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Abstract. A selection of unfolding methods commonly used in High Energy Physics is

compared. The methods discussed here are: bin-by-bin correction factors, matrix inver-

sion, template fit, Tikhonov regularisation and two examples of iterative methods. Two

procedures to choose the strength of the regularisation are tested, namely the L-curve

scan and a scan of global correlation coefficients. The advantages and disadvantages of

the unfolding methods and choices of the regularisation strength are discussed using a

toy example.

1 Introduction

In high energy physics, typical measurements are based on counting experiments. Events are detected

and later classified depending on their properties. Cross sections, for example, are determined from

event counts, where the event properties are restricted to certain regions in phase space (bins), divided

by the integrated luminosity. The observed event counts are different from the expectation for an ideal

detector mainly because of three effects:

Detector effects: the event properties such as energy or scattering angle are measured only with finite

precision and limited efficiency. Events may be reconstructed in the wrong bin or may get lost.

Statistical fluctuations: the observed number of events is drawn from a Poisson distribution. The

measurement provides an estimate of the Poisson parameter µ. Commonly, the square root of the

number of event counts is assigned as “statistical uncertainty”.

Background: events similar to the signal may also be produced by other processes.

The process of extracting information about the truth content of the measurement bins, given the ob-

served measurements, is referred to as “unfolding”. In mathematics, the general problem is formulated

as an integral equation of the type
∫

k(y, x) f (x)dx = g(y) . (1)

Given the observations g(y) and the kernel k(y, x) one seeks to know the function f (x). It is well-

known that for this type of equation small changes of g(y) may result in large changes of f (x).

In the following, a simpler version of equation 1, corresponding to a finite number of bins, is

studied. The distribution f (x) is replaced by a vector x of dimension MX , where the components x j
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correspond to the expected number of events in a bin j at “truth level”. Similarly, the function g(y) is

replaced by a vector µ of dimension My and its components µi correspond to the expected number of

events on “detector level”. The two vectors are connected by the folding equation

Ax + b = µ , (2)

where the elements Ai j of the response matrix A specify the probability to find an event produced in

bin j to be measured in bin i. The expected number of background events is described by the vector

b. The matrix A and the vector b are assumed to be known. In a real experiment, these numbers may

have limited precision, leading to systematic uncertainties. In many cases the Ai j are estimated using

Monte Carlo techniques to simulate the signal process and detector effects,

Ai j =
N

MC,rec∧gen

i j

N
MC,gen

j

. (3)

The number N
MC,rec∧gen

i j
corresponds to the number of Monte Carlo events generated in truth bin j

and reconstructed on the detector in bin i. The number N
MC,gen

j
is the total number of Monte Carlo

events generated in truth bin j, including events which are not reconstructed in any of the bins i. The

reconstruction efficiency is given by ǫ j =
∑

i Ai j. Events which are reconstructed in a bin j but are

generated outside any of the MX generator bins are attributed to the background b j.

As the experiment is performed, numbers yi are observed instead of the expectation value µi. The

differences of the vector of observations y and the expectation µ are amplified in the unfolding process.

For counting experiments, the integer event counts yi are drawn from a Poisson distribution, P(yi; µi) =

exp(−µi)(µi)
yi/yi! . In the large sample limit, the event counts yi are taken to follow multivariate

Gaussian distributions, with mean µi and a fixed covariance matrix Vyy. The covariance matrix is

diagonal in case of statistically independent bins. The diagonal elements often are approximated

using the observations yi as the variances.

The result of the unfolding process is an estimator x̂ of the truth distribution x and a corresponding

covariance matrix Vxx. The uncertainties δ j and correlation coefficients ρ jk of two bins j and k are

given by

δ j =

√

(Vxx) j j, and ρ jk =
(Vxx) jk

δ jδk
. (4)

The global correlation coefficient of bin j is defined as

ρ j =

√

1 −

(

(Vxx) j j

(

Vxx
−1
)

j j

)−1

. (5)

In this paper, a few selected unfolding algorithms are discussed together with methods to verify

the unfolding procedures and to choose parameters of the algorithms. Unfolding algorithms and their

application in high-energy physics and elsewhere are also widely discussed in dedicated workshops,

e.g. [1] and in literature, e.g. [2, 3].

