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Following the concept of collinear QCD factorisation, collisions involving nucleons and nuclei
are commonly described with the help of collinear parton density functions (PDFs). The PDFs
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1. Introduction

1.1 Collinear QCD factorisation
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Figure 1: Examples of processes de-
scribed with the help of collinear QCD fac-
torisation: inclusive deep-inelastic scatter-
ing (DIS), semi-inclusive DIS (sDIS) and
Drell-Yan production.

High-energy collisions involving at least one
hadron are often described with the help of collinear
QCD factorisation [1]. Examples are sketched in Fig-
ure 1. Perhaps the simplest case is inclusive deep-
inelastic scattering (DIS), where the cross section is
schematically written as

σep→eX ∼∑
i

fi⊗|Mi|2 +higher twist (1.1)

The initial state hadron is described by parton density
functions (PDFs) fi. These are process-independent
functions fi = fi(x,µ) of the hard scale µ , a folding
variable x and a flavour index i. The flavour index i is
used to differentiate between contributions of the var-
ious flavours: quarks, anti-quarks or gluons. For pre-
dicting DIS cross sections, the PDFs are folded with
coefficient functions |Mi|2. These are specific to the
process studied, but are indepent of the initial state
hadron. They can be calculated in QCD perturbation
theory. Another example process is the case of semi-
inclusive DIS, where the production of a hadron h in
the final state is studied. The factorisation then in-
cludes a second folding process, involving fragmen-
tation functions (FFs). These describe the transition
from partons to the selected hadron. A third exam-
ple are collisions with two hadrons in the initial state.
In this case, coefficient functions are folded with two
PDFs to predict cross sections. Contributions to the
cross sections not predicted by folding PDFs with coefficient functions are “higher twist”. QCD
factorisation is said to be valid if the higher-twist terms are suppressed by powers 1/µN of the
hard scale, with N ≥ 1. The validity of QCD factorisation is proven only for a selection of hard
processes, such as inclusive, semi-inclusive and diffractive deep-inelastic scattering or Drell-Yan,
W , jet and hevy flavour production in collisions of two hadrons.

1.2 PDF evolution

In the leading order picture the PDFs fi(x,µ2) describe the probability to find a parton of
flavor i and longitudinal momentum fraction x in the incoming hadron, given the hard scale µ .
The DGLAP equations [2] decribe how a given set of parton density functions fi(x,µ0), known
at a fixed scale µ0, is evolved to a another scale µ 6= µ0, given the running QCD coupling αs(µ).
In other words, instead of having to know the PDFs as a function of two variables fi(x,µ), it is
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Figure 2: NNPDF3.1 Parton density functions shown
at two different scales. Figure source: arXiv [3].

.

sufficient to know the PDFs as a function
of a single variable x for a fixed (and ar-
bitrary) scale µ0. The DGLAP evolution
is an essential ingredient to extract PDFs
from measured cross sections in QCD fits.
The PDF evolution equations and coeffi-
cent functions are known beyond leading
order, such that modern QCD fits are rou-
tinely done in next-to-leading order (NLO)
or next-to-next-to-leading order (NNLO)
QCD. Figure 2 shows recent PDF fits by
the NNPDF collaboration [3] at scales µ =

3.16GeV and µ = 100GeV.

1.3 PDF fits
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Figure 3: Datasets used for the
NNPDF3.1 parton density fiunctions in the
kniematic plane. Figure source: arXiv [3].

.

Parton density functions are extracted from data
in PDF fits. For such fits, the PDFs are parametrised
at a starting scale µ0. The functions fi(x,µ0) at the
scale µ0 are typically described by a finite number of
parameters. When fixing these PDF parameters, the
strong coupling αs(mZ) and other parameters such as
the heavy quark masses, cross sections can be pre-
dicted at arbitrary scales µ . By minimizing the devia-
tions of the predictions from measurements, estimates
of the PDF parameters can be determined in a fit. The
data uncertainties correspondingly translate to uncer-
tainties on the resulting PDF parameters.

Such PDF fits are carrried out by different groups,
using different sets of input data and different ways
to parametrise the PDFs at the starting scale. The
backbone of most PDF fits are the inclusive HERA
data, cross section measurements of neutral-current
and charged-current deep-inelastic scattering at

√
s =

320GeV covering different lepton charges and a
wide range in x-Brorken and negative four-momentum
transfer squared Q2. The HERA data also include
smaller samples of neutral-current data at reduced
centre-of-mass energies, thus enhancing the sensitiv-
ity to the gluon at low x through the structure function FL. Figure 3 shows an overview of the
datasets included in the NNNPDF3.1 fit [3] in the kinematic plane.
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2. New results in deep-inelastic scattering

2.1 Low-x resummation
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Figure 4: HERA data at Q2 = 3.5GeV2

compared to NNLO QCD fits with and
without low-x resummation. Figure source:
arXiv [6].

