DIS 2002 Cracow, April/May 2002 Parallel session

Search for Contact Interactions at HERA

Stefan Schmitt, DESY Hamburg

for the ZEUS and H1 collaborations

- Introduction
- HERA data at high momentum transfer
- Compositeness models

- Leptoquarks
- Quark radius
- Large extra dimensions
- Conclusions

Introduction

Four-momentum transfer Q^2

Cross-section $\frac{d\sigma}{dQ^2}$ is altered in presence of contact interactions

The data

• in e^-p : $\approx 16 \,\mathrm{pb}^{-1}$ collected by

Single differential cross-sections $\frac{d\sigma}{dQ^2}$

HERA Neutral Current $d\sigma/dQ^2$ (pb/GeV²) 10 1 10 10 \triangle H1 e⁺p 94-00 prelim. 10 △ H1 ep • ZEUS e⁺p 99-00 prelim. ZEUS e p 98-99 prelim. 10 SM e⁺p (CTEQ5D) SM e p (CTEQ5D) -5 10 -6 10 y < 0.9 10 10³ **10**⁴ $Q^2 (GeV^2)$

Contact interaction analyzes are based on single differential inclusive cross-section measurements $\frac{d\sigma}{dQ^2}$ at high momentum transfer

 $200\,{\rm GeV}^2 < Q^2 < 50000\,{\rm GeV}^2$

Comparison of the data to Standard model predictions

No significant deviations \rightarrow derive limits on contact interactions

Contact interaction phenomenology

Lagrangian contains coupling constants η^q_{ab}

$$\mathcal{L} = \sum_{q=u,d} \eta^{q}_{LL} (\bar{e_{L}}\gamma^{\mu}e_{L})(\bar{q_{L}}\gamma^{\mu}q_{L}) + \eta^{q}_{RL} (\bar{e_{R}}\gamma^{\mu}e_{R})(\bar{q_{L}}\gamma^{\mu}q_{L}) + \eta^{q}_{LR} (\bar{e_{L}}\gamma^{\mu}e_{L})(\bar{q_{R}}\gamma^{\mu}q_{R}) + \eta^{q}_{RR} (\bar{e_{R}}\gamma^{\mu}e_{R})(\bar{q_{R}}\gamma^{\mu}q_{R})$$
Depending on the chiral struc-
ture of the theory which is

ture of the theory which is probed, only some of the cou- $\eta^q_{ab} = \epsilon^{\dot{q}}_{ab} \frac{g^2}{\Lambda^2}_{bc}$ lepton helicity

Valid for many models (compositeness, leptoquark, Z', W', \dots)

Cross-section in presence of contact interactions

Differential cross section:

Effective theory \rightarrow well defined in leading order only. Predicted cross-sections are corrected by $\frac{\sigma_{SM}^{NLO}}{\sigma_{SM}^{LO}}$ in order to match the NLO prediction for $\frac{1}{\Lambda^2} = 0$

Limit calculation

Limit calculation: define $-\log \mathcal{L}$ or χ^2 function, then use frequentist approach to calculate 95% confidence intervals.

observed parameter (MC experiments)

 $\frac{1}{\Lambda_{\mathrm{MC}}^2}$

- 1. determine $\frac{1}{\Lambda_{data}^2}$ from data (minimize χ^2)
- 2. do many MC experiments for a fixed test parameter $\frac{1}{\Lambda_{\text{lim}}^2}$, each MC experiment corresponding to the data luminosity
- 3. plot distribution of $\frac{1}{\Lambda_{MC}^2}$ (minimize χ^2 for each MC exp.)
- 4. if confidence level is not 95% try with a different $\frac{1}{\Lambda_{\text{lim}}^2}$

Compositeness models

Limits are derived on the scale Λ , for a coupling constant $g^2 = 4\pi$

VV models: $\eta_{LL}^q = \eta_{LR}^q = \eta_{RL}^q = \eta_{RR}^q = \pm \frac{4\pi}{\Lambda^2}$

Limits on Compositeness models from HERA

Limits of order 2 - 7 TeV, depending on the model

Leptoquark production at HERA for $M_{LQ} \gg \sqrt{S}$

Leptoquarks (LQ) appear in many extensions of the SM. New quantum number F = 3B + L. 14 possible types of LQs.

