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Outline

● What is unfolding?
● Methods commonly used in HEP

– Bin-by-bin

– Matrix methods

● Problems specific to HEP
– Multidimensional problems 

– Phase-space boundaries [only one slide]

– Multiplicity measurement [not discussed in this talk]
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Exercises
● Lecture is interleaved by exercises

– Solutions are discussed during the lecture
● Instructions: run installation script after logging in 

source 
/afs/desy.de/user/s/school06/public/install.sh

● This creates and changes to a directory unfold_exercises

● Run exercises in that directory. Test:

root
.x exercise0.C++

● After logout, simply change dir and initialize root:

cd unfold_exercises; module load root



April 1, 2014 S.Schmitt, Unfolding in HEP 4

recr
0 0.2 0.4 0.6 0.8 1

0

100

200

300
data

MC1

recr
0 0.2 0.4 0.6 0.8 1

0

100

200

300
data

MC2

Check installation (exercise0.C)
● Run exercises in that directory. Test:

root

.x exercise0.C++ 

● Resulting plot should look like depicted 
to the right

● This macro is the starting point for the 
exercises

● Solutions are in the directory “solution”

● Assumption: you are familiar with root
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What is unfolding?

● Obtain measurements independent of detector effects, using the 
simulation

● Propagate statistical uncertainties back to particle level
● Require results to be independent of theory assumptions

detector
effects

Particle level Detector level
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Migrations and stat. fluctuations

Histogram of observed event counts is affected by statistical fluctuations 
(vertical axis) and detector effects (horizontal axis)

Unfolding: correct for 
migration effects in the 
presence of statistical 
fluctuations

Result: estimator of the 
“truth” and its 
covariance matrix 
(statistical uncertainties)
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Formal definitions

● This talk: measurements are given by event (jet, track, ...) 
counts, grouped in bins

● Bins are defined by regions in phase-space (observables)

● Not covered in this talk: unbinned methods

● Detector effects: detector response matrix A 

A
ij
: probability that event from truth bin j is found in rec bin i

● Statistical fluctuations: Poisson distribution or Gaussian 
approximation

Expected number of events in bin i : μi=∑ Aij x j
truth

P (Y i= y i
rec)=

exp [−μi ](μi)
yi

yi !

x i
rec
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Exercises: data and MC sets
● In total, four root files, each file with events in a TTree

● Data “data.root” ~300k events

● Two Monte Carlo “mc1.root” and “mc2.root” ~3000k events

– Different model but identical detector simulation

– See influence of the model on the unfolding results (unfold 
data using MC1 or MC2 detector response)

– Check whether MC2 can be recovered using MC1 detector 
response (unfold MC2 using MC1)

● Data truth (in your real analysis this is not present): 
“datatruth.root” ~300k events

– Validate whether the unfolding worked
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Exercises: observables

● Exercise provides only two observables:

– Variable rRec (rGen) which ranges from 0 to ~1

– Variable pRec (pGen) which ranges from -π to π
● (rGen,pGen): truth. (rRec,pRec): after detector simulation

● Flag (isTrig==1) means that rRec and pRec are valid

● Events are signal or background

– Data: no discrimination possible

– MC: flag (isBgr==1) indicates that this is background. 
Background events have no valid “truth” information 
[rGen and pGen can not be used in that case]
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Exercises: details
● Data “data.root”

– TTree “rec” with four variables

– Event weight w

– Observables rRec and pRec are valid if (isTrig==1)
● Two different Monte Carlo “mc1.root” and “mc2.root”

– TTree “recgen” with seven variables

– Observables as in data

– Truth variables rGen and pGen are valid

       only if(isBgr==0)

– if(isBgr==1), then the event is background

TTree rec
float rRec
float pRec
int isTrig
float w

TTree recgen
float rRec
float pRec
int isTrig
float w
int isBgr
float rGen
float pGen
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Exercises: data “truth” set
● Data truth “datatruth.root”

– TTree “gen” with four variables

– Event weight w

– Observables rGen and pGen are valid if (isBgr==0)

– Generator level informtion for our “data”

– This is to evaluate how well our unfolding worked

(for a real analysis, this has to be estimated by 
comparing different MC models)

TTree gen
float rGen
float pGen
int isBgr
float w
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Exercises: unfolding of one variable

● Most Exercises: unfolding rGen from rRec (single-
differential) and pRec or pGen are not used.