.

The HERA data [4] have been poorly described
by PDF fits in the region of small x and low Q2. The
convergence of fixed-order calculations possibly can
be improved in this kinematic regime by low-x resum-
mation. Calculations of splitting functions and coef-
ficient functions with resummed low-x terms have re-
cently been made available as computer code [5] for
use in PDF fits. Comparisons of NNLO PDF fits with
and without low-x resummation to HERA inclusive
data [6] are shown in figure 4. The PDFs are char-
acterised by a stronger increase of the gluon and sea
quark contributions with low x. The description of the
low x HERA data is improved significantly, as well as
the description of measurements of charm production
at HERA [7, 6].

2.2 Charm and beauty at HERA
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Figure 5: HERA combined data on charm and beauty produc-
tion, relative to the HERAPDF2.0FF3A NLO QCD prediction.
Figure source: arXiv [9].

.

A new combination of charm
and beauty measurements at HERA
[9] was published crecently, im-
proving in precision over the pre-
vious combination of charm data
only [8]. It is theoretically chal-
lenging to describe heavy flavour
production at HERA, as there are
several hard scales involved, such
as the momentum transfer Q, the
heavy quark masse mc and mb and
transverse momenta. For combin-
ing the various HERA datasets col-
lected by the H1 and ZEUS expe-
rients, exclusive measurements are
extrapolated to the full phase-space. All measurements are then averaged and good consistency of
the datasets is observed. The charm data have uncertainties reduced by typically 20% as compared
to the previous HERA combination. The beauty data are combined for the first time. The com-
bined data are compared in figure 5 to NLO calculations in the fixed-flavour-number scheme, which
are most appropriate for describing DIS heavy-flavour production at scales in the vincinity of the
heavy quark masses. Overall the measurements are well described by the calculations, but there
are deviations in the x-Bjorken near Q2 = 12GeV2. The same is true for variable-flavour-number
scheme calculations. However, the overall deviation is of order three standard deviations only. A
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QCD fit of the combined charm and beauty data together with the combined inclusive HERA data
is performed in which the charm and beauty quark masses are free parameters in addition to the
PDF parameters. The resulting running heavy quark masses are found to be

mc(mc) = 1.290+0.077
−0.053 GeV and mb(mb) = 4.049+0.138

−0.118 GeV, (2.1)

in good agreements with the world averages. Further studies are made [9] to compare the data to
recent predictions based on low-x resummation. As compared to the calculations presneted above,
the predicted slope in x is in better agreement with data, however the Q2 dependence is less well
modelled.

2.3 Jet production at HERA
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DIS and jet data. Figure source: arXiv [10].

.

The H1 collaboration recently
published determinations of the
strong coupling αs(Mz) from jet
data in DIS [10] using NNLO
QCD predictions [11, 12]. One
of the methods advertised in that
paper is the simultaneous determi-
nation of the strong coupling con-
stant and PDF parameters using
H1 inclusive and H1 jet data to-
gether. The strong coupling is de-
termined in that fit as

αs(mZ) = 0.1142(28) (2.2)
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.

The use of the H1 jet data
in the fit enables a simultaneous
determination of αs(mZ) and pa-
rameters describing the gluon den-
sity form H1 data alone. Figure
6 shows the gluon density and the
correlation between the gluon den-
sity and αs. While αs is a bit lower
that the world average, the gluon
and singlet contributions are cor-
respondingly somewhat larger than
in other PDF fits. The correlation
with αs is reduced significatly, as
compared to a fit without jet data.

3. Probing intrinsic charm

Recent PDF fits [3, 13] explore comstraints on a possible intrinsic charm component in the
proton for scales µ > mc, which would ontribute in addition to the perturbative charm contribution
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from gluon splitting. Predictions by CTEQ-TEA on the production of charm in association with
a Z-boson at the LHC indicate that such measurements may be able to constrain the magnitude
of such an intrinsic charm contribution in the future. Measurements by CMS on Z plus charm
[14] and by ATLAS on photon plus charm [15] are shown in figure 7. While the Z channel is still
statistically limited, the photon channel is starting to discriminate between models. However, as
shown in the CMS analsyis, details in the QCD modelling do complicate a precision analysis.

