Much improved e⁻p dataset
 - Precision <1.5% over a wide range

	Q² [GeV²]	X
e+p, $sqrt(s)=225 GeV$	1.5 800	0.348×10 ⁻⁴ 0.65
e+p, sqrt(s)=251 GeV	1.5 800	0.279×10 ⁻⁴ 0.65
e+p, sqrt(s)=300 GeV	0.045 30000	0.621×10 ⁻⁶ 0.4
e+p, $sqrt(s)=318 GeV$	0.15 30000	0.502×10 ⁻⁵ 0.65
e-p, sqrt(s)=318 GeV	60 50000	0.8×10 ⁻³ 0.65

e⁻p (NC): selected x, compare HERA-I with new combination

Combined Charged Current dataset

- Two dataset: e⁺p and e⁻p
- Much improved precision, as compared to HERA-I combination
- Most striking improvement:
 e⁻p (luminosity increase ×15)

	Q² [GeV²]	X
e+p, sqrt(s)=318 GeV	300 30000	0.8×10 ⁻² 0.4
e-p, sqrt(s)=318 GeV	300 30000	0.8×10 ⁻² 0.4

e⁻p (CC): compare HERA-I with new combination

Electroweak unification at high Q²

- Single-differential cross sections: integrated over y<0.9
- At high Q²~m_w²: NC and CC cross sections are similar in size, visualizes electroweak unification
- Low Q² NC: photon propagator ~1/Q⁴
- High Q² NC: difference e⁺p and e⁻p due to γ/Z interference

Scaling violations and DGLAP

- Measurements over a wide range in Q² and x: precision measurement of scaling violations
 - cross section rises with Q² at low x but drops at high x
- Electroweak effects (structure function xF₃) visible at high Q²

$$\sigma_{r,NC}^{\pm} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$
helicity factors
$$Y_+ = 1 \pm (1 - y)^2$$

HERAPDF fits based on DGLAP

- Parametrize parton densities at starting scale Q₀
- Evolve PDFs to other scales using DGLAP equations
- Three types of uncertainties
 - Experimental
 - Parametrization
 - Model

HERAPDF parametrization:

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},$$

$$xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right),$$

$$xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$$

$$x\bar{U}(x) = A_{\bar{U}}x^{B_{\bar{U}}}(1-x)^{C_{\bar{U}}}(1+D_{\bar{U}}x),$$

$$x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}.$$

Parametrization uncertainties: vary Q₀, change number of parameters

Model uncertainties: heavy quark masses, strangeness fraction, etc

HERAPDF2.0

- HERAPDF2.0 PDFs: family of fits based on HERA data alone, at NLO and NNLO
- All fit variants are available in the LHAPDF library
- Shown here:
 - Default NNLO fit with uncertainty bands: "HERAPDF2.0 NNLO"
 - Variant with non-negative gluon "HERAPDF2.0AG NNLO"

HERAPDF2.0

- HERAPDF2.0 PDFs: family of fits based on HERA data alone, at NLO and NNLO
- Overall good description of the data down to low Q²
- Some deviations in the region of low x at low Q²

Dependence on Q²_{min}

- Test theory against data using selection Q²>Q² min ?
- Fit quality and low-x gluon shape changes as Q²_{min} is varied from 3.5-10 GeV²
 - → something going on beyond DGLAP at low-x and/or low Q²?

Sensitivity to the strong coupling

 Inclusive DIS data alone have only moderate sensitivity to α_s

Reason: normalization of gluon density and α_s are strongly correlated

 → include data on jet production in DIS

H1 and ZEUS

Scan of HERAPDF fit to DIS data: χ^2 as a function of α_s has no well-pronounced minimum observed \rightarrow sensitivity is low

Jet production in DIS

 Jet production is measured in Breit frame → jet production is directly sensitive to α_s

QPM event \rightarrow no P_T in Breit frame \rightarrow no jet

 $O(\alpha_s) \rightarrow two jets in Breit$ frame

Very good sensitivity to α_s when including jet data – but jet calculations are done at NLO only*

* recent NNLO calculations by Gehrmann et al. from 2016

Determination of α_{ϵ} from DIS jets at NLO

• Combined fit of PDF and α_s at NLO

$$\alpha_s(m_Z) = 0.1183 \pm 0.0009 \text{ (exp)}$$
 $\pm 0.0005 \text{ (model/param)}$
 $\pm 0.0012 \text{ (hadr)}$
 $_{-0.0030}^{+0.0037} \text{ (scale)}$

 Overall α_s uncertainty limited by scale uncertainties at NLO

New jet data and NNLO calculations

- New prelimnary H1 data at low Q²
- Together with H1 data at high Q² the most precise jet data in DIS
- New NNLO calculations → reduced scale uncertainties
- Precision determination of α_s from DIS jets seems possible in the near future

New H1 data, ratio to NLO: NNLO describes shape better

Summary

- Recent publication of combined HERA inclusive cross section data: precision better than 1.5% for Q²<500 GeV²
- A unique dataset probing the proton structure over more than five orders of magnitude in Q² and x
- Parton densities HERPDF2.0 derived from HERA data alone
- Together with DIS jet data, the strong coupling can be measured
- Aim to reduce scale uncertainties on $\alpha_{_{S}}$ from DIS jets in the near future using NNLO calculations