– In this case we use only 1/30 of the events:
  int nSubset=30;
  int iSubset=0;
...
  int firstEvent=iSubset*tree->GetEntriesFast() / nSubset;
  int lastEvent=(iSubset+1)*tree->GetEntriesFast() / nSubset;
  int nEvent=lastEvent-firstEvent;
...
  tree->Draw("rRec","w","",nEvent,firstEvent);

– Data: use ~10k events, MC: use ~100k events

– Full samples are needed for unfolding of double-
differential distributions 
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Exercise 1
● Start with exercise0.C:

– Data to MC comparison for the variable “rRec” with 
0<rRec<1 using 50 bins

● Superimpose “rRec” for the background taken  from MC

– Hint: use the MC event weight:  w*isTrig*isBgr
● Make a separate plot for the distribution of “rGen” from MC 

and superimpose data “truth”

– Hint: use the MC event weight:  w*(1-isBgr)
● Repeat plots using MC1 and MC2

● Discuss the results 



April 1, 2014 S.Schmitt, Unfolding in HEP 14

recr
0 0.2 0.4 0.6 0.8 1

0

100

200

300
data

MC1

genr
0 0.2 0.4 0.6 0.8 1

0

200

400

MC1 signal

data truth

recr
0 0.2 0.4 0.6 0.8 1

0

100

200

300
data

MC2

genr
0 0.2 0.4 0.6 0.8 1

0

200

400

MC2 signal

data truth

Exercise 1 discussion

● Reconstructed and 
generated variables are 
quite different

● Large background

● Description of data by MC 
is not perfect

● Large differences on truth 
level

● Question: why are rec and 
gen so different?
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Exercise 2

● Investigate the correlation of rRec and rGen

– Use a TH2D with 25x25 bins

– The event weight for reconstructed signal is w*isTrig*(1-
isBgr)

● [if there is time]: quantify the resolution rRec-rGen as a 
function of rGen

– Use a TProfile with options “s” and fill with option “profs”
● Compare MC1 and MC2, discuss the results
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Exercise 2 discussion

● Correlation of rec and gen 
visible

● At low r: mean rec-gen is 
different from zero (bias)

● Resolution (RMS) is of 
order 0.1

● Similar resolution is 
observed for different MCs

Resolution depends only 
on detector simulation, is 
independent of MC model
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Choice of bin width

● Typically, choose bin width 
~resolution

– choose Δr=0.1
● Range of r is approximately 

0..0.9

– unfold 9 bins in rGen
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Unfolding methods

● Unfolding methods discussed in this talk

– Bin-by-bin ”correction”

– Matrix methods:
● Matrix inversion
● “Bayesian” [D'Agostini 1995]
● “Iterative” [D'Agostini 1995 iterated]
● Fraction fit: TUnfold  [no exercise: TFractionFitter]
● Regularised unfolding: TUnfold [no exercise: 

TSVDUnfold]
– Detailed references can be found on page 61   
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“Bin-by-bin”

● Assumption: migration effects are “small” so 
they can be “corrected” using a multiplicative 
factor

● The factor is determined from MC
● Two variants:

– Simple bin-by-bin

– Bin-by-bin with background subtraction
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Simple “bin-by-bin”

● Data in a given bin:

● Reconstructed MC in a given bin:

● Generated MC truth in a given bin:

● Define correction factor:  

● Corrected data:

● Corrected data uncertainty: 

y i
data±δ y i

data

x i
gen

y i
rec

f i=
x i

gen

y i
rec

x i
BBB=

xi
gen

yi
rec y i

data

δ x i
BBB=

xi
gen

yi
rec δ y i

data

Note: sometimes 1/f
i
 is called 

“generalized efficiency”
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“bin-by-bin” with backg. subtraction

● Data in a given bin:

● Reconstructed MC in a given bin:

– Includes background contribution:
● Generated signal truth in a given bin:

● Define correction factor:  

● Corrected data:

● Corrected data uncertainty: 

y i
data±δ y i

data

x i
gen

y i
rec,sig+ y i

rec,bgr

f i=
x i

gen

y i
rec,sig

x i
BBB=

xi
gen

y i
rec,sig ( y i

data− y i
rec,bgr)

δ x i
BBB=

x i
gen

y i
rec,sig δ y i

data

y i
rec,bgr

Not discussed in this talk
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Exercise 3: bin-by-bin unfolding

● Correct data with MC1, compare to data truth and MC1 
truth

– Use 9 bins, 0<r<0.9
● Correct MC1 with MC1, compare to MC1 truth

● Correct MC2 with MC1, compare to MC2 truth and MC2 
truth

● Discuss the results
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Exercise 3 discussion

Bin-by-bin basically returns the MC truth decorated with statistical 
fluctuations taken from data! 