4. High-x gluon, valence quarks

4.1 Jet production in pp collisions
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.

Jet production in pp colli-
sions at the LHC can be used to
probe QCD at high scales and high
x. The ATLAS collaboration pub-
lished double-differential inclusive
jet cross section measurements at
centre-of-mass energies of both 8
and 13TeV, as well as dijet cross
section measurements at a centre-
of-mass energy of 13TeV [16, 17].
The CMS collaboration presented
triple-differental measurements of
dijet cross sections at 8TeV centre-
of-mass energy [18]. As compared to double-differential measurements, the triple differential mea-
surements have further enhanced sensitivity to PDFs. Figure 8 shows the measurements and their
impact on constraining the high-x gluon and valence quark distributions.
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.

LHC jet data measured at 7TeV centre-of-mass
energy have been included in a global PDF fit at NNLO
by the MMHT group [19]. The relative uncertainty on
the gluon is reduced by up to 20% when including jet
data from both TeVatron and the LHC. For some of the
datasets, difficulties to accommodate the default cor-
relation model of the systematic uncertainties are re-
ported.

4.2 Top quark pair production

Due to the large top quark mass, top pair produc-
tion naturally probes the gluon PDF at large scales and
large x. The integrated cross section alone already adds
significant information at high x, due to missing con-
straints in this regions from HERA data alone. Mea-
surements by CMS as a function of the centre-of-mass
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energy [20] and measurements in the forward direction by LHCb [21] could be included in future
PDF fits. Normalized single-differential cross sections as reported by ATLAS [22] and double-
differential cross sections as reported by CMS [23] have the potential to further constrain the gluon
at high x. This is illustrated in Figure 9, where the impact on the gluon density by including
normalized double differential cross sections is illustrated.

5. Flavour separation and strangeness

5.1 Constraints from LHC data

The HERA DIS data alone have limited power to constrain the strange quark density. In
the HERAPDF fits, the strange distribution was taken to be equal to a fixed “suppression factor”
relative to the (anti-)down sea quark density. Fixed target experiments such as HERMES were able
to extract an x dependent strangeness suppression from sDIS data [24], however the analysis was
performed in leading-order only. As precision data on Drell-Yan and W production at the LHC
is becoming avaliable, several groups are doing PDF fits with emphasis of analyzing the strange-
quark content of the proton. Already in 2012, the ATLAS collaboration reported an analysis of their
data, which gave evidence for a non-supressed strange sea [25]. In contrast, the CMS collaboration
analysed data on W+-W− asymmetries in 2013 [26] and found evidence for a suppressed strange
sea. Both collaborations also measured the production of W plus charm [27, 28], which is more
directly sensitive to strange quarks in the proton. The ATLAS result again prefered an unsuppressed
strangeness, whereas the CMS result was better compatible with strangeness suppression.
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.

The ATLAS collaboration recently published pre-
cision measurements of Drell-Yan and W production
[29, 30]. The measured cross sections have bin-to-bin
uncorrelated uncertainties smaller than 1% and nor-
malisation uncertainties as small as 1.8%. The AT-
LAS PDF fit again prefers an unsupressed strange sea.
However, as shown in figure 10, the PDF parametrisa-
tion has sizeable shape uncertainties not constrained
by the Drell-Yan and W data. The CMS collabora-
tion showed a new measurement on W plus charm
production [31]. This measurement prefers a shape
which is different from the ATLAS default parametri-
sation. Other groups have studied the LHC data sen-
sitive to strangemess in independent analyses. ATLAS
and CMS data on Drell-Yan and W production seem
to be compatible with each other when analyzed with
identical PDF parametrisations [32]. The ABM group analyzed the constraints imposed by the
ATLAS parametrisations in greater detail [33]. They argue that the parametrisation is not flexible
enough and imposes unphyical constraints which are, for example, incompatible with fixed-target
E866 data on d̄/ū [34].
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5.2 Prospects on flavour separation from non-collider data

The SeaQuest collaboration is aiming to improve the oder E866 measurements on d̄/ū [34],
using data recorded at smalller centre-of mass energies. Preliminary results are available [35].

