Unfolding in High Energy Physics

Stefan Schmitt, DESY
Daniel Britzger, DESY

Terascale statistics school 2014

Outline

- What is unfolding?
- Methods commonly used in HEP
- Bin-by-bin
- Matrix methods
- Problems specific to HEP
- Multidimensional problems
- Phase-space boundaries [only one slide]
- Multiplicity measurement [not discussed in this talk]

Exercises

- Lecture is interleaved by exercises
- Solutions are discussed during the lecture
- Instructions: run installation script after logging in

```
source
/afs/desy.de/user/s/school06/public/install.sh
```

- This creates and changes to a directory unfold_exercises
- Run exercises in that directory. Test:

```
root
.x exercise0.C++
```

- After logout, simply change dir and initialize root:

```
cd unfold_exercises; module load root
```


Check installation (exercise0.C)

- Run exercises in that directory. Test:

$$
\begin{aligned}
& \text { root } \\
& . x \text { exercise0.ct+ }
\end{aligned}
$$

- Resulting plot should look like depicted to the right
- This macro is the starting point for the exercises
- Solutions are in the directory "solution"
- Assumption: you are familiar with root

What is unfolding?

- Obtain measurements independent of detector effects, using the simulation
- Propagate statistical uncertainties back to particle level
- Require results to be independent of theory assumptions

Migrations and stat. fluctuations

Histogram of observed event counts is affected by statistical fluctuations (vertical axis) and detector effects (horizontal axis)

Unfolding: correct for migration effects in the presence of statistical fluctuations

Result: estimator of the "truth" and its covariance matrix (statistical uncertainties)

Formal definitions

- This talk: measurements are given by event (jet, track, ...) counts, grouped in bins $x_{i}^{\text {rec }}$
- Bins are defined by regions in phase-space (observables)
- Not covered in this talk: unbinned methods
- Detector effects: detector response matrix A
A_{ij} : probability that event from truth bin j is found in rec bin i
Expected number of events in bin $i: \mu_{i}=\sum A_{i j} x_{j}^{\text {tu }}$
- Statistical fluctuations: Poisson distribution or Gaussian approximation

$$
P\left(Y_{i}=y_{i}^{\mathrm{rec}}\right)=\frac{\exp \left[-\mu_{i}\right]\left(\mu_{i}\right)^{y_{i}}}{y_{i}!}
$$

Exercises: data and MC sets

- In total, four root files, each file with events in a TTree
- Data "data.root" ~300k events
- Two Monte Carlo "mc1.root" and "mc2.root" ~3000k events
- Different model but identical detector simulation
- See influence of the model on the unfolding results (unfold data using MC1 or MC2 detector response)
- Check whether MC2 can be recovered using MC1 detector response (unfold MC2 using MC1)
- Data truth (in your real analysis this is not present): "datatruth.root" $\sim 300 \mathrm{k}$ events
- Validate whether the unfolding worked

Exercises: observables

- Exercise provides only two observables:
- Variable rRec (rGen) which ranges from 0 to ~1
- Variable pRec (pGen) which ranges from $-\pi$ to π
- (rGen,pGen): truth. (rRec,pRec): after detector simulation
- Flag (isTrig==1) means that rRec and pRec are valid
- Events are signal or background
- Data: no discrimination possible
- MC: flag (isBgr==1) indicates that this is background. Background events have no valid "truth" information [rGen and pGen can not be used in that case]

Exercises: details

- Data "data.root"
- TTree "rec" with four variables
- Event weight w

TTree rec
float r Rec float pRec int isTrig float w

- Observables rRec and pRec are valid if (isTrig==1)
- Two different Monte Carlo "mc1.root" and "mc2.root"
- TTree "recgen" with seven variables
- Observables as in data
- Truth variables rGen and pGen are valid only if(isBgr==0)

TTree recgen float rRec float pRec int isTrig float w int isBgr float rGen float pGen

- if(isBgr==1), then the event is background

Exercises: data "truth" set

- Data truth "datatruth.root"
- TTree "gen" with four variables
- Event weight w

TTree gen float rGen float pGen int isBgr float w

- Observables rGen and pGen are valid if (isBgr==0)
- Generator level informtion for our "data"
- This is to evaluate how well our unfolding worked (for a real analysis, this has to be estimated by comparing different MC models)

Exercises: unfolding of one variable

- Most Exercises: unfolding rGen from rRec (singledifferential) and pRec or pGen are not used.
- In this case we use only $1 / 30$ of the events:

```
int nSubset=30;
int iSubset=0;
int firstEvent=iSubset*tree->GetEntriesFast() / nSubset;
int lastEvent=(iSubset+1)*tree->GetEntriesFast() / nSubset;
int nEvent=lastEvent-firstEvent;
...
tree->Draw("rRec", "w","",nEvent,firstEvent);
```