2 Toy example

A simple toy example is used here to test and compare various unfolding algorithms. It is included

in the TUnfold package [4], example number 7. A heavy particle is produced with a given transverse

momentum PT distribution and decays into two massless particles. The energy and angles of the decay
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Figure 1. Toy example, distribution on truth level (left), on reconstructed level (middle), response matrix (right).

products in the laboratory frame are smeared by resolution functions. The observed PT is calculated

from the vector sum of the two reconstructed particles. Background is also generated and contributes

in this example mainly at large PT . For the PT distribution on truth level, Landau distributions are

used. The corresponding parameters differ between the “data” and the “simulated” events, where the

latter are used to construct the response matrix. The resulting PT distributions are shown in Fig. 1 on

truth and detector level. The differences between the two parameterisations are clearly visible, both

on truth and on reconstructed level. The response matrix indicates a moderate detector resolution at

low PT , where a fine binning is used.

3 Testing unfolding results

Given a method to estimate x̂ and the covariance Vxx for a given vector of observations y, it is desirable

to judge on the quality of this estimator. Two classes of tests are defined here, “Data tests” and

“Closure tests”.

3.1 Data tests

The folding equation 3 can be applied to the unfolding result, i.e. one may compare Ax̂ + b with the

observation y. The most basic comparison is to verify the normalisation by calculating

Yunf :=

M
∑

i=1

(Ax̂ + b)i and Ydata :=

M
∑

i=1

yi . (6)

The expectation is to find Yunf = Ydata. Another test is to calculate a χ2 sum,

χ2
A = (Ax̂ + b − y)T(Vyy)

−1(Ax̂ + b − y) . (7)

In the large sample limit, one expects to find χ2
A

distributed with My − Mx degrees of freedom, unless

a strong level of regularisation is introduced by the unfolding procedure. In particular, for the case

My = Mx, the χ2 sum is expected to be zero and hence Yunf = Ydata. For My > Mx, the quantiles of

the χ2 distribution for My − Mx degrees of freedom can be assessed. Another interesting quantity to

study is the average global correlation coefficient,

ρavg =
1

Mx

Mx
∑

i=1

ρi . (8)
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The average global correlation coefficient can be used to tune regularisation parameters, as discussed

below. In general, one expects to find a non-zero global correlation coefficient in the presence of

non-negligible migrations.

3.2 Closure tests

When using pseudo-data, generated with the help of Monte Carlo simulations, the truth distribution

x
truth is known, so the unfolding result x̂ may be directly compared to it. Such comparisons, where

pseudo-data are unfolded and compared to the truth are often called closure tests.

The most trivial test to think of is to insert µtruth = Ax
truth+b for the observations y and perform the

unfolding. However, this test is not very meaningful, because basically all commonly used unfolding

methods will trivially result in x̂ = x
truth in this case.

More interesting closure tests are based on independent Monte Carlo samples. For example, the yi

could be drawn from Poisson distributions given the parameters µtruth
i

. As these Poisson experiments

and the subsequent unfolding are repeated many times, one gets an independent determination of the

average and of the covariance

x
avg = 〈x̂〉, and (V

avg

xx
) jk = 〈(x̂ j − x

avg

j
)(x̂k − x

avg

k
)〉 , (9)

where the averages are taken over the unfolded, independent Monte Carlo samples. The resulting x
avg

is expected to agree with x
truth and the resulting covariance is expected to agree with the covariance

returned by the unfolding algorithm. This type of test, seeded from the same truth distribution as is

used to construct the matrix A verifies the statistical properties of the unfolding method.

The most interesting type of tests includes independent Monte Carlo samples where the underlying

truth distributions are modified. For a good unfolding algorithm, one expects to obtain unbiased results

when unfolding observations drawn from the changed truth distribution using the unchanged response

matrix. For each of the independent Monte Carlo samples one can define the χ2

χ2
truth = (x̂ − x

truth)T
Vxx

−1(x̂ − x
truth) . (10)

and verify that the unfolding result is not biased. In the large sample limit and for a completely

unbiased algorithm, the quantity χ2
truth

is expected to follow a χ2 distribution with Mx degrees of

freedom.

