Suche nach neuer Physik am HERA Beschleuninger

1

- Der HERA Collider
- Tests des Standardmodells (SM) bei HERA
- Suche nach Leptoquarks und Leptonflavourverletzung
- Ereignisse mit hochenergetischen Leptonen und fehlendem Transversalimpuls
- R_p verletzende Supersymmetrie

Stefan Schmitt, DESY Hamburg

Mehr Resultate von HERA:

- Multileptonen, H^{++}
- Angeregte Fermionen
- . . .

http://www-h1.desy.de http://www-zeus.desy.de

Der HERA ep Collider

• $E_e = 27.6 \,\text{GeV}, E_p = 920 \,\text{GeV}$ Schwerpunktsenergie $\sqrt{s} = 320 \,\text{GeV}$

- Collider Experimente: H1 und ZEUS
- HERA I: 1994-2000 100 pb^{-1} in e^+p pro Experiment 15 pb^{-1} in e^-p pro Experiment
- HERA II: 2003-2007. Bis jetzt: 60 pb^{-1} in e^+p pro Experiment 100 pb^{-1} in e^-p pro Experiment
- Neu bei HERA II: longitudinale Lepton Polarisation für H1/ZEUS

Tests des Standard-Modells

HERA und das Standard Modell

Stefan Schmitt, DESY Hamburg

Kontaktwechselwirkung

Annahme: neue Physik läßt sich durch 4-Fermion Wechselwirkung beschreiben: $\frac{d\sigma}{dQ^2}$ ist sensitiv auf $\pm \frac{g^2}{\Lambda^2}$ Vergleich von $\frac{\sigma(DATA)}{\sigma(SM)}$ mit $\frac{\sigma(SM+CI)}{\sigma(SM)}$

Standard Modell

Stefan Schmitt, DESY Hamburg

DPG Tagung in Dortmund, 28.3.2006

effektive 4-Fermion

Lepton Polarisation und geladener Strom

Stefan Schmitt, DESY Hamburg

Modell-unabhängige Suche nach neuer Physik bei H1

Kombiniere Objekte (μ , e, ν , γ , jet) in exklusiven Kanälen.

Gute Übereinstimmung mit SM in variablen Massen- bzw p_t -Fenstern.

Interessantester Kanal: $\mu + \nu + \text{jet}$ (155 < M < 200: 3 events, 0.2 erwartet)

Suche nach Leptoquarks und Leptonzahlverletzung

Suche nach Leptoquarks (LQ)

- Boson mit leptonischen und baryonischen Quantenzahlen
- Verbindet Lepton, Quark Sektor des SM
 → LQ tauchen in diversen Erweiterungen des SM auf
- Koppelt an Lepton-Quark Paar, Stärk
e λ
- Neue Quantenzahl F = 3B + L: F = 0 koppelt an e^+q und $e^-\bar{q}$ F = 2 koppelt an e^-q und $e^+\bar{q}$
- HERA: resonante Erzeugung von einzelnen LQs (14 verschiedene Typen, Modell von Buchmüller, Rückl, Wyler)
 e⁺e⁻: Paarproduktion oder t Kanal

pp: Paarproduktion

NC/CC DIS: Austausch von Z/γ oder W im t Kanal

Suche nach leptonflavour-erhaltenden Leptoquarks

Vergleich Massenspektrum mit SM Keine Abweichung \rightarrow Limits Limits auf 14 Typen von Leptoquarks ZEUS

DPG Tagung in Dortmund, 28.3.2006

Leptoquark Limits im Vergleich

Für $M < 320 \,\mathrm{GeV}$: resonante Produktion Für $M \gg 320 \,\mathrm{GeV}$: Kontaktwechselwirkung NB: LQ limits gelten auch für R_p verletzende SUSY: $\tilde{S}_{1/2,L} \to \tilde{u}_L^j$ mit $\lambda = \lambda'_{1j1}$ $S_{0,L} \to \tilde{d}_L^{k\star}$ mit $\lambda = \lambda'_{11k}$ (falls der direkte R_p verletzende Zerfall dominiert)