- Data: use ~10k events, MC: use ~100k events
- Full samples are needed for unfolding of doubledifferential distributions

Exercise 1

- Start with exercise0.C:
- Data to MC comparison for the variable "rRec" with $0<r$ Rec <1 using 50 bins
- Superimpose "rRec" for the background taken from MC
- Hint: use the MC event weight: ${ }^{*}$ *isTrig*isBgr
- Make a separate plot for the distribution of "rGen" from MC and superimpose data "truth"
- Hint: use the MC event weight: ${ }^{*}$ (1-isBgr)
- Repeat plots using MC1 and MC2
- Discuss the results

Exercise 1 discussion

- Reconstructed and generated variables are quite different
- Large background
- Description of data by MC

 is not perfect
- Large differences on truth $300-$ data
level
- Question: why are rec and 1000
gen so different?

Exercise 2

- Investigate the correlation of rRec and rGen
- Use a TH2D with 25×25 bins
- The event weight for reconstructed signal is w*isTrig*(1isBgr)
- [if there is time]: quantify the resolution rRec-rGen as a function of rGen
- Use a TProfile with options "s" and fill with option "profs"
- Compare MC1 and MC2, discuss the results

Exercise 2 discussion

 order 0.1

- Similar resolution is observed for different MCs Resolution depends only on detector simulation, is independent of MC model

Choice of bin width

- unfold 9 bins in rGen

Unfolding methods

- Unfolding methods discussed in this talk
- Bin-by-bin "correction"
- Matrix methods:
- Matrix inversion
- "Bayesian" [D'Agostini 1995]
- "Iterative" [D'Agostini 1995 iterated]
- Fraction fit: TUnfold [no exercise: TFractionFitter]
- Regularised unfolding: TUnfold [no exercise: TSVDUnfold]
- Detailed references can be found on page 61

"Bin-by-bin"

- Assumption: migration effects are "small" so they can be "corrected" using a multiplicative factor
- The factor is determined from MC
- Two variants:
- Simple bin-by-bin
- Bin-by-bin with background subtraction

Simple "bin-by-bin"

- Data in a given bin: $\quad y_{i}^{\text {data }} \pm \delta y_{i}^{\text {dat }}$
- Reconstructed MC in a given bin: $y_{i}^{\text {rec }}$
- Generated MC truth in a given bin: x_{i}^{gn}
- Define correction factor: $f_{i}=\frac{x_{i}^{\text {gen }}}{y_{i}^{\text {rec }}} \quad \begin{aligned} & \text { Note: sometimes } 1 / f \text { is called } \\ & \text { "generaized efficiency" }\end{aligned}$
- Corrected data:

$$
x_{i}^{\mathrm{BBB}}=\frac{x_{i}^{\text {gen }}}{y_{i}^{\text {rec }}} y_{i}^{\text {daa }}
$$

- Corrected data uncertainty:

$$
\delta x_{i}^{\mathrm{BBB}}=\frac{x_{i}^{\mathrm{gen}}}{y_{i}^{\text {rec }}} \delta y_{i}^{\mathrm{data}}
$$

"bin-by-bin" with backg. subtraction

- Data in a given bin:

$$
y_{i}^{\text {data }} \pm \delta y_{i}^{\text {data }}
$$

- Reconstructed MC in a given bin: $y_{i}^{\text {rec,sig }}+y_{i}^{\text {rec,br }}$
- Includes background contributk $y_{i}^{\text {rec,ber }}$
- Generated signal truth in this talin: $x_{i}^{\text {sen }}$
- Define discuss factor: $f_{i}=\frac{x_{i}^{\text {gen }}}{y_{i}^{\text {recsig }}}$
- Corrected data:

$$
x_{i}^{\mathrm{BBB}}=\frac{x_{i}^{\mathrm{gen}}}{y_{i}^{\text {cec,sig }}}\left(y_{i}^{\mathrm{data}}-y_{i}^{\text {rec.,ber }}\right)
$$

- Corrected data uncertainty: $\delta x_{i}^{\mathrm{BBB}}=\frac{x_{i}^{\text {gen }}}{y_{i}^{\text {rec, }, \text { ig }}} \delta y_{i}^{\text {data }}$

Exercise 3: bin-by-bin unfolding

- Correct data with MC1, compare to data truth and MC1 truth
- Use 9 bins, $0<r<0.9$
- Correct MC1 with MC1, compare to MC1 truth
- Correct MC2 with MC1, compare to MC2 truth and MC2 truth
- Discuss the results

Exercise 3 discussion

Bin-by-bin basically returns the MC truth decorated with statistical fluctuations taken from data!