Never use this method for your data analysis!!!
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Bin-by-bin: why is it wrong?

● Migrations are additive, 
while BBB correction is 
multiplicative → wrong 
type of correction

● It should be:

x i
BBB=x i

gen y i
data

yi
rec

x i
BBBSUB=x i

gen y i
data−( y i

rec− y i
rec&gen)

y i
rec&gen

      =x i
gen yi

data− y i
rec(1−P i)

y i
rec P i

● Relevant quantity: purity

P i=
y i

rec&gen

y i
rec

analysis phase-space or other
background

MC events generated in a
neighbour bin i-1 or i+1

MC events generated in a
non-neighbour bin

reconstructed in bin i
MC events generated and

MC events generated outside

MC(rec)

data

rec&gen
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Exercise 4: purity and migrations

● Plot bin purity

● Plot fraction of events migrating into a bin from a 
neighbour bin in the range i-1 … i+1

– Hint: fill a 2D histogram rec vs gen to get number of 
events where iRec=iRen or iRec=iGen±1

● Plot fraction of signal events in a bin

● Show everything on one plot

● Repeat this for MC1 and MC2

No time to do as 
exercise today.
We only discuss the 
results
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Exercise 4 discussion

● In the example, the purity is low, of 
order 20-30%

● Purities and migrations into the “rec” 
bins are different for MC1 and MC2

→ Looking for quantities which do not 
depend so much on the model!
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Matrix methods

● All matrix methods are based on the matrix of probabilities:

● The A
ij
 are calculated from Monte Carlo

● A
ij
 is normalized to the generated number of events in bin j, 

so it is (largely) model independent, only depends on the 
detector response. 

Expected number of events in bin i : μi=∑ Aij x j
truth

Aij=
y ij

rec,gen

y j
gen  and the reconstruction efficiencies are ε j=∑i

Aij
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Exercise 5

● Compare the matrix of probabilities for MC1 and MC2

– Fill matrix nRec vs nGen (Exercise 2)

– Normalize each nGen,nRec bin to the total nGen
● Quantitative comparison: fill a histogram of the difference 

in probability

● Also calculate the efficiencies for MC1 and MC2

Aij
MC1−Aij

MC2

Matrix Aij=
y ij

rec,gen

y j
gen

Reconstruction efficiencies ε j=∑i
Aij
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Discussion exercise 5

● Probabilities are very 
similar between MC1/MC2. 
Differences are up to 5%.

● Efficiencies are very similar

● Expect to have little model 
dependence if unfolding 
algorithm uses only A

ij
 and 

not x
i

gen
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Background in matrix methods

● Basic formula

● There is no background foreseen!

(a): subtract background from data, then proceed

(b): include background normalization as one “truth” bin

Expected number of events in bin i : μi=∑ Aij x j
truth

yi
data− y i

bgr ∼
stat.fluct. 

μi=∑ j=1, nGen
Aij x j

truth

yi
data ∼

stat.fluct 
μi=∑ j=1,nGen+1

Aij x j
truth  where

xnGen+1  is the background normalization

Ai ,nGen+1=
y i

bgr

∑k
yk

bgr  is the background shape
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Exercise 6

● Extend the resolution plots by one bin

● Use gen-bin #10 to store the background

– nBin=10, r
0
=0.0, r

1
=1.0

– When filling generator quantity:
● if(iBgr==0) fill rGen
● if(iBgr==1) fill 0.95  [into extra gen bin 0.9..1.0]

● Produce plots as in exercise 5. Discuss

● Note: for all following exercises the background 
normalisation is included in the unfolding procedure. If this 
has not become clear, please ask now!
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Exercise 6 discussion

● Background shape is 
quite similar for the two 
MC

● Background 
“efficiency” is low 
because it is 
normalized to all bgr 
events,  including 
those with rRec>1