JLAB has a large program set up to to measure polarized and unpolarized deep-inelastic scat-
tering in various targets. In hall C, precision measurements of the strucure function F2 in ep and
ed are ongoing. Many new experiments are planned to run at a beam energy of 12GeV. The
MARATHON experiment is aining to measure cross sections on tritium and 3He targets, where nu-
clear corrections cancel in the ratios. The BONus12 experiment is going to tag recoil protons and
hence provides measurement on an effective free neutron target. The SoLID PVDIS experiment is
aiming for measurements of the u/d ratio in parity-violating ep scattering.

Another interesting project is the extraction of parton densities from lattice-QCD calculations.
Two groups [36, 37] recently reported results on the differences u−d and ū− d̄ from calculations
which can be compared directly to PDF fits.

6. Nuclear PDFs
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.

PDF parametrisations for nuclei other than the
proton are often references as “nuclear” PDFs
(nPDFs). Recent nPDF fits [39, 40] are based on free
proton PDFs. By invoking isospin-asymmetry, PDFs
for the free neutron can be predicted by swapping the
role of up and down quarks. These free proton and
free neutron PDFs are then multiplied by the number
of protons Z and the number of neutrons A− Z, re-
spectively, and the results are added up. Effects arising
from the fact that the protons and neutrons are bound in
the nucleus are taken into account using “nuclear mod-
ification factors”. These depend on the atomic number
A, the flavour and the momentum fraction x. Here, the
momentum fraction x for nPDFs is given relative to a
single nucleon, such that x/A would correspond to the
momentum fraction relative to the whole nucleus. An example nuclear modfication factor is shown
in figure 11. For small x, the factor is below unity, corresponding to the “shadowing” region. Near
x = 0.1 the modification is above unity in the “antishadoinwing” region. Near x = 0.5 the modi-
fication is again below unity, the so-called “EMC effect”. Towards x = 1 the factor rises to very
large numbers.

6.1 LHC pA and AA Drell-Yan and W data in global fits

Precision measurements of structure functions and Drell-Yan cross sections with various nu-
clear targets are the basis of nPDF extractions [39]. Measurements of Drell-Yan and W production
at the LHC have been included in nPDF fits, thus extending the kinematic region constrained by
data to lower x. The EPPS16 fit [40] and a recent study by nCTEQ [41] quantify how LHC data
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from pPb collisions at centre-of-mass energy 5.02GeV and PbPb collisions at 2.76GeV compare
to nPDF fits not using LHC data.
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New data on forward W and Z production in pPb
collisions at 5.02TeV and on forward Z production
have been released by the ALICE collaboration [42].
They are shown together with data measured by the
other LHC experiments in figure 12. Predictions based
on pre-LHC nPDFs are in fair agreement with the mea-
surements. New ALICE data on forward Z produc-
tion in PbPb collisions at 5.02TeV [43] also have been
tested against predictions. While the EPPS16 nPDFs
are able to describe the data, predictions based on free
nucleons fail to describe these.

6.2 Including
pA and AA heavy-flavour data in nuclear PDFs

Measuring charm and beauty has a long tradition
in heavy-ion collisions. A wealth of such measure-
ments is available in pPb and PbPb collisions at the
LHC for various centre-of-mass energies. A recent
study [44] is exploring in a systematic way the com-
patibility of these measurements with recent nPDF fits.
The possible impact of these data on future nPDF fits
is quantified and is expected to be significant.

7. Summary

More than fourty years after writing down the
DGLAP equations, investigations of parton densities
are still under active developments. The field is driven
both my new mesurements and by advancements in
theory. The review presented here is trying to highlight
a few recent developments, with emphasis on experi-
mental results and predictions which can be compared
directly to new data.

Low-x resummation is now available for PDF fits
in a publicly available computer code. This has triggered several investigations on HERA precision
data both in inclusive DIS and in charm and beauty production. Future investigations may profit
from the updated combination of charm and beauty data which was presented by the H1 and ZEUS
collaborations.

LHC measurements of jet production at high transverse momenta and of top quark production
are interesting for constraining PDFs, in particular the gluon density, at high x. Drell-Yan and W
production is measured multi-differential and is important for separating the quark flavours in the
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sea. Together with measurements of charm plus W , more flexible PDF parametrisations can be
probed, thus refining the knowledge about the x dependence of the strange sea. New data on c with
a photon or Z boson are starting to become sensitive to the question whether an intrinsic charm
component is required to describe charm in the proton.

LHC data also has started to become important for fits of PDFs of nuclear targets. Data on
W and Z production are already included in recent global fits. The compatibility of global nuclear
PDF fits with data on heavy-flavour production also has been studied. It seems promising to include
these data in future nuclear PDF fits.
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