Never use this method for your data analysis!!!

Bin-by-bin: why is it wrong?

- Migrations are additive, while BBB correction is multiplicative \rightarrow wrong type of correction

$$
x_{i}^{\mathrm{BBB}}=x_{i}^{\text {gen }} \frac{y_{i}^{\text {data }}}{y_{i}^{\mathrm{rec}}}
$$

- It should be:

$$
x_{i}^{\mathrm{BBBSUB}}=x_{i}^{\text {gen }} \frac{y_{i}^{\text {data }}-\left(y_{i}^{\text {rec }}-y_{i}^{\text {rec\&gen }}\right)}{y_{i}^{\text {rec\&gen }}}
$$

$$
=x_{i}^{\text {gen }} \frac{y_{i}^{\text {data }}-y_{i}^{\text {rec }}\left(1-P_{i}\right)}{y_{i}^{\text {rec }} P_{i}} \quad P_{i}=\frac{y_{i}^{\text {rec\&gen }}}{y_{i}^{\text {rec }}}
$$

Exercise 4: purity and migrations

- Plot bin purity
- Plot fraction of events migrating into a bin from a neighbour bin in the range $\mathrm{i}-1 \ldots \mathrm{i}+1$
- Hint: fill a 2D histogram rec vs gen to get number of events where iRec=iRen or iRec=iGen ± 1
- Plot fraction of signal events in a bin
- Show everything on one plot
- Repeat this for MC1 and MC2

No time to do as exercise today.
We only discuss the results

Exercise 4 discussion

- In the example, the purity is low, of order 20-30\%
- Purities and migrations into the "rec" bins are different for MC1 and MC2

\rightarrow Looking for quantities which do not depend so much on the model!

Matrix methods

- All matrix methods are based on the matrix of probabilities:

$$
\text { Expected number of events in bin } i: \mu_{i}=\sum A_{i j} x_{j}^{\text {tuut }}
$$

- The A_{ij} are calculated from Monte Carlo

$$
A_{i j}=\frac{y_{i j}^{\text {rec,gen }}}{y_{j}^{\text {gen }}} \text { and the reconstruction efficiencies are } \varepsilon_{j}=\sum_{i} A_{i j}
$$

- $A_{i j}$ is normalized to the generated number of events in bin j , so it is (largely) model independent, only depends on the detector response.

Exercise 5

- Compare the matrix of probabilities for MC1 and MC2
- Fill matrix nRec vs nGen (Exercise 2)
- Normalize each nGen,nRec bin to the total nGen
- Quantitative comparison: fill a histogram of the difference in probability

$$
A_{i j}^{\mathrm{MC1}}-A_{i j}^{\mathrm{MC} 2}
$$

- Also calculate the efficiencies for MC1 and MC2

$$
\text { Matrix } A_{i j}=\frac{y_{i j}^{\text {rec,gen }}}{y_{j}^{\text {gen }}}
$$

Reconstruction efficiencies $\varepsilon_{j}=\sum_{i} A_{i j}$

Discussion exercise 5

- Probabilities are very similar between MC1/MC2. Differences are up to 5%.
- Efficiencies are very similar
- Expect to have little model dependence if unfolding algorithm uses only A_{ij} and not $x_{i}^{\text {gen }}$

MC2 response matrix

Background in matrix methods

- Basic formula

Expected number of events in bin $i: \mu_{i}=\sum A_{i j} x_{j}^{\text {tuat }}$

- There is no background foreseen!
(a): subtract background from data, then proceed

$$
y_{i}^{\text {data }}-y_{i}^{\text {ber }} \text { sat.finct. } \mu_{i}=\sum_{j=1, n G \text { en }} A_{i j}{ }_{i j}^{\text {truth }}
$$

(b): include background normalization as one "truth" bin
$y_{i}^{\text {data }}$ satfifluct $\mu_{i}=\sum_{j=1, n \text { Een }+1} A_{i j} x_{j}^{\text {truth }}$ where
$x_{n G e n+1}$ is the background normalization
$A_{i, n G e n+1}=\frac{y_{i}^{\text {ber }}}{\sum_{k} y_{k}^{\text {bgr }}}$ is the background shape

Exercise 6

- Extend the resolution plots by one bin
- Use gen-bin \#10 to store the background
- $n B i n=10, r_{0}=0.0, r_{1}=1.0$
- When filling generator quantity:
- if(iBgr==0) fill rGen
- if(iBgr==1) fill 0.95 [into extra gen bin 0.9..1.0]
- Produce plots as in exercise 5. Discuss
- Note: for all following exercises the background normalisation is included in the unfolding procedure. If this has not become clear, please ask now!