4 Unfolding algorithms

4.1 Bin-by-bin correction factors

For this method, the unfolded distribution is given by

x̂i = (yi − bi)
N

gen

i

Nrec
i

, (11)

(12)

where Nrec
i

(N
gen

i
) is the total number of reconstructed (generated) Monte Carlo events in bin i. This

methods is applicable only in the case where My = Mx and where the bins on detector level and truth

level have a clear correspondence.

The bin-by-bin method often is used due to its simplicity; however its results are biased signifi-

cantly by the underlying Monte Carlo distributions. The results of performing data tests using the toy

example with various unfolding methods are summarised in Tab. 1. The use of the bin-by-bin method

is clearly disfavoured. It yields the wrong normalisation Yunf and χ2
A

is far from zero.
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4.2 Matrix inversion and template fit

Table 1. Data tests performed on various unfolding methods.

Yunf χ2
A
/Nd.f. Prob(χ2

A
,Nd.f.)

expectation 4584 Nd.f. / Nd.f. 0.5

bin-by-bin 4521 34.7 / 0 n.a.

matrix inversion 4584 0 / 0 n.a.

template fit 4572 12.0 / 16 0.74

constrained template fit 4584 12.0 / 16 0.74

Tikhonov τ = 0.0068 4584 13.4 / 16 0.64

Tikhonov τ = 0.012 4584 15.0 / 16 0.52

EM method n = 0 4537 5069 / 0 n.a.

EM method n = 20 4585 5.9 / 0 n.a.

EM method n = 100 4584 4.2 / 0 n.a.

EM method n = 1000 4584 3.9 / 0 n.a.

IDS n = 1 4584 76.8 / 0 n.a.

IDS n = 3 4584 26.1 / 0 n.a.

IDS n = 10 4584 8.0 / 0 n.a.

IDS n = 30 4584 4.9 / 0 n.a.

Another simple unfolding

method is based on inverting

the matrix A. This is pos-

sible only if the number of

bins observed is equal to the

number of bins on truth level,

My = Mx. The unfolded result

is given by

x̂ = A
−1(y − b) .(13)

The matrix inversion returns

an unbiased result, because it

is a simple linear transforma-

tion of the result and no as-

sumptions on the probability

distributions of the yi enter the

calculation. The result is de-

picted in Fig. 2. While the

folded-back distribution is on

spot with the data and all basic

tests are fulfilled (Tab. 1), the unfolding result shows large bin-to-bin fluctuations and correspondingly

large uncertainties and correlation coefficients close to −1 for neighbouring bins. Such “oscillation

patterns” are often observed when solving inverse problems. The solution is statistically correct within

the uncertainty envelope given by the covariance matrix Vxx. However, it does not correspond to a
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Figure 2. Unfolding result using the matrix inversion method. Shown are the unfolded distribution compared to

data and Monte Carlo truth (left), the correlation coefficients (middle) and the unfolded result folded back using

the response matrix, compared to Data and Monte Carlo (right).

smooth curve as expected by the physicist’s prejudice on such a distribution. Extra constraints have

to be added to the unfolding procedure in order to enforce such behaviour. These are discussed in

the next sections. In the remaining part of this section, template fits are discussed, corresponding to

the case My > Mx. The template fits are based on a minimisation of the expression χ2
A

(equation 7)

with respect to the x̂ j, where the number of degrees of freedom is My − Mx > 0. Here, Mx = 17

and My = 33 are chosen: for each truth bin two bins are used on detector level. In addition there are
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overflow bins. Simple template fits lead to well-known biases when applied to Poisson-distributed

data, such that the overall normalisation is not retained. For this reason, the template fit is repeated,

including a constraint on the overall normalisation [4]. The results of the template fits with and with-

out this constraint are included in Tab. 1. As compared to the matrix inversion, the template fits have

somewhat reduced uncertainties and correlations, however the large bin-to-bin fluctuations of the re-

sult are still present (not shown in this paper). As summarised in Tab. 1, the template fits pass the data

tests with the exception of the overall normalisation for the template fit without constraint, which is

slightly low.