Stefan Schmitt, DESY Hamburg

Suche nach leptonflavour verletzenden Leptoquarks

Limits auf leptonflavour verletzende Leptoquarks

$e \to \tau$		ZEUS $e^{\pm}p$ 94-00				F = 0	
$\alpha\beta$	$S^L_{1/2}_{e^-\bar{u}}_{e^+u}$	$S^R_{1/2} \\ e^{-(\bar{u}+\bar{d})} \\ e^{+}(u+d)$	$ \begin{array}{c} \tilde{S}^L_{1/2} \\ e^- \bar{d} \\ e^+ d \end{array} $	$V^L_0\\ e^-\bar{d}\\ e^+d$	$V^R_0\\ e^{-\bar{d}}\\ e^+d$	$\begin{array}{c} \tilde{V}_0^R \\ e^- \bar{u} \\ e^+ u \end{array}$	$V_1^L \\ e^-(\sqrt{2}\bar{u} + \bar{d}) \\ e^+(\sqrt{2}u + d)$
11	$\begin{array}{c} \tau \to \pi e \\ 0.4 \\ 1.8 \end{array}$	$ au o \pi e$ 0.2 1.5	$\begin{aligned} \tau \to \pi e \\ 0.4 \\ 2.7 \end{aligned}$	$ au o \pi e$ 0.2 1.7	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.2 \\ 1.7 \end{array}$	$ au o \pi e$ 0.2 1.3	$ au o \pi e$ 0.06 0.6
1 2	1.9	$\tau \rightarrow Ke$ 6.3 1.6	$K \to \pi \nu \bar{\nu}$ 5.8×10^{-4} 2.9	$\tau \rightarrow Ke$ 3.2 2.1	$\tau \rightarrow Ke$ 3.2 2.1	1.6	$K \to \pi \nu \bar{\nu}$ 1.5×10^{-4} 0.8
13	*	$B ightarrow au ar{e}$ 0.3 3.2	$B ightarrow au ar{e}$ 0.3 3.3	$B ightarrow au ar{e}$ 0.13 2.6	$B ightarrow au ar{e}$ 0.13 2.6	*	$egin{array}{c} B ightarrow auar{e} \ 0.13 \ {f 2.6} \end{array}$
2 1	6.0	$ au \rightarrow Ke$ 6.3 4.1	$\begin{split} K &\to \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ 5.2 \end{split}$	au ightarrow Ke 3.2 2.3	$\tau \rightarrow Ke$ 3.2 2.3	2.1	$K \to \pi \nu \bar{\nu}$ 1.5×10^{-4} 0.9
2 2	$\tau \rightarrow 3e$ 5 10	$\tau \rightarrow 3e$ 8 5.6	$\tau \rightarrow 3e$ 17 6.5	au ightarrow 3e 9 3.4	$\tau \rightarrow 3e$ 9 3.4	au ightarrow 3e 3 5.5	au ightarrow 3e 1.6 2.1
2 3	*	$B \rightarrow \tau \bar{e} X$ 14 8.1	$B \rightarrow \tau \bar{e} X$ 14 7.8	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	$B \rightarrow \tau \bar{e} X$ 7.2 5.5	*	$B \rightarrow \tau \bar{e} X$ 7.2 5.5
3 1	*	$B \rightarrow \tau \bar{e}$ 0.3 7.8	$B ightarrow au ar{e}$ 0.3 7.2	V_{ub} 0.12 2.5	$B \rightarrow \tau \bar{e}$ 0.13 2.5	*	V_{ub} 0.12 2.5
32	*	$B \to \tau \bar{e} X$ 14 11	$B \to \tau \bar{e} X$ 14 10	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	$B \to \tau \bar{e} X$ 7.2 4.2	*	$B \rightarrow \tau \bar{e} X$ 7.2 4.2
33	*	au ightarrow 3e 8 15	au ightarrow 3e $ 17$ $ 14$	au ightarrow 3e 9 8.1	au ightarrow 3e 9 8.1	*	au ightarrow 3e 1.6 8.1

Abbildung: Limits von ZEUS auf

$$\frac{\lambda_{eq_{\alpha}}\lambda_{\mu,\tau q_{\beta}}}{M^2}$$
 in [TeV⁻²]

im Prozess $e^{\pm}p \rightarrow \tau^{\pm}X$ (für $M \gg 320 \,\text{GeV}$) In vielen Fällen sind die HERA limits besser als bisherige Limits (indirekte Limit aus seltenen Zerfällen usw)

Limits für $M < 320 \,{\rm GeV}$: siehe H1/ZEUS Veröffentlichungen

Ereignisse mit hochenergetischen Leptonen und fehlendem Transversalimpuls

Ereignisse mit hochenergetischem Lepton und $p_{t}^{\rm miss}$ Transversalimpulse:

- Geladenes Lepton (e, μ) : p_t
- Neutrino: p_t^{miss}
- Hadronen: p_t^X

Vermutung: Zerfall eines W Bosons

Stefan Schmitt, DESY Hamburg

Ereignisse mit Lepton und p_t^{miss} bei H1 und ZEUS

 \rightarrow warte auf mehr e^+p Daten in 2006/2007

Stefan Schmitt, DESY Hamburg

Suche nach anomaler top Produktion

H1 und ZEUS Events nach top Selektion

Stefan Schmitt, DESY Hamburg

Limits auf anomale top Produktion

- Limit $\kappa_{tu\gamma < 0.2}$
- Komplementär zu LEP Limits (Sensitivität auf γ bzw Z^0)
- H1 Analyse: vernachlässige Z^0 Austausch

Stefan Schmitt, DESY Hamburg

Suche nach R_p verletzender Supersymmetrie

R_p verletzende Supersymmetrie bei HERA

Stefan Schmitt, DESY Hamburg

Suche nach Squarks

Beispiel: Squark mit λ_{1j1} Kopplung

Interpretation im mSUGRA Modell:

 $M = m_{1/2} = m_0$: Masse der skalaren Teilchen/Gauginos bei GUT Skala.

Beste Sensitivität auf stop, bis zu 140 GeV ($\lambda'_{131} = 0.3$).

Slepton-Austausch im t-Kanal

Rekonstruierte Neutralino-Masse

Kein Signal: Limits auf GMSB Modelle

Mit R_p verletzender Kopplung $\lambda' = 1$: Massen bis zu 115 GeV ausgeschlossen

Stefan Schmitt, DESY Hamburg

Zusammenfassung/Ausblick

- Bestätigung des Standard Modells mit hoher Präzision Erste Ergebnisse mit polarisierten Leptonen bei höchsten Q^2
- Leptoquark Suche mit/ohne Leptonzahl-Verletzung: verbesserte Limits, HERA II Daten werden derzeit analysiert.
- Suche nach isol. Leptonen, W, top produktion: H1 Excess in e^+p , warten auf mehr Statistik von HERA II
- R_p verletzende SUSY: Suche nach Squarks in mSUGRA und Neutralinos in GMSB Modellen.
- viele weitere Resultate konnten hier nicht gezeigt werden

Suche nach neuer Physik bei HERA bleibt weiter spannend:

- Erwarte Verdoppelung der bisher gesammelten Luminosität bis Mitte 2007
- Daten noch nicht vollständig analysiert