Exercise 6 discussion

Background bin

- Background shape is quite similar for the two MC
- Background "efficiency" is low because it is
 normalized to all bgr events, including those with rRec>1

Matrix inversion method

- Simplest method for matrix unfolding: invert response matrix $y_{i}^{\text {data }}$ sataffuct $\mu_{i}=\sum_{j=1, n G e n} A_{i j} x_{j}^{\text {tuth }}$

$$
x_{j}^{\text {INERT }}=\sum_{i}\left(A^{-1}\right)_{j i} y_{i}^{\text {data }}
$$

- Covariance matrix ("uncertainties"):

$$
\operatorname{Cov}\left(x_{j}^{\text {INVERT }}, x_{k}^{\text {INVERT }}\right)=V_{j k}=\sum_{i}\left(A^{-1}\right)_{j i}\left(\delta y_{i}^{\text {data }}\right)^{2}\left(A^{-1}\right)_{k i}
$$

- General feature of matrix unfolding methods: covariance has off-diagonal elements
- Diagonal elements: uncertainties $\delta x_{j}^{\text {INVERT }}=\sigma_{j}=\sqrt{V_{i j}}$
- Size of off-diagonals is often quantified using correlation coefficients

$$
\rho_{j k}=\frac{V_{j k}}{\sigma_{j} \sigma_{k}}
$$

Exercise 7: matrix inversion

- Invert the matrix of probabilities for MC1
- Class TMatrixD, method Invert()
- Caution: first matrix index=0, first histogram bin=1
- Unfold data, MC1, MC2 using the matrix of probabilities from MC1
- Calculate the covariance matrices and uncertainties
- Compare the unfolded results with the truth distributions
- Also calculate and show the correlation coefficients
- Discussion

Exercise 7 discussion

- Unfolded data show large point-to-point oscillations
- Consistent with truth 1000 within errors
- Oscillations are
 "allowed" by large negative correlation coefficients for adjacent bins
- Goal: damp fluctuations: regularisation

Correlation coefficients are important for fits, integrals etc.
Example: uncertainty of $\mathrm{x}_{1}+\mathrm{x}_{2}$:

$$
\Delta\left(x_{1}+x_{2}\right)=\sqrt{\sigma_{1}^{2}+2 \sigma_{1} \sigma_{2} \rho_{12}+\sigma_{2}^{2}}
$$

Cause of large fluctuations

- Matrix inversion: creates large negative off-diagonals \rightarrow statistical fluctuations of the data are amplified
- Possible improvements
- Avoid matrix inversion "Bayesian" or "Iterative"
- Use more reconstructed bins \rightarrow TFractionFitter, TUnfold
- Regularisation:

TSVDUnfold, TUnfold

"Bayesian" (D'Agostini)

- Motivated by Bayesian statistics: D'Agostini (1995)
- Here, we simply use the prescription and test it
- See 2010 paper by D'Agostini for detailed discussion
- Prescription:

D'Agostini
$x_{j}^{\mathrm{AGO}}=x_{j}^{\mathrm{gen}} \sum_{i} \frac{A_{i j}}{\varepsilon_{j}} \frac{y_{i}^{\mathrm{data}}}{y_{i}^{\mathrm{rec}}}$
where: $\varepsilon_{j}=\sum_{i} A_{i j}$

Bin-by-Bin
Compare to Bin-by-bin:

$$
x_{j}^{\mathrm{BBB}}=x_{j}^{\mathrm{gen}}\left(\frac{y_{i}^{\mathrm{data}}}{y_{i}^{\text {rec }}}\right)_{i=j}
$$

Main criticism:
(1) from non-Bayesians: result depends on "prior" MC model nGen (2) data statistical fluctuations are not treated with Bayesian methods [see D'Agostini 2010 paper]

Iterative "Bayesian"

- Idea: minimize model-dependence by iterating D'Agostini method

$$
x_{j}^{\mathrm{AGO}}=x_{j}^{\mathrm{gen}} \sum_{i} \frac{A_{i j}}{\varepsilon_{j}} \frac{y_{i}^{\mathrm{data}}}{y_{i}^{\mathrm{rec}}} \text { Iterate: replace } x_{j}^{\mathrm{gen}} \text { by } x_{j}^{\mathrm{AGO}} \text { and } y_{i}^{\mathrm{rec}} \text { by } \sum_{j} A_{i j} x_{j}^{\mathrm{AGO}}
$$

