Charm and beauty at HERA

Stefan Schmitt, DESY for the HERA collaborations H1 and ZEUS

Outline

- The HERA collider
- Charm and beauty production in deep-inelastic scattering
- Data combination
- The new combined HERA charm and beauty data
- Comparisons to NLO QCD
- Charm production in diffractive DIS

The HERA collider

- World's only ep collider 19922007
- $920 \times 27.6 \mathrm{GeV}$ ($\mathrm{V}=320 \mathrm{GeV}$)
- Two collider experiments, H1 and ZEUS
- Integrated Luminosity:
$\sim 2 \times 0.5 \mathrm{fb}^{-1}$
- $\mathrm{e}^{+} \mathrm{p}$ and $\mathrm{e}^{-} \mathrm{p}$ data

Angular coverage with EM+had calorimeters to low angles Tracking in the central region

Deep-inelastic scattering

- Inclusive processes
- Neutral current (NC)
- Charged current (CC)
- Momentum transfer Q^{2}
- Inelasticity y
- Bjorken-x
- This talk: NC scattering with charm or beauty detected in the hadronic final state X

Measurement at $\mathrm{Q}^{2}, \mathrm{x}$ probes sum of (anti-) quark PDFs $\sigma \sim \Sigma|M|^{2} \mathrm{e}_{\mathrm{i}}^{2 f} \mathrm{f}_{\mathrm{i}}\left(\mathrm{Q}^{2}, \mathrm{x}\right)$
(gluon enters at higher orders)
exchanged 4-momentum:

$$
q=e-e^{\prime}=X-p
$$

Kinematic variables

$$
\begin{aligned}
Q^{2} & =-q^{2} \\
y & =\frac{p q}{p e} \\
x & =\frac{Q^{2}}{s y}
\end{aligned}
$$

Charm and beauty production at HERA

Experimental methods:
High pt lepton Reconstructed D, D* mesons Impact parameter, secondary vertex elements

Measured quantity: reduced cross section $\sigma_{\text {red }}$ with charm or beauty in final state

Reduced cross section: double-differential cross section divided by kinematic factors

NLO calculations: fixed-flavour number scheme (FFNS) where PDF only contains light flavours u,d,s and the gluon. Massive heavy quarks are in the matrix

Alternative (not used in this talk): variableflavour number scheme and massless c, b quarks in the PDF above threshold. PDFs can be converted between schemes.

HERA combination of charm and beauty

- Two experiments H1 and ZEUS
- First combination of HERA charm data published in 2012
- Eur.Phys.J.C73 (2013) 2311
- This talk: new combination of charm and beauty data
- H1prelim-17-071, ZEUS-prel-17-01
- 13 datasets, using different experimental methods

Combined data: 12 bins in $\mathrm{Q}^{2}, 52$ charm data points and 27 beauty data points, all point-to-point correlations taken into account
(Data combination details: see backup slides)
https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours
 Results and comparison to NLO QCD

https://www.desy.de/h1zeus/combined_results/index.php?do=heavy_flavours

Ratios to NLO QCD

NLO QCD fit and c,b masses

- HERA (prel.) NLO HERAPDF2.0 FF3A
...... NLO ABM11
- Charm and beauty data together with HERA inclusive DIS data are taken as input to a NLO QCD fit (dashed line)
- Simultaneously extract PDFs and c,b masses

$$
\begin{aligned}
m_{c}\left(m_{c}\right) & =1209_{-41}^{+46}(\text { fit })_{-14}^{+62}(\text { model })_{-31}^{+7} \text { (param) } \mathrm{MeV} \\
m_{b}\left(m_{b}\right) & =4049_{-109}^{+104}(\text { fit })_{-32}^{+90}(\text { model })_{-31}^{+1}(\text { param }) \mathrm{MeV}
\end{aligned}
$$

- Compatible with previous HERA analyses and with world data

Also see talk by A. Gizhko on runing charm mass (Friday)

PDG: $m_{c}\left(m_{c}\right)=1270 \pm 30 \mathrm{MeV}$ and $m_{b}\left(m_{b}\right)=4180 \pm 30 \mathrm{MeV}$

Charm production in diffractive DIS

- About 10% of the inclusive DIS cross section an HERA are diffractive at low x
- Experimental signature: proton stays intact, no activity in forward detectors, large rapidity gap
$t: p$ vertex 4-mom. transfer squared
$x_{I P}: I P$ long. mom. fraction
β or $z_{I P}$: parton long. mom. fraction
- Theory (Collins): QCD factorisation holds in diffractive DIS \rightarrow concept of diffractive PDFs (DPDFs)

predict
Inclusive diffraction: extract DPDFs

$$
f_{i}\left(Q^{2}, \beta, t, x_{I P}\right)
$$

Diffractive charm production: test factorisation theorem in diffraction

DIS phase space
$5<Q^{2}<100 \mathrm{GeV}^{2}$
$0.02<y<0.65$
D^{*} kinematics
$p_{t, D^{*}}>1.5 \mathrm{GeV}$
$-1.5<\eta_{D^{*}}<1.5$
Diffractive phase space
$x_{\mathbb{I}}<0.03$
$M_{Y}<1.6 \mathrm{GeV}$
$\|t\|<1 \mathrm{GeV}^{2}$