Background bin
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Matrix inversion method
● Simplest method for matrix unfolding: invert response 

matrix

● Covariance matrix (“uncertainties”):

● General feature of matrix unfolding methods: covariance 
has off-diagonal elements

● Diagonal elements: uncertainties

● Size of off-diagonals is often quantified using correlation 
coefficients

yi
data ∼

stat.fluct 
μi=∑ j=1,nGen

Aij x j
truth

x j
INVERT=∑i

(A−1) ji y i
data

Cov (x j
INVERT , xk

INVERT)=V jk=∑i
(A−1) ji(δ yi

data)2(A−1)ki

δ x j
INVERT=σ j=√V jj

ρ jk=
V jk

σ jσ k
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Exercise 7: matrix inversion

● Invert the matrix of probabilities for MC1

– Class TMatrixD, method Invert()

– Caution: first matrix index=0, first histogram bin=1 
● Unfold data, MC1, MC2 using the matrix of probabilities 

from MC1

● Calculate the covariance matrices and uncertainties

● Compare the unfolded results with the truth distributions

● Also calculate and show the correlation coefficients

● Discussion
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Exercise 7 discussion
● Unfolded data show 

large point-to-point 
oscillations

● Consistent with truth 
within errors

● Oscillations are 
“allowed” by large 
negative correlation 
coefficients for 
adjacent bins

● Goal: damp 
fluctuations: 
regularisation Correlation coefficients are important for fits, integrals etc.

Example: uncertainty of x
1
+x

2
: 

Δ(x1+x2)=√σ1
2+2σ1σ 2 ρ12+σ2

2
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Cause of large fluctuations

● Matrix inversion: creates large negative off-diagonals

→ statistical fluctuations of the data are amplified

● Possible improvements

– Avoid matrix inversion “Bayesian” or “Iterative”

– Use more reconstructed bins → TFractionFitter, TUnfold

– Regularisation:

 TSVDUnfold, TUnfold

A Inverse of A
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“Bayesian” (D'Agostini)
● Motivated by Bayesian statistics: D'Agostini (1995)

● Here, we simply use the prescription and test it

● See 2010 paper by D'Agostini for detailed discussion

● Prescription:

● Covariance matrix:

Bin-by-Bin

x j
BBB=x j

gen ( y i
data

yi
rec )

i= j

D'Agostini

x j
AGO=x j

gen∑i

Aij
ε j
y i

data

y i
rec

where: ε j=∑i
Aij

Compare to
Bin-by-bin:

V jk
AGO=x j

gen xk
gen∑i

Aij
ε j
Aik
εk (δ y i

data

y i
rec )

2

Main criticism:
(1) from non-Bayesians: result 
depends on “prior” MC model nGen
(2) data statistical fluctuations are 
not treated with Bayesian methods 
[see D'Agostini 2010 paper]
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Iterative “Bayesian”

● Idea: minimize model-dependence by iterating D'Agostini 
method

● Resulting formula for ITER→ITER+1 

● Covariance matrix: usually determined from MC toy 
experiments, using N times the equivalent data statistics 
(error propagation is difficult when iterating)

x j
AGO=x j

gen∑i

Aij
ε j
y i

data

y i
rec  Iterate: replace x j

gen  by x j
AGO  and y i

rec  by ∑ j
Aij x j

AGO

x j
ITER+1=x j

ITER∑i

Aij
ε j

y i
data

∑k
Aik xk

ITER
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Fit-based matrix methods 
● Recall basic equation

● When unfolding, the xtruth are unknowns and the ydata are 
measured

● Formulate the problem as a maximum-likelihood fit. For 
example, if the data are Gaussian distributed, minimize:

● If nRec=nGen: equivalent to matrix inversion method

● Interesting case: nRec>nGen. Typical: nRec ~ 2*nGen

yi
data ∼

stat.fluct 
μi=∑ j=1,nGen

Aij x j
truth

χ2(xfit)=∑i=1,nRec ( y i
data−∑ j=1,nGen

Aij x j
fit

δ y i )
2
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Fit based methods in Root

● In root, there are at least two such methods available:

– TFractionFitter 
● Uses Poisson statistics (log-likelihood fit)

– TUnfold or TUnfoldSys
● Uses Gaussian statistics (linear fit)

● For simplicity, we use only TUnfold for the exercises
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TUnfold (with tau=0)

● Minimizes the matrix equation

● When setting up Tunfold, the matrix A is calculated from 
the Monte Carlo histogram of event counts (gen vs rec)

→ normalisation is handled inside Tunfold. 

