

Charm and beauty at HERA

Stefan Schmitt, DESY for the HERA collaborations H1 and ZEUS

Outline

- The HERA collider
- Charm and beauty production in deep-inelastic scattering
- Data combination
- The new combined HERA charm and beauty data
- Comparisons to NLO QCD
- Charm production in diffractive DIS

The HERA collider

- World's only ep collider 1992-2007
- 920 x 27.6 GeV (√s=320 GeV)
- Two collider experiments, H1 and ZEUS
- Integrated Luminosity:
 ~2×0.5 fb⁻¹
- e⁺p and e⁻p data

Deep-inelastic scattering

- Inclusive processes
 - Neutral current (NC)
 - Charged current (CC)
- Momentum transfer Q²
- Inelasticity y
- Bjorken-x
- This talk: NC scattering with charm or beauty detected in the hadronic final state X

Measurement at Q^2 ,x probes sum of (anti-) quark PDFs $\sigma \sim \Sigma |M|^2 e_i^2 f_i(Q^2,x)$

(gluon enters at higher orders)

exchanged 4-momentum:

$$q=e-e'=X-p$$

Kinematic variables

$$Q^{2} = -q^{2}$$

$$y = \frac{pq}{pe}$$

$$x = \frac{Q^{2}}{sy}$$

Charm and beauty production at HERA

Experimental methods: elemental methods: High pt lepton
Reconstructed D,D* mesons
Impact parameter, secondary vertex

Measured quantity: reduced cross section σ_{red} with charm or beauty in final state

Reduced cross section: double-differential cross section divided by kinematic factors

NLO calculations: fixed-flavour number scheme (FFNS) where PDF only contains light flavours u,d,s and the gluon. Massive heavy quarks are in the matrix elements

Alternative (not used in this talk): variableflavour number scheme and massless c,b quarks in the PDF above threshold. PDFs can be converted between schemes.

HERA combination of charm and beauty

- Two experiments H1 and ZEUS
- First combination of HERA charm data published in 2012
- Eur.Phys.J.C73 (2013) 2311
- This talk: new combination of charm and beauty data
- H1prelim-17-071, ZEUS-prel-17-01
- 13 datasets, using different experimental methods

(Data combination details: see backup slides)

https://www.desy.de/h1zeus/combined results/index.php?do=heavy flavours

correlations taken

into account

ZEUS

+11 more HERA (H1 or ZEUS) analyses

Results and comparison to NLO QCD

- Rise to low x: typical for sea and gluon
- Cross section evolves with Q²
- NLO predictions describe data reasonably well
- Improved precision compared to the 2012 measurement (see backup slides)
 - First combination of HERA beauty data

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

Ratios to NLO QCD

- Overall satisfactory description of the HERA c and b data by NLO QCD, not much dependent on PDF choice
- No improvement by approximate NNLO
- Slope difference between data and theory as a function of x is visible for charm data at Q²~12 GeV²

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

NLO QCD fit and c,b masses

- Charm and beauty data together with HERA inclusive DIS data are taken as input to a NLO QCD fit (dashed line)
- Simultaneously extract PDFs and c,b masses

$$m_c(m_c) = 1209^{+46}_{-41} (\text{fit})^{+62}_{-14} (\text{model})^{+7}_{-31} (\text{param}) \text{ MeV}$$

 $m_b(m_b) = 4049^{+104}_{-109} (\text{fit})^{+90}_{-32} (\text{model})^{+1}_{-31} (\text{param}) \text{ MeV}$

Also see talk by A. Gizhko on runing charm mass (Friday)

PDG: $m_c(m_c) = 1270 \pm 30 \text{ MeV}$ and $m_b(m_b) = 4180 \pm 30 \text{ MeV}$

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

Charm production in diffractive DIS

- About 10% of the inclusive DIS cross section an HERA are diffractive at low x
- Experimental signature: proton stays intact, no activity in forward detectors, large rapidity gap

t: p vertex 4-mom. transfer squared x_{IP} : IP long. mom. fraction β or z_{IP} : parton long. mom. fraction

 Theory (Collins): QCD factorisation holds in diffractive DIS → concept of diffractive PDFs (DPDFs)

Inclusive diffraction: extract DPDFs

$$f_i(Q^2,\beta,t,x_{IP})$$

Diffractive charm production: test factorisation theorem in diffraction

Diffractive D* cross sections

- Electron variables:
 Q² and y
- Diffractive variables: $log(x_{\tiny ID}), z_{\tiny ID}$
- Well described by NLO QCD, large theory scale uncertainties (yellow band)
- DPDF uncertainties (red) similar to data precision
- D* kinematic distributions also described (→ backup)

EPJ C77 (2017) 340 [arXiv:1703.09476]

Diffractive to inclusive D* ratio

- Investigate diffractively produced fraction of D* mesons
- Results of many analyses largely agree with each other
- Similar ratios are observed in deepinelastic scattering and in photoproduction, where one possibly expects to see differences

Note: diffractive QCD factorisation theorem is proven only for DIS [Q²»0] not for photoproduction [Q²=0]

Diffractive fraction

Summary

New combination of charm and beauty double-differential cross section

 The contract is does included a section of the contract of the

measurements in deep-inelastic scattering at HERA

Test of QCD with massive quarks (multiple scale problem)