4.3 Template fit with Tikhonov regularisation

For the constrained template fit explained above, the large bin-to-bin fluctuations of the result can

be reduced by adding an extra term to the χ2
A

function (Eq. 7), as suggested by Tikhonov [5]. The

function which is minimised takes the form

χ2
TUnfold = χ

2
A + τ

2χ2
L, where χ2

L = (x̂ − xB)T
L

T
L(x̂ − xB) . (14)

The vector xB is the bias vector, often set to zero or to the Monte Carlo truth. The matrix L specifies

the regularisation conditions and is here set to the unity matrix. The parameter τ is the regularisation

strength. The case τ = 0 corresponds to the template fit without regularisation, whereas for very large

τ the result is strongly biased to xB. Eq. 14 is modified slightly [4] to account for the normalisation

constraint.

Fig. 3 shows the unfolding result obtained for the choice τ = 0.0068. As compared to the matrix

inversion, the oscillating behaviour of x̂ is removed and the uncertainties and correlations are reduced.

As compared to Fig. 2, the original of the input distribution is visualized much better.
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Figure 3. Unfolding result using the constrained template fit with Tikhonov regularisation and parameter

τ = 0.0068. Further details are given in Fig. 2 caption.

4.4 Choosing regularisation parameters

When using Tikhonov regularisation one has the difficulty to find an appropriate choice of the param-

eter τ. Similarly, the maximum number of iterations has to be chosen in the case of iterative methods,

see section 4.5. Two methods are discussed in the following, the L-curve scan, applicable for the

Tikhonov case, and the minimisation of the average global correlation coefficient, which is applicable

to a larger class of unfolding methods.
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Figure 4. Parametric plot of X = log χ2
A and Y = log χ2

L

(L-curve).

The L-curve scan is based on investigat-

ing the variables X := log χ2
A

and Y := log χ2
L
.

The L-curve is determined by varying τ and

minimising χ2
TUnfold

for each choice of τ. The

variables X and Y are visualised on a paramet-

ric plot, as shown in Fig. 4. There is a char-

acteristic kink, i.e. the curve is shaped simi-

lar to the letter “L”. The kink corresponds to

the point with the largest geometric curvature.

The corresponding value of τ is chosen to set

the regularisation strength. For a review of the

L-curve method, see e.g. [6].

The minimisation of the average global

correlation coefficient [7] is also based on repeating the unfolding algorithm for different choices

of the regularisation parameter. The average global correlation coefficient (Eq. 8) is recorded and the

regularisation parameter is chosen at the minimum ρavg. The maximisation of the L-curve curvature

and the minimisation of ρavg as a function of τ are compared in Fig. 5. In this example, but also

in many other cases, the ρavg minimisation yields a stronger regularisation than the L-curve method.

Both methods pass the test against data, as shown in Tab. 1.
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are shown.

4.5 Iterative unfolding methods

Iterative unfolding methods have been proposed since long. Here, two such unfolding methods have

been tried: the EM algorithm1 [8] and the IDS algorithm [12]. The EM algorithm, in the form

described in [11] defines an iterative improvement of the unfolding result x
(n+1)

i
, given the result of a

previous iteration, x
(n)

j
,

x
(n+1)

j
= x

(n)

j

M
∑

i=1

Ai j

ǫ j

yi
∑N

k=1 Aik x
(n)

k

. (15)

1the EM Algorithm was developed for medical image reconstruction by Shepp/Vardi [8] and proposed for application in

high-energy physics by Kondor [9] and Mülthei/Schorr [10]. It was reinvented by D’Agostini [11] and is often referred to as

“iterative Bayesian unfolding” in recent publications, although the similarities of Eq. 15 with Bayes’ law are accidental[8] and

do not ensure that this is a truly Bayesian method.
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In the original works [8–10], the efficiency ǫ j is absorbed in a redefinition ǫ jx j → x̃ j and Ai j/ǫ j → Ãi j,

such that x̃
(n+1)

j
= x̃

(n)

j

∑

i Ãi jyi/
∑

k Ãik x̃
(n)

k
.