.

χ2(x)=(Ax− y)T V yy
−1(Ax− y)

x  : vector of unknowns
y  : vector of measurements
A  : matrix of probabilities
V yy  : covariance matrix of y (uncertainties squared)
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TUnfold: setting up the matrix

● When histogram rec.vs.gen is filled as usual, how to 
account for inefficiencies (events which are not 
reconstructed)?

● In TUnfold: “rec” underflow/overflow bins hold events which 
are not reconstructed

●  In our example:
– If (iBgr==0)&&(isTrig==1) fill (rGen,rRec)

– If (iBgr==1)&&(isTrig==1) fill (0.95,rRec)

– If (iBgr==0)&&(isTrig==0) fill (rGen,-1)

– If (iBgr==1)&&(isTrig==0) fill (0.95,-1)

● Check: sum over all rec bins for a given iGen
(including underflow and overflow) should be equal to nGen(iGen) 

reconstructed

signal, not

signal,
reconstructed

background,
reconstructed

overflow bins

10.90.10

0

0.1

0.9

rRec

rGen

1

underflow bins
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Exercises 8-10

● Test and compare the following methods
– Exercise 3: bin-by-bin

– Exercise 7: matrix inversion

– Exercise 8: D'Agostini

– Exercise 9: Iterative methods

– Exercise 10: Fraction fit (TUnfold with τ=0)

● Compare central values to truth and compare 
correlation coefficients

● Start now / continue after today's lectures
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Exercise 8: D'Agostini method

● Unfold data, MC1, MC2 using the detector response matrix 
from MC1 and the D'Agostini method

● Calculate and display correlation coefficients

● Compare to unfolding results to data,MC1,MC2 truth

● Discussion
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Exercise 9: Iterative method

● Iterative method (100 cycles) to unfold data using MC1

● Show results after 1,10,100 iterations (=D'Agostini)

● Calculate Covariances using data replicas

// produce data replicas with extra stat. Fluctuations
// original data histogram:  hist_data_rec[0]
// replicas: hist_data_rec[1..NREPLICA]
TRandom3 rnd(0);
for(int iRec=1;iRec<=nBin;iRec++) {
  double n0=hist_data_rec[0]->GetBinContent(iRec);
  for(int iReplica=1;iReplica<NREPLICA;iReplica++) {
    double ni=rnd.Poisson(n0);
    hist_data_rec[iReplica]->SetBinContent(iRec,ni);
    hist_data_rec[iReplica]->SetBinError
          (iRec,TMath::Sqrt(ni));
  }
}

// given bin jGen kGen
// and the result for the replicas
// in histograms h[1..NREPLICA]
double s[2][2]={{0.,0.},{0.,0.}};
for(int iReplica=1;iReplica<NREPLICA;iReplica++) {
  double yj=h[iReplica]->GetBinContent(jGen);
  double yk=h[iReplica]->GetBinContent(kGen);
  s[0][0]+=1.;
  s[1][0]+=yj;
  s[0][1]+=yk;
  s[1][1]+=yj*yk;
}
double meanJ=s[1][0]/s[0][0];
double meanK=s[0][1]/s[0][0];
double rmsJK=s[1][1]/s[0][0]-meanJ*meanK;
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Exercise 10

● Use TUnfold to unfold the data using the MC1 detector 
response. Use 10,20,100 reconstructed bins and compare 
the results

● Code example

TUnfold unfold(hist_mc1_recgen,        // event counts from MC 2D histogram
   Tunfold::kHistMapOutputHoriz,   // gen events on x-axis
   Tunfold::kRegModeSize,             // explained later
   Tunfold::kEConstraintNone);       // not discussed in this talk

    unfold.SetInput(hist_data_rec);            // observed data 1D histogram
    Double tau=0.0;                                // explained later
    unfold.DoUnfold(tau);                       // run the unfolding
    unfold.GetOutput(hist_data_result); // get histogram with unfolded data
    unfold.GetRhoIJ(hist_data_rho);     // get 2D histogram of correlation coeff
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Exercise 8 discussion

D'Agostini result is 
almost identical to the 
MC1 truth, 
independent of the 
data

Covariance: large 
positive correlations 
(rather expect 
negative correlations)

D'Agostini is 
the MC truth 
decorated with 
statistical 
fluctuations 
taken from data! Do not use this method for your data analysis!!!
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Exercise 9 discussion

After 10 iterations, 
result is “good”

After 100 iterations, 
results starts to 
oscillate → similar to 
inversion method

Unclear how 
many iterations 
are “good”. 
Danger to have 
a bias to MC 
which is difficult 
to quantify 

Better not to use this for your data analysis
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Iterative method: how often?

