### Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA DIS 2015

XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

> Dallas, Texas April 27 – May 1, 2015

Results presented in this talk: JHEP 1503 (2015) 092 [arXiv:1412.0928]

Stefan Schmitt, DESY for the H1 Collaboration

DÈSY

### The H1 experiment at HERA

- World's only ep collider 1994-2007
- 920 x 27.6 GeV (√s=320 GeV)
- Two collider experiments, H1 and ZEUS
- Integrated Luminosity: ~100 pb<sup>-1</sup> (HERA-I) ~400 pb<sup>-1</sup> (HERA-II)
- This analysis: using HERA-II data



### Diffractive dijet production in DIS



- QCD factorisation in diffractive DIS (Collins): proton structure can be described by DPDFs  $f_i(z_{IP}, \mu_F^2, x_{IP}, t)$
- Proton vertex factorisation: assume that DPDF factorizes into flux and pomeron PDF  $f_i(z_{IP}, \mu_F^2, x_{IP}, t) =$  $f_{p/IP}(x_{IP}, t) \times f_i(z_{IP}, \mu_F^2)$

#### DPDFs are taken from H12006 Fit-B to incl. DDIS data

### H12006 DPDF Fit-A and Fit-B



- Fit-A and Fit-B: Eur. Phys. J. C48 (2006) 715-748 [hep-ex/0606004]
- First comparison to jet data: JHEP 0710:042,2007. [arxiv:0708.3217]

0.2

0.6

0.4

0.8

Ζ

0.2

0

## NLO predictions

- NLOJET++ with five active flavours
- Adopted to diffractive DIS using x<sub>IP</sub> slicing method
- 2-loop RGE
- α<sub>S</sub>(M<sub>Z</sub>)=0.118

• scale 
$$\mu_R^2 = \mu_F^2 = \langle P_T^{*jet} \rangle^2 + Q^2$$

- H12006 Fit-B DPDFs
   are used
- DPDF uncertainties are propagated to predicted cross sections
- Scale is varied by factor of 2 up and down

### Detecting diffractive events

- Two methods used at HERA:
  - Proton taggers (next talk)
    - no proton dissociation
    - Direct reconstruction of Y
    - Low acceptance and/or low statistics
  - Large rapidity gap event selection (this analysis)
    - Include dissociation
    - Poor reconstruction of Y
    - High statistics





### **Diffractive dijet selection**

|             | Extended Analysis Phase Space      | Measurement Cross Section Phase Space |
|-------------|------------------------------------|---------------------------------------|
| DIS         | $3 < Q^2 < 100 \text{ GeV}^2$      | $4 < Q^2 < 100 \text{ GeV}^2$         |
|             | <i>y</i> < 0.7                     | 0.1 < y < 0.7                         |
| Diffraction | $x_{I\!\!P} < 0.04$                | $x_{I\!\!P} < 0.03$                   |
|             | LRG requirements                   | $ t  < 1 \text{ GeV}^2$               |
|             |                                    | $M_Y < 1.6 \text{ GeV}$               |
| Dijets      | $p_{\rm T,1}^* > 3.0 {\rm ~GeV}$   | $p_{\rm T,1}^* > 5.5 { m ~GeV}$       |
|             | $p_{\rm T,2}^* > 3.0 {\rm ~GeV}$   | $p_{\rm T,2}^* > 4.0 { m ~GeV}$       |
|             | $-2 < \eta_{1,2}^{\text{lab}} < 2$ | $-1 < \eta_{1,2}^{\text{lab}} < 2$    |

- Most requirements are related to detector capabilities
- Asymmetric  $P_{\tau}$  jet cuts ensure reliable NLO calculation
- Extended analysis phase space to control migration effects

### **Control distributions**

- Simulation: RAPGAP+DPDF fit B, reweighted to describe data
- Reconstructed quantities are well described by reweighted LO MC → can be used for unfolding detector effects
- Regularized unfolding (TUnfold) to correct for migrations



### **Experimental uncertainties**

| Electron angle    | 1%  |
|-------------------|-----|
| Electron energy   | 1%  |
| Hadronic energy   | 4%  |
| Model uncertainty | 5%  |
| Normalisation     | 8%  |
| Total             | 10% |

 Normalisation uncertainty is dominating

#### Integrated cross section

$$\sigma_{meas}^{dijet}(ep \rightarrow eXY) = 73 \pm 2(stat) \pm 7(syst)$$

#### Predicted at NLO:

$$\sigma_{theo}^{dijet}(ep \to eXY) = 77 {}^{+25}_{-20}(scale) {}^{+4}_{-14}(DPDF) \pm 3(had)$$

### Cross sections: DIS variables



- Orange band: DPDF uncertainty
- Red band: total uncertainty

- Variables at electron vertex are well described
- Data are more precise than NLO prediction

### Cross sections: jet variables



- Orange band: DPDF uncertainty
- Red band: total uncertainty

• Jet variables are well described: NLO QCD is applicable

Leading and subleading jet transverse momentum: see backup

### Cross sections: diffractive exchange



- Orange band: DPDF uncertainty
- Red band: total uncertainty

- Diffractive variables well described, large NLO uncertainties
- Data have the potential to further constrain DPDFs

### **Double-differential cross sections**



- Prediction: NLOJET++ ⊗H12006 Fit-B
- Orange band: DPDF uncertainty
- Red band: total uncertainty

- Dependencies on two hard scales Q<sup>2</sup> and P<sub>1</sub> measured
- NLO seems to work  $\rightarrow$  try to extract  $\alpha_s$

Double-diff cross section in  $Q^2$  and  $z_{IP}$  in backup

# Determination of $\alpha_s$



- Fit to double-differential cross sections
- Fixed DPDF H12006 Fit-B

- NLO prediction for fit obtained using fastNLO
- **Fit result**  $\chi^2/n_{d.o.f} = 16.7/14$ 
  - $\alpha_{s} = 0.119 \pm 0.004 (\exp) \\ \pm 0.002 (had) \pm 0.005 (DPDF) \\ \pm 0.010 (\mu_{r}) \pm 0.004 (\mu_{f})$
- Framework applied here (DPDF+NLO) gives consistent results
- First extraction of  $\alpha_{_{\!\!S}}$  in diffractive jet production

### Summary

- Measurement of diffractive dijet production in deep-inelastic scattering
- Integrated cross section precision 3% statistical, 10% systematic uncertainties
- Single- and double differential cross sections measured in several observables
- Potential to constrain future DPDF fits or do other detailed QCD studies. Example:  $\alpha_s$  fit

### Backup

## Single-differential cross sections (4)



- Orange: DPDF
   uncertainty
- Red: total uncertainty

Leading and subleading jet momenta

## Double-differential: Q<sup>2</sup> and Z<sub>IP</sub>



- NLO prediction:
   NLOJET++
   ⊗H12006 Fit-B
- Orange: DPDF uncertainty
  - Red: total uncertainty

- Dependency on Q² and  $z_{_{\rm IP}}$  measured: possible input for a new DPDF fit