

The H1 experiment at HERA

- World's only ep collider 1994-2007
- 920 x 27.6 GeV (√s=320 GeV)
- Two collider experiments, H1 and ZEUS
- Total integrated Luminosity: ~100 pb⁻¹ (HERA-I) ~400 pb⁻¹ (HERA-II)
- This analysis: HERA-II data,
 ~50 pb⁻¹ with proton tagger

QCD Factorisation

- QCD factorisation in diffractive DIS (Collins): proton structure can be described by DPDFs $f_i(z_{IP}, \mu_F^2, x_{IP}, t)$
- Proton vertex factorisation: assume that DPDF factorizes into flux and pomeron PDF $f_i(z_{IP}, \mu_F^2, x_{IP}, t) =$

$$f_{p/IP}(x_{IP},t) \times f_i(z_{IP},\mu_F^2)$$

H12006 DPDF Fit-A and Fit-B

- Fit-A and Fit-B: Eur. Phys. J. C48 (2006) 715-748 [hep-ex/0606004]
- First comparison to jet data: JHEP 0710:042,2007. [arxiv:0708.3217]

0.2

0.6

0.4

0.8

Ζ

0.2

0

Proton dissociation

Ratio has been measured by H1, see backup slides

EPJC71 (2011) 1578 [arxiv:1010.1476]

- H12006 Fit-B is made using diffractive DIS data with large-rapidity gap selection
- Includes contribution from protondissociation M_{γ} <1.6 GeV
- This analysis: tagged forward proton, $M_{\gamma}=m_{p}$

 \rightarrow Global correction factor applied to NLO predictions:

$$\frac{\sigma(M_{Y} = m_{p})}{\sigma(M_{Y} < 1.6 \, GeV)} = \frac{1}{1.2} = 0.83$$

Factorisation breaking

- NLO predictions based on HERA DPDFs fail to predict diffractive jet production at hadron colliders
- Suppression factor: data/NLO S²~0.2
- At HERA: suppression observable in photoproduction?

wrt blue line (POMPYT+H12006 Fit B)

Past results from HERA

(Data/NLO)_{?p}/(Data/NLO)_{DIS}

lata / theory

0.8

0.6

0.4

0.2

H1 Diffractive Dijet Production

200

0.2 0.4 0.6 0.8

H1

(a)

220

H1 2006 Fit B DPDF

180

H1

11

0.5

- Three independent analyses, results not fully consistent
- All based on large-rapidity gap method
- H1 tagged photoproduction (electron in zero-angle spectrometer)
- This talk: new analysis using tagged proton
- Measure both DIS and γp

Nucl.Phys B 831 (2010) 1 [arXiv:0911.4119] S²~1 [γp] Untagged photoproduction E_τ>7.5 (6.5) GeV, -1.5<η<1.5

S. Schmitt, DIS2015, Dallas

NLO calculations

• DIS

- NLOJET++, verified against DISENT NLO
- Scale choice: $\mu_R^2 = \mu_F^2 = \langle E_T^{*jet} \rangle^2 + Q^2$ where: $\langle E_T^{*jet} \rangle = \frac{E_T^{*jetl} + E_T^{*jet2}}{2}$
- Scale variant:

$$\mu_R^2 = \mu_F^2 = (E_T^{*jetl})^2 + Q^2$$

• Photoproduction

- FKS, verified against
 Klasen & Kramer
- Scale choice:

 $\mu_R^2 = \mu_F^2 = \langle E_T^{jet} \rangle^2$

- Photon PDF: GRV, alternative: AFG

 $\mu_R^2 = \mu_F^2 = (E_T^{*jetl})^2$

Scale variation: factor 2 up and down

Detecting the leading proton

- HERA-I: forward proton spectrometer (FPS)
- HERA-II: upgrade of FPS and new very forward spectrometer (VFPS), 220 m downstream main detector
- This talk: results from VFPS

• VFPS: full geometrical acceptance down to t=0

Event selection

	Photoproduction	DIS	
Event kinematics	$Q^2 < 2 \mathrm{GeV}^2$	$4\mathrm{GeV}^2 < Q^2 < 80\mathrm{GeV}^2$	_
	0.2 < y < 0.7		
Diffractive phase space	$0.010 < x_{I\!\!P} < 0.024$		
	$ t < 0.6 \mathrm{GeV^2}$		No rapidity gap
	$z_{I\!\!P} < 0.8$		enlarged jet
Jet phase space	E_T^{*je}	$^{ m t1} > 5.5{ m GeV}$	angular
	$E_T^{* { m jet} 2} > 4.0{ m GeV}$		acceptance compared to
	-1 <	$<\eta^{ m jet 1,2} < 2.5$	earlier analyses