● Main question: when to stop the iteration?

● Also, does the iteration converge?

– Answer: maybe. If it converges, one typically gets 
back the result from matrix inversion

● What people do:

– Iterate until “it does not change anymore”

– Or iterate until “the result becomes instable”
● Lack of definition of a good stopping condition

→ better do not use that method for your analysis
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Discussion exercise 10

Results are 
simular to matrix 
inversion: 
oscillations and 
negative 
correlations

Some 
improvements 
are visible when 
using 20 or 100 
bins

Visible improvements when using more 
bins,  but still not satisfactory.
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Comparison exercise 3,7,8-10

● None of these 
methods works 
satisfactory

● Bin-by-bin and 
d'Agostini have 
bias to MC truth

● Iterative properties 
are not well 
defined

● Matrix inversion 
and -to a lesser 
extent- fraction fit 
have oscillating 
solutions 
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Regularised unfolding

● Add extra term to the fit function “regularisation”

● The parameters x are constrained to be “similar” to x
b

●  Strength of regularisation is given by parameter τ

χ2(x)=(Ax− y)T V yy
−1(Ax− y)+τ2(x−xb)

T (LT L)( x−xb)
  x  : vector of unknowns
  y  : vector of measurements
  A  : matrix of probabilities
  V yy  : covariance matrix of y (uncertainties squared)
  τ  : regularisation strength
  L  : regularisation conditions
  xb  : regularisation bias
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Choice of Regularisation

● Typical choice of L: unity matrix or “curvature” matrix

● Typical choice of x
b
: “zero” or “MC truth”

● Typical choice of τ:

– Eigenvalue analysis (TSVDunfold)

– L-curve scan (TUnfold, TUnfoldDensity)

– Minimize correlations (TUnfoldDensity)

χ2(x)=(Ax− y)T V yy
−1(Ax− y)+τ2(x−xb)

T (LT L)( x−xb)
  τ  : regularisation strength
  L  : regularisation conditions
  xb  : regularisation bias
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TSVDunfold

● Restrictions:

– nRec=nGen

– Regularisation always by curvature
● Some differences to TUnfold

– e.g. definitions of L and τ
● Choice of regularisation

– Parameter τ is calculated from Eigenvalue analysis

– User has to define integer parameter kReg. See 
Höcker/Kartvelishvili (1995) for details 

This lecture: no exercise on 
TSVDUnfold
Use with the given example is 
not straight-forward
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TUnfold: choices of L

● Simplest choice: L=unity matrix, x-x
b
 is pulled to zero

● Curvature L=(-1,2,-1), derivative of (x-xb) is pulled to zero

● Effect: oscillations are damped. If x
b
=0, pull x to zero 

(L=unity) or pull x to a straight line (L=curvature matrix)

χ2(x)=(Ax− y)T V yy
−1(Ax− y)+τ2(x−xb)

T (LT L)( x−xb)
  τ  : regularisation strength
  L  : regularisation conditions
  xb  : regularisation bias

Curvature matrix: Ln×n−2=(−1 2 −1 0 ⋯ 0
0 −1 2 −1 ⋮
⋮ ⋱
0 −1 2 −1

)
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Choice of regularisation in TUnfold

● Three basic choices for matrix L

– kRegmodeSize [L=unity matrix]

– kRegmodeDerivative [L~(-1,1)]

– kRegmodeCurvature [L~(-1,2,-1)]
● One basic method to determine τ

– ScanLCurve()
● Note: new version of TUnfold (V17) provides another 

method to determine τ by minimizing correlation 
coefficients: ScanTau()

https://www.desy.de/~sschmitt/tunfold.html
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L Curve scan

● If τ is zero, χ2

A
 is minimized and χ2

L
 is large

● If τ is very large, χ2

L
 is minimized and  χ2

A
 is large

● Parametric plot of

 X=log
10

(χ2

A
) vs Y=log

10
(χ2

L
) is L-shaped

● “Best” compromise:

 kink position (largest curvature)