- Electron variables: Q^{2} and y

- Diffractive variables: $\log \left(\mathrm{x}_{\mathrm{IP}}\right), \mathrm{z}_{\mathrm{IP}}$
- Well described by NLO QCD, large theory scale uncertainties (yellow band)
- DPDF uncertainties (red) similar to data precision
- D* kinematic distributions also described (\rightarrow backup)

EPJ C77 (2017) 340
[arXiv:1703.09476]

Diffractive to inclusive D^{*} ratio

Diffractive fraction

- Investigate diffractively produced fraction of D* mesons
- Results of many analyses largely agree with each other
- Similar ratios are observed in deepinelastic scattering and in photoproduction, where one possibly expects to see differences

Note: diffractive QCD factorisation theorem is proven only for DIS [$\mathrm{Q}^{2} \gg 0$] not for photoproduction $\left[\mathrm{Q}^{2}=0\right.$]

Summary

- New combination of charm and beauty double-differential cross section measurements in deep-inelastic scattering at HERA
- Test of QCD with massive quarks (multiple scale problem)
- Fixed flavour-number calculations provide good description
- PDF fit: charm and beauty data constrain quark masses

\rightarrow measure running quark masses from HERA data alone

$$
\begin{aligned}
m_{c}\left(m_{c}\right) & =1209_{-41}^{+46}(\text { fit })_{-14}^{+62}(\text { model })_{-31}^{+7}(\text { param }) \mathrm{MeV} \\
m_{b}\left(m_{b}\right) & =4049_{-109}^{+104}(\text { fit })_{-32}^{+90}(\text { model })_{-31}^{+1}(\text { param }) \mathrm{MeV}
\end{aligned}
$$

- New measurement of charm in diffractive DIS at HERA: test of diffractive QCD factorisation and diffractive PDFs
\rightarrow Data are described by theory within large scale+DPDF uncertainties

Backup

- Two experiments H1 and ZEUS
- First combination of HERA charm data published in 2012

Eur.Phys.J.C73 (2013) 2311

- This talk: new combination of charm and beauty data

H1prelim-17-071, ZEUS-prel-17-01

- 13 datasets, using different experimental methods
(Data combination details: see backup slides)

Data combination technical details

- Measurements are extrapolated to a common grid in $\left(Q^{2}, x\right)$ using NLO theory. Correction factors near unity, theory variation considered as systematic uncertainty
- Combination $\chi^{2} / \mathrm{Ndf}=149 / 187$
- Pull distribution approximately Gaussian

Data combination

- Many measurements are combined to a single point, large gain in precision
- Correlations of systematic uncertainties between input data points accounted for
- Shown here: charm data before/after combination

Mg 0

- H1 VTX
- ZEUS $\mu 2005$
\therefore ZEUS D^{0}

Kinematic range: $2.5 \leq \mathrm{Q}^{2} \leq 2000 \mathrm{GeV}^{2}$

$$
3 \times 10^{-4} \leq x \leq 5 \times 10^{-2}
$$

Charm: 12 bins in Q^{2}, a total of 52 combined data points

Beauty: 12 bins in Q^{2}, a total of 27 combined data points Charm combination: 2017 and 2012

- Compare 2017 combination to 2012 combination of charm data
- Central points are similar
- Improved uncertainties by ~20\% at intermediate Q ${ }^{2}$

Diffractive D* analysis

- New analysis by H1
- Large-rapidity gap to select diffractive events
- Electron in backward calorimeter
- D* reconstructed in K $\pi \pi$ channel
- Cross sections from fit of mass distribution in each analysis bin
- NLO QCD (FFNS) with DPDF from 2006 H1 analysis of inclusive diffraction

Diffractive D* control distributions

- Analysis of difrractive D*
- Number of D* mesons is determined from a fit of the mass in each analysis bin
- The results are well described by the MC model which is used for acceptance corrections

Diffractive D* kinematic variables

- The cross section is also studied wrt D* kinematic variables
- The results are described by the NLO calculation

DIS phase space
$5<Q^{2}<100 \mathrm{GeV}^{2}$
$0.02<y<0.65$
D^{*} kinematics
$p_{t, D^{*}}>1.5 \mathrm{GeV}$
$-1.5<\eta_{D^{*}}<1.5$
Diffractive phase space
$x_{\mathbb{R}}<0.03$
$M_{Y}<1.6 \mathrm{GeV}$
$\|t\|<1 \mathrm{GeV}^{2}$

Ratio to inclusive D* production

- Ratio variations are expected from diffractive phase-space limitations
- Theory: NLO (diffractive) divided by NLO (inclusive) describes data well

DIS phase space
$5<Q^{2}<100 \mathrm{GeV}^{2}$
$0.02<y<0.65$
D^{*} kinematics
$p_{t, D^{*}}>1.5 \mathrm{GeV}$
$-1.5<\eta_{D^{*}}<1.5$
Diffractive phase space
$x_{\mathbb{P}}<0.03$
$M_{Y}<1.6 \mathrm{GeV}$
$\|t\|<1 \mathrm{GeV}^{2}$

- D* production in inclusive DIS has been measured earlier at HERA
- Shown here: ratios of diffractive to inclusive D* production