F	Scalar LQ	Vector LQ	couples to	ee
2	S_0^L,S_0^R	$ ilde{V}^L_{1/2}$	e^-u	λ LQ λ
	$ ilde{S}^R_0$	$V^L_{1/2}$	e^-d	q s-channel q
	S_1^L	$V^R_{1/2}$	e^-u and e^-d	
0	$S_{1/2}^L$	$ ilde{V}^R_0$	$e^-\bar{u}$	e q
	$ ilde{S}^L_{1/2}$	V_0^L, V_0^R	$e^- ar d$	
	$S^{R}_{1/2}$	V_1^L	$e^-\bar{u}$ and $e^-\bar{d}$	q

Note: e^-q implies $e^+\bar{q}$ and $e^-\bar{q}$ implies e^+q CI limit: $\eta \sim \frac{\lambda^2}{M_{LQ}^2}$ for masses $M_{LQ} \gg \sqrt{s}$

Leptoquarks and R_p violating squarks

In R_p violating SUSY models $(R_p = (-1)^{3B+L+2S})$: coupling λ'_{ijk} of lepton, quark, squark

$$\begin{array}{c} e \\ & & e^{-\bar{d}} \xrightarrow{\lambda'_{1j1}} \bar{u}, \, \bar{c}, \, \bar{t} \\ & & \text{coupling identical to generic LQ } \tilde{S}_{1/2}^L \\ & & e^{-u} \xrightarrow{\lambda'_{11k}} \tilde{d}, \, \tilde{s}, \, \tilde{b} \\ & & \text{coupling identical to generic LQ } S_0^L \end{array}$$

Assume $\mathfrak{Br}(\tilde{q} \to eq) = 1$: reinterpret LQ results for R_p violating SUSY models

Contact interaction limit: $\eta \sim \frac{{\lambda'}^2}{M_{\tilde{q}}^2}$ for masses $M_{\tilde{q}} \gg \sqrt{s}$

Leptoquark search in contact interactions

Leptoquark and squark limits from CI analysis

prel. limits on $\frac{M}{\lambda}$ [GeV]				prel. limits on $\frac{M}{\lambda}$ [GeV]				
	F	ZEUS	H1		F	ZEUS	H1	
S_0^L or $ ilde{d}$	2	750	720	V_0^L	0	690	770	
S_0^R	2	690	670	V_0^R	0	580	640	
$ ilde{S}^R_0$	2	310	330	\tilde{V}_0^R	0	1030	1000	
S_1^L	2	550	480	V_1^L	0	1420	1380	
$S_{1/2}^{L}$	0	910	870	$V_{1/2}^{L}$	2	490	420	
$S^R_{1/2}$	0	690	370	$V^R_{1/2}$	2	1150	940	
$ ilde{S}^L_{1/2} \ { m or} \ ilde{u}$	0	500	430	$\tilde{V}_{1/2}^L$	2	1260	1020	

For coupling $\lambda = 1$ some LQs are excluded up to $M_{LQ} = 1.4 \text{ TeV}$ \mathcal{R}_p SUSY: for $\lambda'_{1j1}(\lambda'_{11k}) = 1$ exclude $\tilde{u}(\tilde{d})$ for $M_{\tilde{q}} < 0.5 (0.75) \text{ TeV}$

Quark radius

Introduce form factors for non point-like electron and quark

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{\rm SM}}{dQ^2} f_e^2(Q^2) f_q^2(Q^2), \quad f_{e,q} = 1 - \frac{\langle r_{e,q}^2 \rangle}{6} Q^2, \langle r_{e,q}^2 \rangle = R_{e,q}^2$$

Large extra dimensions

Consider models with space time of 4 + n dimensions, where the compactified extra dimensions are of size R.

Reduced effective Planck scale M_S in the volume \mathbb{R}^n :

 $M_P^2 = M_S^{2+n} R^n, \quad M_P \approx 10^{19} \text{GeV}$

A single graviton *i* has tiny coupling in normal space-time: $\mathcal{L}_G = -\frac{\sqrt{8\pi}}{M_P} G^i_{\mu\nu} T^{\mu\nu}$

But: gravitons can propagate into the extra dimensions, visible in 4 dimensions as excited Kaluza-Klein states with level-spacing $\Delta m = \frac{1}{R}$

 \rightarrow After summing all states up to M_S , gravitation can have sizeable effects in particle physics.

Effective coupling constant: $\eta^G = \frac{\lambda}{M_S^4}$, where λ is of order 1

Limits on large extra dimensions

Large extra dimensions ruled for $M_S \lesssim 0.8 \,\mathrm{TeV}$

Note: analysis is done for $\lambda = \pm 1$, but only $\lambda = +1$ corresponds to an attracting gravitational force

Summary and conclusions

- HERA is sensitive to physics far beyond its center-of-mass energy, probing the structure of the *eu* and *ed* systems
- Explore light quarks \leftrightarrow complementary to LEP
- Limits on the contact interaction scale Λ up to $7\,{\rm TeV}$
- Limits on leptoquark masses (coupling $\lambda = 1$) up to 1.4 TeV
- Limits on Squarks in R_p SUSY (coupling $\lambda = 1$) up to 0.75 TeV
- Probe quark radius down to $0.7 \cdot 10^{-3} \,\mathrm{fm}$
- Rule out large extra dimensions up to scales $M_S \lesssim 0.8 \,\mathrm{TeV}$

HERA II has just started:

- Collect factor of 10 more data
- Use polarized e^{\pm} to disentangle left and right-handed couplings

Limits on Compositeness models from LEP

