H1 analysis and the EIC

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

11-15 April 2016, DESY, Hamburg

The H1 experiment at HERA

- 1994-2000: HERA-I ~100 pb-1
- 2000-2002: upgrade
- 2003-2007: HERA-II ~350 pb-1, e⁺p e⁻p lepton beam polarisation

- E(e)=27.5 GeV
- E(p)=920 GeV [was 820 GeV before 1998]
- 2007: low-energy runs: E(p)=460 and 575 GeV

The H1 experiment

- Detector highlights
 - LAr calorimeter, fine segmentation
 - SpaCal rear calorimeter: high precision for electrons (position and energy)
 - Central tracker
 20<θ<160 Sor

Some highlights of the HERA-II detector:

- Backward silicon tracker (low mom. Electrons)
- Fast track trigger (exclusive final states)
- Forward instrumentation (diffraction, exclusive final states)
- Forward proton and forward neutron/photon detectors
- EM energy scale 0.5%, hadronic energy scale 1%

S.Schmitt, H1 analyses and the EIC

Forward instrumentation

- Forward instrumentation (HERA-II configuration)
 - FTS (veto counter) ~30m
 - FPS (proton) ~70m
 - VFPS (proton) ~220m
 - FNC (neutron) ~100m
- Tagged proton for x_{IP}<0.025 (FPS/VFPS)
- Statistical separation of elastic and proton dissociative contributions

The H1 collaboration

- Two spokespersons
 - Stefan Schmitt,
 Sergey Levonian
- Physics board
 - ~30 H1 members
- Active H1 members
 - ~140 people, on authorlist

- H1 membership rules
 - Be a physicist
 - Contribute to H1

Master students contributing a study become authors of the relevant paper(s)

PhD students or seniors join the collaboration and become members for all papers (+one year after leaving H1)

H1 Papers

- H1 paper procedure:
 - Presentations in H1 meetings
 - Analyzers, "referees" and H1
 management agree analysis is ready
 - Circulate paper draft, "T0 report"
 - Collect H1 comments
 - Answer file, "referee's report"
 - Updated draft [~6 weeks after T0]
 - Final reading [~1 week after 2nd draft]
 - Submit to journal [~1 week]

Editorial board

Generated from INSPIRE on 04/04/2016

Citation rank	H1
Total number of citable papers	<u>228</u>
Total number of citations	19,078
Average citations per paper	83.7
<u>h-index</u>	74

Renowned papers	(500+ cites)	3
Famous papers	(250-499 cites)	12
Very well-known papers	(100-249)	40
Well-known papers	(50-99)	60
Known papers	(10-49)	101
Less known papers	(1-9)	11
Unknown papers	(0)	1
Top cited paper:	Σ citations =	<u>719</u>
2-nd top cited paper:	Σ citations =	<u>641</u>
3-rd top cited paper:	Σ citations =	<u>522</u>

H1 data

- H1 data and Monte Carlo simulation are stored at DESY
- Accessible by two servers and by batch jobs
- Analysis software: Object oriented, based on root classes (Root → H1OO)
- Reconstruction software: FORTAN based
- MC generators: mostly FORTRAN

Example: fragment of the H1OO documentation

H1Part	H1 Particle base class				
H1PartCand	H1 Particle Candidate				
H1PartCandArrayPtr	data access class for a TClonesArray of H1PartCand				
H1PartCandIterator	Semi-abstract base class for iterator access to particle candidates				
H1PartComp	base class for identified particles				
H1PartConvPhoton	class for Photon->e+ e-				
H1PartConvPhotonArray	Ptr data access class for a TClonesArray of H1PartConvPhoton				
H1PartDstar	class for dstar to Kpipi				
H1PartDstarArrayPtr	data access class for a TClonesArray of H1PartDstar				
H1PartDstarK03Pi	class for dstar to pi_s K0 pi pi				
H1PartDstarK03PiArrayP	tr data access class for a TClonesArray of H1PartDstarK03Pi				
H1PartDstarKPiRhoPi	class for D* -> D0 pi_s -> K pi rho pi_s				
H1PartDstarKPiRhoPiArrayPtr data access class for a TClonesArray of H1PartDstarKPiRhoPi					
H1PartEm	class for identified electrons				
H1PartEmArrayPtr	data access class for a TClonesArray of H1PartEm				
H1PartFNC	class for FNC neutrons				
H1PartFNCArrayPtr	data access class for a TClonesArray of H1PartFNC				
H1PartFPS	class for FPS protons				
H1PartFPSArrayPtr	data access class for a TClonesArray of H1PartFPS				
H1PartGenJetArrayPtr	data access class for a TClonesArray of H1PartJet				
H1PartID	base class for identified particles				
H1PartInclJetArrayPtr	data access class for a TClonesArray of H1PartJet (inclusive)				
H1PartJPsi	class for J/Psi particles (elastic, inelastic production)				
H1PartJPsiArrayPtr	data access class for a TClonesArray of H1PartJPsi				
H1PartJet	H1 Jet Candidate				
H1PartJetArrayPtr	data access class for a TClonesArray of H1PartJet				
H1PartK0	class for K0->pi+ pi-				
H1PartK0ArrayPtr	data access class for a TClonesArray of H1PartK0				
H1PartLambda	class for Lambda->p pi- + CC				
H1PartLambdaArrayPtr	data access class for a TClonesArray of H1PartLambda				
H1PartLightVMDiff	class for diffractive light vm particles				
H1PartLightVMDiffArrayF	Ptr data access class for a TClonesArray of H1PartLightVMDiff				
H1PartMC	Monte Carlo Particle with information from the PDG				
H1PartMCArrayPtr	data access class for a TClonesArray of H1PartMC				

HERA kinematics

DIS event at low Q²: electron in SpaCal Proton remnant disappears in the forward (proton) direction.