- Resulting formula for ITER \rightarrow ITER+1

$$
x_{j}^{\mathrm{TTER+1}}=x_{j}^{\mathrm{TTRR}} \sum_{i} \frac{A_{i j}}{\varepsilon_{j}} \frac{y_{i}^{\text {diat }}}{\sum_{k} A_{i k} x_{k}^{\text {TreR }}}
$$

- Covariance matrix: usually determined from MC toy experiments, using N times the equivalent data statistics (error propagation is difficult when iterating)

Fit-based matrix methods

- Recall basic equation

$$
y_{i}^{\text {data }}{ }_{\text {stat. fluct }} \mu_{i}=\sum_{j=1, n G e n} A_{i j} \text { rtuth }_{j}^{\text {tuth }}
$$

- When unfolding, the $x^{\text {truth }}$ are unknowns and the $y^{\text {data }}$ are measured
- Formulate the problem as a maximum-likelihood fit. For example, if the data are Gaussian distributed, minimize:

$$
\chi^{2}\left(x^{\mathrm{fit}}\right)=\sum_{i=1, n R e c}\left(\frac{y_{i}^{\mathrm{data}}-\sum_{j=1, n G e n} A_{i j} x_{j}^{\mathrm{fit}}}{\delta y_{i}}\right)^{2}
$$

- If $n R e c=n G e n: ~ e q u i v a l e n t ~ t o ~ m a t r i x ~ i n v e r s i o n ~ m e t h o d ~$
- Interesting case: nRec>nGen. Typical: nRec ~2*nGen

Fit based methods in Root

- In root, there are at least two such methods available:
- TFractionFitter
- Uses Poisson statistics (log-likelihood fit)
- TUnfold or TUnfoldSys
- Uses Gaussian statistics (linear fit)
- For simplicity, we use only TUnfold for the exercises

TUnfold (with tau=0)

- Minimizes the matrix equation

$$
\begin{aligned}
& \chi^{2}(x)=(A x-y)^{T} V_{y y}^{-1}(A x-y) \\
& x: \text { vector of unknowns } \\
& y: \text { vector of measurements } \\
& A: \text { matrix of probabilities } \\
& V_{y y}: \text { covariance matrix of y (uncertainties squared) }
\end{aligned}
$$

- When setting up Tunfold, the matrix A is calculated from the Monte Carlo histogram of event counts (gen vs rec) \rightarrow normalisation is handled inside Tunfold.

TUnfold: setting up the matrix

- When histogram rec.vs.gen is filled as usual, how to account for inefficiencies (events which are not reconstructed)?
- In TUnfold: "rec" underflow/overflow bins hold events which are not reconstructed
- In our example:
- If (iBgr==0)\&\&(isTrig==1) fill (rGen,rRec)
- If (iBgr==1)\&\&(isTrig==1) fill ($0.95, \mathrm{rRec}$)
- If (iBgr==0)\&\&(isTrig==0) fill (rGen,-1)
- If (iBgr==1)\&\&(isTrig==0) fill ($0.95,-1$)

- Check: sum over all rec bins for a given iGen (including underflow and overflow) should be equal to nGen(iGen)

Exercises 8-10

- Test and compare the following methods
- Exercise 3: bin-by-bin
- Exercise 7: matrix inversion
- Exercise 8: D'Agostini
- Exercise 9: Iterative methods
- Exercise 10: Fraction fit (TUnfold with $\mathrm{t}=0$)
- Compare central values to truth and compare correlation coefficients
- Start now / continue after today's lectures

Exercise 8: D'Agostini method

- Unfold data, MC1, MC2 using the detector response matrix from MC1 and the D'Agostini method
- Calculate and display correlation coefficients
- Compare to unfolding results to data, MC1,MC2 truth
- Discussion

Exercise 9: Iterative method

- Iterative method (100 cycles) to unfold data using MC1
- Show results after 1,10,100 iterations (=D'Agostini)
- Calculate Covariances using data replicas

```
// produce data replicas with extra stat. Fluctuations
// original data histogram: hist_data_rec[0]
// replicas: hist_data_rec[1..NREPLICA]
TRandom3 rnd(0);
for(int iRec=1;;Rec<=nBin;iRec++) {
    double n0=hist_data_rec[0]->GetBinContent(iRec);
    for(int iReplica=1;iReplica<NREPLICA;;Replica++) {
        double ni=rnd.Poisson(n0);
        hist_data_rec[iReplica]->SetBinContent(iRec,ni);
        hist_data_rec[iReplica]->SetBinError
        (iRec,TMath::Sqrt(ni));
    }
}
```

```
// given bin jGen kGen
// and the result for the replicas
// in histograms h[1..NREPLICA]
double s[2][2]={{0.,0.},{0.,0.}};
for(int iReplica=1;iReplica<NREPLICA;iReplica++) {
    double yj=h[iReplica]->GetBinContent(jGen);
    double yk=h[iReplica]->GetBinContent(kGen);
    s[0][0]+=1.;
    s[1][0]+=yj;
    s[0][1]+=yk;
    s[1][1]+=yj*yk;
}
double meanJ=s[1][0]/s[0][0];
double meanK=s[0][1]/s[0][0];
double rmsJK=s[1][1]/s[0][0]-meanJ*meanK;
```


