Limits in High Energy Physics

Stefan Schmitt, DESY

Tutorial/lecture for the Terascale Statistics School

Hamburg, 20 March, 2013

Exercises

Outline

- Part I: basic concepts, Bayes and Frequentist, simple example
- Part II: Poisson with background, expected limit, CL_s method
- Part III: systematic uncertainties and many channels, hybrid method, profile likelihood
- Exercises: Lecture is interleaved by exercises ~10-15 minutes each.
 Solutions are discussed in the lecture
- ROOT macros for exercises:

www.desy.de/~sschmitt/LimitStatSchool2013/macros

• If available on our computer, use wget:

wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list
wget -N -nd -i macros.list

Exercise 1 (Bayes' law)

- Disease and a test for the disease
- 0.1% of the population have the disease (prior)
- If one has the disease, the test is positive with 99% probability (likelihood)
- If one does not have the disease, the test is positive with 1% probability
- What is the posterior probability to have the disease, given a positive test?

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Exercise 2 (Neyman construction)

- Poisson experiment, determine limits on the parameter $\mu,$ given $N_{_{obs}}$
 - a) determine the range $N_{obs} \le N \le \infty$ for CL=0.95 and µ=2,3,5,10. What is the probability to find the measurement in these ranges
 - b) determine the limit on μ for N_{obs}=0,2,10,100
- Hint: the probability to find N in the interval
 - N_{obs}≤N≤∞ is given by:

Probability: $\sum_{N \ge N_{obs}}^{\infty} \frac{e^{-\mu}(\mu)^N}{N!} = 1 - \alpha = 1 - \text{TMath::Prob}(2 * \mu, 2 * N_{obs})$

Inverse function: $2*\mu$ = TMath::ChisquareQuantile $(1-\alpha, 2*N_{obs})$

(a)	μ	$N_{_{obs}}$	1-α
	2		
	3		
	5		
	10		

Exercise 3 (Bayesian limit)

• Exercise 3a: Bayesian limit for

N_{obs}=0,2,10,100 (flat prior)

(use Root macro)

- Exercise 3b: use a prior P(μ)= μ , N_{obs}={0,2,10,100}
- Exercise 3c: use a flat prior up to μ_{max} =90, set prior to zero

above μ_{max}

• Compare to exercise 2

- Bayesian limit with arbitrary prior
 → numerical integration
 - GetPosterior.C(muLimit, nObs) Posterior ~ $\int_{0}^{\mu_{0}} d\mu \operatorname{Prior}(\mu) \frac{\exp[-\mu]\mu^{N_{obs}}}{N_{obs}!}$
- Vary muLimit until Posterior=0.95

	frequentist	Bayes flat	Bayes P(µ)=µ	Bayes flat µ _{max} =90
N _{obs}	$\mu_{\sf limit}$	μ_{limit}	$\mu_{_{limit}}$	$\mu_{\sf limit}$
0				
2				
10				
100				

Exercise 4 (limit with background)

Calculate Frequentist and Bayesian limits for N_{obs}={0,2} and

b={0.5,2.0,3.5}

Poisson parameter: $\mu = s + b$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian						
Frequentist						

- Frequentist: use methods from exercise 2
- Bayes: try to modify exercise 3 macro, or use macro GetPosteriorWithBackground.C

Expected limit (exercise 5)

• Expected limit: limit weighted by background probability

$$\langle s_{\text{limit}} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b} b^n}{n!} \text{LimitOnSignal}(b, n)$$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected		1				

- Calculate expected limits for b={0.5,2.0,3.5}
- Macro GetExpectedLimit.C

Exercise 6 (CL_s method)

- Frequentist limit: $1 CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s + b)$
- CL_S limit: $1-CL \ge CL_S = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s+b)}{P(N \le N_{obs}; \mu = b)}$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CL _s						
Expected						

• Use macro GetCLsLimit.C to calculate CL_s, iterate to get limit

Exercise 7 (limits from hybrid method)

- CL_S limit, systematic error treated with hybrid method $\mu = l(s+b)$
- Background error: zero or $\sigma_{b} = 50\% [b_{obs} = \{0.5, 3.5\}]$
- Luminosity error: zero or $\sigma_1 = 10\% [I_{obs} = 1.0]$

CL _s limits	b=	0.5	bgr=3.5		
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	
No syst					
σ_{b} /b=50%					
σ _, /I=10%					
Both syst.					

Use root macro GetClsSys.C