Hadrons in central detector+remnant

 \rightarrow high W

- Electron outside detector:
 "photoprod." Q²<2 GeV²
- Electron in SpaCal:
 "low Q²" 4<Q²<100 GeV²
- Electron in LAr:
 "high Q²" Q²>150 GeV²
- Q²=sxy, W²=Q²(1/x-1)
- HERA: low-x and high-W

Ideas for H1 analyses

- Many analysis are open
- Only a few examples are given here
 - Charged current in low-energy runs
 - Diffractive PDF fit
 - Inclusive diffraction with forward proton (VFPS)
 - Vector meson production
 - DVCS
 - K0 and Λ cross sections at low/high Q^2
 - Charm and beauty with electrons

Inclusive charged current

• Total CC cross section in low energy runs

link to cosmic ray physics, high energetic neutrinos.

Analysis will be statistically limited but still interesting

Ep [GeV]	460	575	820	920
E(ν) [TeV]	27	34	48	54
	ow-energy run		HERA-I	HERA-II

Table: equivalent neutrino energy for fixed-target interaction

Proposal by D. Haidt

the short runs at reduced energy may be used to measure the W-propagator term in the way we did in our first paper on e+p --> nu + anything (DESY 94-12). The corresponding neutrino energies, when interpreting the process in the proton rest frame, are 27, 34 and 54 TeV. The cross section measurements would be unique and very helpful to the neutrino telescope and astrophysics groups. They make extrapolations from 600 GeV to the EeV region !

The analysis will be straightforward and may follow the method in our old paper.

1993 we could make a contribution with 14 events. Among them we had also a radiative event. It may therefore conceivable to select in addition a sample of events e+p --> nu+gamma+anything to obtain a measurement

at an average energy around a few TeV. In that case we would cover the

region where the W-propagator gets important.

S.Schmitt, H1 analyses and the EIC

Diffraction

• Diffractive PDF fits Last H1 fit is 10 years old

New high-statistics cross section data from HERA-II available: inclusive, jet production, D* production

Inclusive F2D4 measurement
 using VFPS

Not published but people from DESY and Brussels are interested.

10.Apr 2016

S.Schmitt, H1 analyses and the EIC

Vector mesons

- Light (ρ, ϕ) and heavy $(J/\psi,\psi',\Upsilon)$ vector mesons
 - Only ρ and J/ ψ in γp analyzed
 - Todo: measurements in yp and DIS, beam polarisation, spin, etc

1.15

H1 PRELIMINARY

e(k)

s

p(P)

elastic

 Q^2

 $W_{\gamma p}$

 $\gamma^*(q)$

S.Schmitt, H1 analyses and the EIC

DVCS

- Published: DVCS crosssection and beam-charge asymmetry measured at low y: background from BH ~40%
- Deeply-virtual Compton Scattering at high y~0.5: BH ~98%, but beam-charge and beam-spin asymmetries could be measured. Active analysis presently is on hold, analyser is at DESY.

Strangeness in DIS

 K^0 and Λ production at low/high Q^2 – cross-section measurements

Preliminary analyses of Hera-II data shown at conferences \rightarrow to be finished

Possible addition (idea by G. Schnell) study helicity transfer from 2000 to 1000

Μ(π⁻, π⁺) [GeV]

Charm and beauty

- Sophisticated electron discriminator for use with the hadronic final state. So far exploited only by one analysis \rightarrow huge potential: Br(c \rightarrow e)~10%
- Examples
 - Precision $F_2(c)$ or $F_2(b)$
 - F_L(c) (low E runs)
 - (maybe) charm in charged current - difficult

H1

Analysis help at DESY

- Many H1 members are around at DESY and possibly could contribute, e.g. student supervision / analysis help / paper draft
- To give a few names (list is not complete):
 - D.Britzger, K.Daum, D.Krücker, K.Krüger, J.List, J.Olsson, S.Levonian, S.Schmitt
- Contact the spokespersons if interested to join H1

Summary

- Many interesting H1 analyses are still open, for example
 - Low energy runs
 - Diffraction
 - Exclusive final states, e.g. vector mesons and DVCS
 - Hadronic final state, charm & beauty
- In several cases, analyses exist and simply have to be finished
- A more complete discussion of possible future HERA analyses is available from the workshop held in 2014

Future Physics with HERA data for Current and Planned Experiments https://indico.desy.de/conferenceDisplay.py?confld=10523