χ2(x)=(Ax− y)T V yy
−1(Ax− y)+τ2(x−xb)

T (LT L)( x−xb)
=χA

2 (x)+τ2 χL
2 (x)

Y

between data and
regularisation

tau=large

tau=0

X

compromize
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Exercise 11: L curve scan

● Run TUnfold to unfold the data, using the response matrix 
from MC1 (nRec=20, nGen=10)

● L=1 and x
b
=MC(truth)

● Compare the result to truth

● If there is time:

– Show correlations

– Show L-curve
● Discuss 

  // run the unfolding and retreive results
  TUnfold unfold(hist_mc1_recgen,

 TUnfold::kHistMapOutputHoriz,
 TUnfold::kRegModeSize,
 TUnfold::kEConstraintNone);

  unfold.SetInput(hist_data_rec,1.0);
  TGraph *lcurve=0;
  TSpline *logTauX=0,*logTauY=0;
  unfold.ScanLcurve(100,0.,0.,&lcurve,&logTauX,&logTauY);
  unfold.GetOutput(hist_data_LCURVE);
  unfold.GetRhoIJ(hist_data_LCURVErho);
  double tau=unfold.GetTau();
  double logTau=TMath::Log10(tau);
  double lcurveX=logTauX->Eval(logTau);
  double lcurveY=logTauY->Eval(logTau);
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Exercise 11 discussion

● Bias to MC is small

● Result is very good

● Uncertainties have 
reasonable size

● Covariance matrix with 
moderate correlations

● Choice of “best” point 
on L-curve is difficult to 
understand because 
range of X and Y axis is 
different
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L curve scan: caveats

● Possible problems with X=log
10

(χ2

A
)

– If nRec=nGen, then χ2

A
 is zero [if τ=0]

– If MC(rec) is used as “data”, then χ2

A
 is zero because 

MC(truth) reproduced exactly the “data”
● Rules when using TUnfold with L-curve scan

– Always use: nRec>nGen

– Toy studies can not be done using the exact MC 
distribution which was used to build the response matrix 
→ apply extra statistical fluctuation to the MC or use 
independent samples



April 1, 2014 S.Schmitt, Unfolding in HEP 61

BBBr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
data bin-by-bin
data truth
MC1 truth

Bin-by-bin correction

AGOr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
data D'Agostini
data truth
MC1 truth

"Bayesian" (D'Agostini)

ITERr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
data iteration 100

data truth

MC1 truth

Iterative n(iteration)=100

INVERTr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
data matrix inversion

data truth

MC1 truth

Matrix inversion

fitr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
=0tdata TUnfold 

data truth

MC1 truth

Fraction fit (TUnfold) nRec=100

fitr
0 0.2 0.4 0.6 0.8 1

0

1000

2000

3000
=6.2e-03tdata TUnfold 

data truth

MC1 truth

L-curve scan (TUnfold) nRec=100

Comparison of unfolding methods

● Bin-by-bin and 
D'Agostini do not 
work (bias)

● Iterative method: 
difficult to define 
end condition

● Matrix inversion 
and fraction fit: 
oscillations

● Regularized 
unfolding seems to 
work best!
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Summary of unfolding methods
● Strong bias to MC truth. Do not use

– Bin-by-bin

– Bayesian
● Unclear bias to MC truth. Better not to use

– Iterative “Bayesian”
● No bias but oscillations and large anti-correlations

– Matrix inversion, fraction fit
● Small bias, oscillations damped

– Regularised unfolding with proper choice of τ

→ TUnfold TSVDUnfold 



April 1, 2014 S.Schmitt, Unfolding in HEP 63

References for unfolding methods
● Bayesian:

– Nucl.Instrum.Meth. A362 (1995) 487-498

– arXiv:1010.0632
● TSVDUnfold

– Nucl.Instrum.Meth.A372 (1996) 469-481
● TUnfold

– JINST 7 (2012) T10003 [arXiv:1205.6201]

– https://www.desy.de/~sschmitt/tunfold.html
● Collection of talks by V.Bobel

– https://www.desy.de/~blobel/unfold.html

https://www.desy.de/~sschmitt/tunfold.html
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Unfolding problems specific to HEP