The EM algorithm has two interesting properties: given that the start values x
(−1)

j
and the measure-

ments yi are all positive, the result is bound to be positive. Furthermore, it converges to a maximum

of the likelihood function, the likelihood defined for the case where the measurements yi are indepen-

dent and follow Poisson distributions [8]. However, the convergence rate can be very slow and the

number of iterations is expected to grow with the number of bins squared [10]. While the method is

expected to give unbiased results for a sufficiently large number of iterations with Poisson distributed

measurements, this is not necessarily true in other cases, e.g. for correlated input data. This is evident

from the fact that the covariance of the input data Vyy does not enter Eq. 15.

In high-energy physics, the EM method typically is not iterated until it converges. Instead, the

number of iterations is fixed, and the result then still depends on the start values x
(−1)

j
. The dependence

on the start values, typically taken to be the Monte Carlo truth, provides a regularisation of the result.

Although the algorithm is expected to perform best for My > Mx, in high-energy physics often the

same number of bins is used on detector and truth level, My = Mx. The choice My = Mx is also

employed here. For the case of an infinitely number of iterations, the EM method with My = Mx is

expected to agree with the results of the matrix inversion in those cases where the x̂ j obtained by the

matrix inversion are all positive.

Eq. 15 has the disadvantage that background is not included. Subtracting the background b from

y in the enumerator is not favourable, because it possibly spoils the positiveness property. For this
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Figure 6. Unfolding results using the iterative EM algorithm. Shown are the results for a number of iterations

n = 0 (left), n = 20 (middle) and n = 1000 (right).
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study, the denominator is modified as follows to take into account the background,

x
(n+1)

j
= x

(n)

j

M
∑

i=1

Ai j

ǫ j

yi
∑N

k=1 Aik x
(n)

k
+ bi

. (16)

The results obtained with the EM method for n = {0, 20, 1000} iterations are shown in Fig. 6 and the

data tests are summarised in Tab. 1 for n = {0, 20, 100, 1000} The results obtained for n = 0 iterations,

corresponding to the non-iterated, so-called Bayesian unfolding [11] are very poor, as visible from

both the the data tests and from Fig. 6. All bins have positive correlations, corresponding to a smearing

rather than unfolding, and the result is far from the truth distribution. The data tests obtained for a

low number of iterations indicate that a minimum number of iterations is required to reach a proper

normalisation. The shapes of the unfolded results observed for n = 20 and n = 1000 iterations (Fig. 6)

are similar to the cases of Tikhonov regularisation and matrix inversion, respectively.
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Figure 7. Average global correlation

coefficient as a function of the number

of iterations.

Another iterative algorithm tested here is the Iterative Dy-

namically Stabilised unfolding (IDS) [12]. The algorithm is

too complex to be explained here in detail. Briefly, it com-

bines elements of the EM iterative procedure and the bin-by-

bin unfolding, using non-linear weighting factors in each bin.

For each iteration, care is taken to preserve the data normal-

isation. Because of the bin-by-bin component in the algo-

rithm, its use is restricted to the case My = Mx or to cases

where a clear correspondence of bins on detector and truth

level exists [12]. The IDS algorithm is expected ultimately

to converge to the same value as the EM algorithm, however

at improved convergence speed [13]. Results of data com-

parisons after n = {1, 3, 10, 30} iterations are given in Tab. 1.

In contrast to the EM method, in this case the data normal-

isation is correctly reproduced even after only one iteration.

The observed χ2
A

indicates that a large number of iterations is

required to accurately match the shapes on detector level.

4.6 Scan of average global correlations for iterative

methods

The dependence of the average global correlation coefficient and of χ2
truth
/ND.F. on the number of

iterations is studied in Fig. 7 for the EM and the IDS algorithms. For both algorithms, a characteristic

minimum of ρavg is observed. This is related to the fact that the first iteration produces positively

correlated results (smearing), whereas in the limit of many iterations (matrix inversion), negative

correlation coefficients ρi j appear. The minimum ρavg is interesting to study, because it is largely

independent of the start values and hence can be used as an objective to define the number of iterations.

The IDS algorithm is observed to converge faster than the EM algorithm. The minimum in ρavg is

reached after 3 (20) iterations for the IDS (EM) method. The minimum value of ρavg determined for

the EM method is similar to the minimum observed in template fits with Tikhonov regularisation,

whereas the IDS minimum is significantly lower. Most probably this is related to the fact that the IDS

algorithm has a bin-by-bin correction component (bin-by-bin trivially results in ρavg = 0).