Exercise 10

- Use TUnfold to unfold the data using the MC1 detector response. Use 10,20,100 reconstructed bins and compare the results
- Code example

TUnfold unfold(hist_mc1_recgen, // event counts from MC 2D histogram
Tunfold::kHistMapOutputHoriz, // gen events on x-axis
Tunfold::kRegModeSize, // explained later
Tunfold::kEConstraintNone); // not discussed in this talk
unfold.SetInput(hist_data_rec); // observed data 1D histogram
Double tau=0.0; // explained later
unfold.DoUnfold(tau); // run the unfolding
unfold.GetOutput(hist_data_result); // get histogram with unfolded data unfold.GetRholJ(hist_data_rho); // get 2D histogram of correlation coeff

Exercise 8 discussion

D'Agostini result is almost identical to the MC1 truth, independent of the data

Covariance: large positive correlations (rather expect negative correlations)

D'Agostini is the MC truth decorated with statistical
fluctuations taken from data!

Do not use this method for your data analysis!!!

Exercise 9 discussion

After 10 iterations, result is "good"

After 100 iterations, results starts to oscillate \rightarrow similar to inversion method

Unclear how many iterations are "good". Danger to have a bias to MC which is difficult to quantify

Better not to use this for your data analysis

Iterative method: how often?

- Main question: when to stop the iteration?
- Also, does the iteration converge?
- Answer: maybe. If it converges, one typically gets back the result from matrix inversion
- What people do:
- Iterate until "it does not change anymore"
- Or iterate until "the result becomes instable"
- Lack of definition of a good stopping condition \rightarrow better do not use that method for your analysis

Discussion exercise 10

Visible improvements when using more bins, but still not satisfactory.

Comparison exercise 3,7,8-10

- None of these methods works satisfactory
- Bin-by-bin and d'Agostini have bias to MC truth

- Iterative properties are not well defined
- Matrix inversion and -to a lesser extent- fraction fit have oscillating solutions

Regularised unfolding

- Add extra term to the fit function "regularisation"
- The parameters x are constrained to be "similar" to x_{b}
- Strength of regularisation is given by parameter T

$$
\begin{aligned}
& \chi^{2}(x)=(A x-y)^{T} V_{y y}^{-1}(A x-y)+\tau^{2}\left(x-x_{b}\right)^{T}\left(L^{T} L\right)\left(x-x_{b}\right) \\
& x: \text { vector of unknowns } \\
& y: \text { vector of measurements } \\
& A: \text { matrix of probabilities } \\
& V_{y y}: \text { covariance matrix of } y \text { (uncertainties squared) } \\
& \tau: \text { regularisation strength } \\
& L: \text { regularisation conditions } \\
& x_{b}: \text { regularisation bias }
\end{aligned}
$$

Choice of Regularisation

$$
\chi^{2}(x)=(A x-y)^{T} V_{y y}^{-1}(A x-y)+\tau^{2}\left(x-x_{b}\right)^{T}\left(L^{T} L\right)\left(x-x_{b}\right)
$$

τ : regularisation strength
L : regularisation conditions
x_{b} : regularisation bias

- Typical choice of L: unity matrix or "curvature" matrix
- Typical choice of x_{b} : "zero" or "MC truth"
- Typical choice of T :
- Eigenvalue analysis (TSVDunfold)
- L-curve scan (TUnfold, TUnfoldDensity)
- Minimize correlations (TUnfoldDensity)

TSVDunfold

- Restrictions:
- nRec=nGen

This lecture: no exercise on TSVDUnfold
Use with the given example is not straight-forward

- Regularisation always by curvature
- Some differences to TUnfold
- e.g. definitions of L and T
- Choice of regularisation
- Parameter т is calculated from Eigenvalue analysis
- User has to define integer parameter kReg. See Höcker/Kartvelishvili (1995) for details

TUnfold: choices of L

$$
\chi^{2}(x)=(A x-y)^{T} V_{y y}^{-1}(A x-y)+\tau^{2}\left(x-x_{b}\right)^{T}\left(L^{T} L\right)\left(x-x_{b}\right)
$$