- Fixed flavour-number calculations provide good description
- PDF fit: charm and beauty data constrain quark masses
 - → measure running quark masses from HERA data alone

$$m_c(m_c) = 1209^{+46}_{-41}(\text{fit})^{+62}_{-14}(\text{model})^{+7}_{-31}(\text{param}) \text{ MeV}$$

 $m_b(m_b) = 4049^{+104}_{-109}(\text{fit})^{+90}_{-32}(\text{model})^{+1}_{-31}(\text{param}) \text{ MeV}$

- New measurement of charm in diffractive DIS at HERA: test of diffractive QCD factorisation and diffractive PDFs
 - → Data are described by theory within large scale+DPDF uncertainties

Backup

HERA datasets on charm and beauty

- Two experiments H1 and ZEUS
- First combination of HERA charm data published in 2012

Eur.Phys.J.C73 (2013) 2311

 This talk: new combination of charm and beauty data

H1prelim-17-071, ZEUS-prel-17-01

 13 datasets, using different experimental methods

(Data combination details: see backup slides)

Data set		Tagging	Q^2 range		N_c	\mathscr{L}	\sqrt{s}	N_b	
			[GeV ²]			$[pb^{-1}]$	[GeV]		
1	H1 VTX [8]	VTX	5	_	2000	29	245	318	12
2	H1 <i>D</i> *+ HERA-I [9]	D^{*+}	2	_	100	17	47	318	
3	H1 D^{*+} HERA-II (medium Q^2) [10]	D^{*+}	5	_	100	25	348	318	
4	H1 D^{*+} HERA-II (high Q^2) [11]	D^{*+}	100	_	1000	6	351	318	
5	ZEUS <i>D</i> *+ 96-97 [12]	D^{*+}	1	_	200	21	37	300	
6	ZEUS D*+ 98-00 [13]	D^{*+}	1.5	_	1000	31	82	318	
7	ZEUS D ⁰ 2005 [14]	D^0	5	_	1000	9	134	318	
8	ZEUS μ 2005 [7]	μ	20	_	10000	8	126	318	8
9	ZEUS D^+ HERA-II [2]	D^+	5	_	1000	14	354	318	
10	ZEUS D^{*+} HERA-II [3]	D^{*+}	5	_	1000	31	363	318	
11	ZEUS VTX HERA-II [4]	VTX	5	_	1000	18	354	318	17
12	ZEUS e HERA-II [5]	e	10	_	1000		363	318	9
13	ZEUS μ + jet HERA-I [6]	μ	2	_	3000		114	318	11

Most precise: secondary vertex, D* meson

Data combination technical details

- Measurements are extrapolated to a common grid in (Q²,x) using NLO theory. Correction factors near unity, theory variation considered as systematic uncertainty
- Combination χ²/Ndf=149/187
- Pull distribution approximately Gaussian

Data combination

H1 and ZEUS

Q²=32 GeV²

Enlarged view

preliminary

- Many measurements are combined to a single point, large gain in precision
- Correlations of systematic uncertainties between input data points accounted for
- Shown here: charm data before/after combination

Kinematic range: $2.5 \le Q^2 \le 2000 \text{ GeV}^2$ $3 \times 10^{-4} \le x \le 5 \times 10^{-2}$

 $\Omega^2 = 32 \text{ GeV}^2$

0.4

Beauty: 12 bins in Q², a total of 27 combined data points

Charm combination: 2017 and 2012

- Compare 2017 combination to 2012 combination of charm data
- Central points are similar
- Improved uncertainties by ~20% at intermediate Q²

Diffractive D* analysis

New analysis by H1

- Large-rapidity gap to select diffractive events
- Electron in backward calorimeter
- D* reconstructed in Kππ channel
- Cross sections from fit of mass distribution in each analysis bin
- NLO QCD (FFNS) with DPDF from 2006 H1 analysis of inclusive diffraction

About 1100 D* mesons reconstructed.
Background shape from wrong-charge combinations

 $m(K^{\dagger}\pi^{\pm}\pi^{\pm}) - m(K^{\dagger}\pi^{\pm})$ [GeV]

Diffractive D* control distributions

- Analysis of difrractive D*
- Number of D* mesons is determined from a fit of the mass in each analysis bin
- The results are well described by the MC model which is used for acceptance corrections

Diffractive D* kinematic variables

- The cross section is also studied wrt D* kinematic variables
- The results are described by the NLO calculation

DIS phase space					
$5 < Q^2 < 100 \mathrm{GeV}^2$					
0.02 < y < 0.65					
D* kinematics					
$p_{t,D^*} > 1.5 \text{ GeV}$					
$-1.5 < \eta_{D^*} < 1.5$					
Diffractive phase space					
$x_{I\!\!P} < 0.03$					
$M_Y < 1.6 \text{ GeV}$					
$ t < 1 \mathrm{GeV}^2$					

Ratio to inclusive D* production

- D* production in inclusive DIS has been measured earlier at HERA
- Shown here: ratios of diffractive to inclusive D* production
- Ratio variations are expected from diffractive phase-space limitations

Theory: NLO (diffractive)
 divided by NLO (inclusive)
 describes data well