- Parallel selection of DIS (detect electron) and photoproduction (absence of electron)
- Otherwise, identical phase-space

Control distributions

- Simulation: RAPGAP+DPDF fit B, reweighted to describe data
- Reconstructed quantities are well described by reweighted LO MC \rightarrow can $\frac{10^3}{2}$ be used for unfolding detector effects
- Regularized unfolding (TUnfold) to correct for migrations

Integrated cross section

	PHP	DIS
Data [pb]	237 ± 14 (stat) ± 31 (syst)	30.5 ± 1.6 (stat) ± 2.8 (syst)
NLO QCD [pb]	430^{+172}_{-98} (scale) $^{+48}_{-61}$ (DPDF) ± 13 (hadr)	$28.3^{+11.4}_{-6.4}$ (scale) $^{+3.0}_{-4.0}$ (DPDF) ± 0.8 (hadr)
RAPGAP [pb]	180	18.0
Data/NLO	0.551 ± 0.078 (data) $^{+0.230}_{-0.149}$ (theory)	1.08 ± 0.11 (data) $^{+0.45}_{-0.29}$ (theory)

- DIS cross section is consistent with NLO
- γp cross section is off by ~ factor of two
- Suppression is there not related to proton dissociation
- Numerically consistent with earlier H1 measurements

Systematic uncertainties

		DIS	үр
 All sources contribute about equally 	VFPS detector	3.0%	5.3%
	hadr energy scale	4.4%	7.2%
	model uncertainties	4.3%	6.9%
	Normalisation	6.0%	6.0%
	Total	9.1%	12.8%

 Model uncertainty is uncorrelated between DIS and γp, so there is no cancellation in cross section ratios

Differential cross sections (DIS)

- DIS data compatible with NLO predictions, both in shape and in normalisation
- Jet E_T somewhat harder than predicted

Differential cross sections (yp)

- Photoproduction data compatible in shape with NLO predictions, normalisation is off
- Jet E_T somewhat harder than predicted

Dependence on x_{v}

- Suppression related to resolved photon? Expect to see dependence on x_{γ}
- No dependence observed, confirms earlier measurements

 $x_{\gamma} = \frac{(E - p_z)_{\text{jets}}}{(E - p_z)_{\gamma}}$ At LO: fraction of photon momentum entering hard subprocess

Dependence on Q²

- Same phase-space for DIS and γp: measure Q² dependence data/NLO
- No significant Q² dependence down to 4 GeV². Suppression only in photoproduction
- Leading order MC RAPGAP fails in shape and normalisation

Ratio photoproduction to DIS

- Systematic uncertainties may cancel in the ratio of cross sections γp/DIS
- No significant cancellation observed in data (model uncertainties dominate ratio)
- NLO scale uncertainties cancel in ratio IF scales are varied simultaneously in DIS and γp

Double ratios (1)

- Ratio γp/DIS
- Variables studied:
 |Δη| and y
- Ratio is shape dependent in
 |Δη| ?

- Fit of $|\Delta \eta|$ with constant has probability 15%
 - \rightarrow not significant

Double ratios (2)

- Ratio γp/DIS
- Variables studied: z_{IP} and E_{T}
- No shape dependence observed

- Possible small ${\rm E}_{\rm T}$ dependence of DIS and γp cross sections cancels in ratio

Summary

- New measurement of dijet production with a leading proton detected in the H1 VFPS
- Simultaneous measurement of DIS and photoproduction
- DIS well described by NLO
- Photoproduction suppressed by S²~0.5
- Tagged leading proton: suppression is not related to proton dissociation
- Earlier measurements of S² by H1 with rapidity-gap method are confirmed

Backup

Correction for proton dissociation

1.5 $\sigma(M_{\gamma}{<}1.6~GeV) / \sigma(M_{\gamma}{=}m_p)$ Proton dissociation is **H1** present in inclusive 1.3 diffractive data, hence also in the DPDFs 1.1 Comparison to leading proton data showed H1 LRG/FPS HERA II 0.9 $\frac{\sigma(M_{Y} = m_{p})}{\sigma(M_{Y} < 1.6 \, GeV)} = \frac{1}{1.2} = 0.83$ H1 LRG/FPS HERA I LRG/FPS HERA II Norm. uncert. 0.7 -3 -2 10 10 Factor 0.83 is applied to all X_{IP} NLO calculations shown in EPJC71 (2011) 1578 [arxiv:1010.1476] this talk

Control distributions VFPS

Control distributions diffraction

S. Schmitt, DIS2015, Dallas

Control distributions Q² and M_X

Control distributions jet angles