τ : regularisation strength
L : regularisation conditions
x_{b} : regularisation bias

- Simplest choice: L=unity matrix, $x-x_{b}$ is pulled to zero
- Curvature $L=(-1,2,-1)$, derivative of $(x-x b)$ is pulled to zero
- Effect: oscillations are damped. If $x_{b}=0$, pull x to zero (L=unity) or pull x to a straight line (L=curvature matrix)

Curvature matrix: $L_{n \times n-2}=\left(\begin{array}{cccccccc}-1 & 2 & -1 & 0 & & \ldots & & 0 \\ 0 & -1 & 2 & -1 & & & & \vdots \\ \vdots & & & & \ddots & & & \\ 0 & & & & & -1 & 2 & -1\end{array}\right)$

Choice of regularisation in TUnfold

- Three basic choices for matrix L
- kRegmodeSize [L=unity matrix]
- kRegmodeDerivative [$L \sim(-1,1)]$
- kRegmodeCurvature [L~(-1,2,-1)]
- One basic method to determine \uparrow
- ScanLCurve()
- Note: new version of TUnfold (V17) provides another method to determine $т$ by minimizing correlation coefficients: ScanTau()
https://www.desy.de/~sschmitt/tunfold.html

L Curve scan

$$
\begin{gathered}
\chi^{2}(x)=(A x-y)^{T} V_{y y}^{-1}(A x-y)+\tau^{2}\left(x-x_{b}\right)^{T}\left(L^{T} L\right)\left(x-x_{b}\right) \\
=\chi_{A}^{2}(x)+\tau^{2} \chi_{L}^{2}(x)
\end{gathered}
$$

- If T is zero, X_{A}^{2} is minimized and X_{L}^{2} is large
- If T is very large, X_{L}^{2} is minimized and X_{A}^{2} is large
- Parametric plot of
$X=\log _{10}\left(X_{A}^{2}\right)$ vs $Y=\log _{10}\left(X_{L}^{2}\right)$ is L-shaped
- "Best" compromise:
kink position (largest curvature)

Exercise 11: L curve scan

- Run TUnfold to unfold the data, using the response matrix from MC1 (nRec=20, nGen=10)
- $\mathrm{L}=1$ and $\mathrm{x}_{\mathrm{b}}=\mathrm{MC}$ (truth) // run the unfolding and retreive results TUnfold unfold_(hist_mc1_recgen,
- Compare the result to truth TUnfold::kHistMapOutputHoriz,
- Compare the result to truth TUnfold::kRegModeSize,

TUnfold::kEConstraintNone);

- If there is time:
- Show correlations
- Show L-curve
- Discuss
unfold.SetInput(hist_data_rec, 1.0);
TGraph *Icurve=0;
TSpline * \log Tau $X=0, * \log T a u Y=0$;
unfold.ScanLcurve(100,0.,0.,\&Icurve,\&logTauX,\&logTauY); unfold.GetOutput(hist_data_LCURVE);
unfold.GetRholJ(hist_data_LCURVErho);
double tau=unfold. ${ }^{-1}$-tTau();
double logTau=TMath::Log10(tau);
double IcurveX=logTauX->Eval(logTau); double Icurve $\mathrm{Y}=\log$ TauY->Eval(logTau);

Exercise 11 discussion

- Bias to MC is small
- Result is very good
- Uncertainties have reasonable size
- Covariance matrix with moderate correlations
- Choice of "best" point on L-curve is difficult to understand because range of X and Y axis is different

L curve

L curve scan: caveats

- Possible problems with $X=\log _{10}\left(X_{A}^{2}\right)$
- If $n R e c=n G e n$, then X_{A}^{2} is zero [if $T=0$]
- If $\mathrm{MC}(\mathrm{rec})$ is used as "data", then $\mathrm{X}_{\mathrm{A}}{ }_{\mathrm{A}}$ is zero because MC(truth) reproduced exactly the "data"
- Rules when using TUnfold with L-curve scan
- Always use: nRec>nGen
- Toy studies can not be done using the exact MC distribution which was used to build the response matrix \rightarrow apply extra statistical fluctuation to the MC or use independent samples

Comparison of unfolding methods

- Bin-by-bin and D'Agostini do not work (bias)
- Iterative method: difficult to define end condition

- Matrix inversion and fraction fit: oscillations
- Regularized unfolding seems to work best!