● Background
– See exercise 7: extra bins to extract background 

normalisation

● Multidimensional histograms
– exercise 12 and 13

● Phase-space boundaries [only one slide]
● Measurements of multiplicities [not covered in 

this talk]
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Exercise 12: 2D unfolding

● Make 2D plot of the variables (a,b) [use full TTree]

– aRec=rRec*sin(pRec) and bRec=rRec*cos(pRec)

– aGen=rGen*sin(pGen) and bGen=rGen*cos(pGen)
● -0.9<a,b<0.9

● 15x15 bins for aRec, bRec

● 15x15 bins for aGen,bGen

● Unfold the data bin-by-bin

● Compare the histograms
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Exercise 12 discussion

Bin-by-bin 
unfolding fails 
completely: 
result is MC 
truth, has 
nothing to do 
with data truth!

What about 
regularized 
unfolding? 
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Multi-dimensional matrix unfolding

● Basic formula defines only one dimension for 
reconstructed bins and another dimension for generated 
bins

● The equation does not care how the bins are arranged

● Recall: we already added one extra bin for background 
normalisation

yi
data ∼

stat.fluct 
μi=∑ j=1,nGen

Aij x j
truth
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Multi-dimensional histograms

● No fundamental difference between unfolding one-
dimensional or multi-dimensional histograms

 j=∑ Aij x i
truth

● Sum runs over all bins i, 
no matter how they are 
arranged

● Example: order bins as 
shown to the right

Observable #1

51 2 3 4 6 7

8 9 10 ...

... 41 42

Problem: algorithms which use curvature 
regularisation (TSVDUnfold) may calculate 
the wrong curvature (in this example 
between the bins 7,8 or 14,15 etc) 
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TUnfoldBinning 
● 2D problems have to be 

mapped to 1D

● Mapping 2D to 1D is 
complicated (→ error prone)

● V17.3 of TUnfold provides 
class TUnfoldBinning 

● Binning scheme may be 
defined in xml language

● Event loop: get bin number 
from TUnfoldBinning, then fill 
histograms with TUnfold 
internal binning

● After unfolding: retreive 
results in histograms with 
user binning

● For running the unfolding, 
use the class 
TUnfoldDensity which is 
able to deal with binning 
schemes
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Exercise 13

● Look at XML file “exercise13binning.xml”

● Look at stand-alone program “exercise13.C”

● Compile and run program exercise13:

– make exercise13prog

– ./exercise13prog
● Results are written to “exercise13.root”

● Extend macro from exercise12 to also plot the histogram: 
hist_data_unfold

● Compare bin-by-bin and regularized unfolding results

TUnfold V13 is 
not available in 
root 5.34

Can be linked 
with root libraries 
as shown in the 
example13prog
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Exercise 13 discussion

2D unfolding:  
bin-by-bin fails 
(exercise 12)

Regularized 
unfolding gives a 
good result within 
uncertainties

(uncertainties are not 
shown here)
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Phase space boundaries

● Analysis in HEP often have complicated phase-space 
definitions

● Measurement is differential in one variable [v], but there 
are also cuts in other variables [e.g. w0<w<w1]

● Two options

– Subtract background from w<w0 and from w>w1 prior to 
unfolding TUnfoldSys::SubtractBackground()

– Or use extra generator bins w<w0 and w>w1 to unfold 
background contributions from data → compare to our 
example of unfolding the background normalisation 
from the data
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Summary and Conclusions (1)

● Unfolding: “correct” measurements for detector effects. Our 
daily business in HEP analysis

● Many different methods:

– Strong bias to MC: bin-by-bin and “Bayesian” without 
iterating. Do not use

– Unknown bias: iterative method. Better not use

– Unbiased, large errors and large correlations: matrix 
inversion, fraction fits.

– Small bias to damp oscillations: regularized fits
● TSVDUnfold: eigenvalue analysis
● TUnfold: L-curve scan
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Summary and Conclusions (2)

● Problems specific to unfolding in HEP

– Multidimensional distributions

– Complicated phase-space definition

– Measurement of multiplicities [not discussed in this talk]

– Systematic uncertainties [not discussed in this talk]
● Most problems with unfolding in HEP are related to the 

choice of bins, inside and outside the phase-space

● For complex binning schemes, the class TUnfoldBinning 
may be useful (not available in root 5.34 → standalone 
program needed)
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