4.7 Comparisons on truth level
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Table 2. Comparison of selected unfolding results to the “data” truth.

When calculating χ2
truth

, the overflow bin is not included. The row

labelled Prob corresponds to the quantile of the χ2 distribution for 16

degrees for freedom.

χ2
truth
/Nd.f. Prob σLandau

MC truth n.a. n.a. 2.00

data truth n.a. n.a. 1.80

bin-by-bin 67.8 / 16 0.00 2.05 ± 0.05

matrix inversion 12.6 / 16 0.70 1.80 ± 0.06

constrained template fit 13.0 / 16 0.68 1.80 ± 0.06

Tikhonov τ = 0.0068 28.0 / 16 0.03 1.86 ± 0.06

Tikhonov τ = 0.012 100.8 / 16 0.00 1.97 ± 0.05

EM method n = 0 4537 / 16 0.00 2.24 ± 0.02

EM method n = 20 17.9 / 16 0.33 1.91 ± 0.07

EM method n = 100 17.3 / 16 0.37 1.77 ± 0.06

EM method n = 1000 22.5 / 16 0.13 1.75 ± 0.06

IDS n = 1 4573 / 16 0.00 2.30 ± 0.02

IDS n = 3 158.0 / 16 0.00 2.27 ± 0.03

IDS n = 10 20.7 / 16 0.19 1.97 ± 0.04

IDS n = 30 13.4 / 16 0.64 1.81 ± 0.06

To assess the quality of the un-

folding in greater detail, clo-

sure tests are performed. The

unfolded data are compared to

the data truth, which is known

for the toy example. In addi-

tion, fits of the original Lan-

dau function are performed

to the unfolded distributions.

The comparisons to truth are

summarised in Tab. 2. Here,

the comparisons are based on

unfolding the “data” and com-

paring to the truth. For more

detailed tests, toy studies us-

ing the “data” truth would

have to be performed in or-

der to assess the quality of the

expectation values 〈x̂〉 and the

distribution of χ2
truth

.

The bin-by-bin method,

the Tikhonov method with

large τ and the iterative meth-

ods with small number of iterations all result in unacceptable biases of the extracted width σLandau.

As expected, the matrix inversion and constrained template fit results are not biased. The Tikhonov

method with L-curve scan, resulting τ = 0.0068, gives acceptable results. The EM method works well

for a sufficiently large number of iterations, n & 20, where n = 20 was determined in the scan of ρavg.

The IDS method also performs well for a sufficiently large number of iterations N; however n = 3

determined in the scan of ρavg does not give a satisfactory result.

5 Summary and Conclusions

A selection of methods to unfold binned distributions is studied: bin-by-bin correction factors, matrix

inversion, template fits with Tikhonov regularisation, iterative methods. The bin-by-bin methods leads

to biased results and should not be used. Matrix inversion and constrained template fits give unbiased

results. However, the result typically suffer from large bin-to-bin correlations, large uncertainties and

bin-to-bin oscillation patterns.

The oscillations are reduced in the other unfolding methods using regularisation techniques. These

damp the fluctuations and reduce bin-to-bin correlations, at the cost of introducing biases. There are

free parameters which have to be tuned to obtain a good compromise between bias and damping.

Template fits with Tikhonov regularisation seem to give good results when choosing the regulari-

sation parameter by means of the L-curve method. For the iterative EM method, an interesting choice

is the minimisation of the average global correlation coefficients. The IDS iterative method also has

been tested but seems to require a different objective to optimise the number of iterations.

In general, methods with Tikhonov regularisation have the advantage, that there is a natural tran-

sition to unbiased results, by setting the τ parameter to zero. In contrast, the iterative methods start

from a fully biased results and the number of iterations required to reach the unbiased result is a priory
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unknown. Furthermore, in the case of bin-to-bin correlated or non-Poisson distributed measurements,

it is not clear whether the iterative methods converge to an unbiased estimator.

In summary, no matter which unfolding method is used, detailed closure tests are required to

quantify the level of bias introduced by the unfolding.
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