Summary of unfolding methods

- Strong bias to MC truth. Do not use
- Bin-by-bin
- Bayesian
- Unclear bias to MC truth. Better not to use
- Iterative "Bayesian"
- No bias but oscillations and large anti-correlations
- Matrix inversion, fraction fit
- Small bias, oscillations damped
- Regularised unfolding with proper choice of T \rightarrow TUnfold TSVDUnfold

References for unfolding methods

- Bayesian:
- Nucl.Instrum.Meth. A362 (1995) 487-498
- arXiv:1010.0632
- TSVDUnfold
- Nucl.Instrum.Meth.A372 (1996) 469-481
- TUnfold
- JINST 7 (2012) T10003 [arXiv:1205.6201]
- https://www.desy.de/~sschmitt/tunfold.html
- Collection of talks by V.Bobel
- https://www.desy.de/~blobel/unfold.html

Unfolding problems specific to HEP

- Background
- See exercise 7: extra bins to extract background normalisation
- Multidimensional histograms
- exercise 12 and 13
- Phase-space boundaries [only one slide]
- Measurements of multiplicities [not covered in this talk]

Exercise 12: 2D unfolding

- Make 2D plot of the variables (a,b) [use full TTree]
- aRec=rRec*sin(pRec) and bRec=rRec*cos(pRec)
- aGen=rGen*sin(pGen) and bGen=rGen* $\operatorname{cos(pGen)~}$
- $-0.9<a, b<0.9$
- 15×15 bins for aRec, bRec
- 15x15 bins for aGen,bGen
- Unfold the data bin-by-bin
- Compare the histograms

Exercise 12 discussion

 with data truth!

What about regularized unfolding?

Multi-dimensional matrix unfolding

- Basic formula defines only one dimension for reconstructed bins and another dimension for generated bins

$$
y_{i}^{\text {data }}{ }_{\text {statfluct }} \mu_{i}=\sum_{j=1, n G e n} A_{i j} x_{j}^{\text {tuth }}
$$

- The equation does not care how the bins are arranged
- Recall: we already added one extra bin for background normalisation

Multi-dimensional histograms

- No fundamental difference between unfolding onedimensional or multi-dimensional histograms

$$
\mu_{j}=\sum A_{i j} x_{i}^{\text {tuth }}
$$

- Sum runs over all bins i, no matter how they are arranged
- Example: order bins as shown to the right

Problem: algorithms which use curvature regularisation (TSVDUnfold) may calculate the wrong curvature (in this example between the bins 7,8 or $14,15 \mathrm{etc}$)

Observable \#1

TUnfoldBinning

- 2D problems have to be mapped to 1D
- Mapping 2D to 1D is complicated (\rightarrow error prone)
- V17.3 of TUnfold provides class TUnfoldBinning
- Binning scheme may be defined in xml language
- After unfolding: retreive results in histograms with user binning
- For running the unfolding, use the class TUnfoldDensity which is able to deal with binning schemes
- Event loop: get bin number from TUnfoldBinning, then fill histograms with TUnfold internal binning

Exercise 13

- Look at XML file "exercise13binning.xml"
- Look at stand-alone program "exercise13.C"

TUnfold V13 is not available in root 5.34

- Compile and run program exercise13:
- make exercise13prog
- ./exercise13prog

Can be linked with root libraries as shown in the example13prog

- Results are written to "exercise13.root"
- Extend macro from exercise12 to also plot the histogram: hist_data_unfold
- Compare bin-by-bin and regularized unfolding results

Exercise 13 discussion

Phase space boundaries

- Analysis in HEP often have complicated phase-space definitions
- Measurement is differential in one variable [v], but there are also cuts in other variables [e.g. w0<w<w1]
- Two options
- Subtract background from $w<w 0$ and from $w>w 1$ prior to unfolding TUnfoldSys::SubtractBackground()
- Or use extra generator bins $w<w 0$ and $w>w 1$ to unfold background contributions from data \rightarrow compare to our example of unfolding the background normalisation from the data

Summary and Conclusions (1)

- Unfolding: "correct" measurements for detector effects. Our daily business in HEP analysis
- Many different methods:
- Strong bias to MC: bin-by-bin and "Bayesian" without iterating. Do not use
- Unknown bias: iterative method. Better not use
- Unbiased, large errors and large correlations: matrix inversion, fraction fits.
- Small bias to damp oscillations: regularized fits
- TSVDUnfold: eigenvalue analysis
- TUnfold: L-curve scan

Summary and Conclusions (2)

- Problems specific to unfolding in HEP
- Multidimensional distributions
- Complicated phase-space definition
- Measurement of multiplicities [not discussed in this talk]
- Systematic uncertainties [not discussed in this talk]
- Most problems with unfolding in HEP are related to the choice of bins, inside and outside the phase-space
- For complex binning schemes, the class TUnfoldBinning may be useful (not available in root $5.34 \rightarrow$ standalone program needed)

