Limits in High Energy Physics

Stefan Schmitt, DESY

Tutorial/lecture for the
Terascale Statistics School
Hamburg, 20 March, 2013

Exercises

Outline

- Part I: basic concepts, Bayes and Frequentist, simple example
- Part II: Poisson with background, expected limit, CL_{s} method
- Part III: systematic uncertainties and many channels, hybrid method, profile likelihood
- Exercises: Lecture is interleaved by exercises ~10-15 minutes each. Solutions are discussed in the lecture
- ROOT macros for exercises:

```
www.desy.de/~sschmitt/LimitStatSchool2013/macros
```

- If available on our computer, use wget:

```
wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list
wget -N -nd -i macros.list
```


Exercise 1 (Bayes' law)

- Disease and a test for the disease

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

- 0.1% of the population have the disease (prior)
- If one has the disease, the test is positive with 99\% probability (likelihood)
- If one does not have the disease, the test is positive with 1% probability
- What is the posterior probability to have the disease, given a positive test?

Exercise 2 (Neyman construction)

- Poisson experiment, determine limits on the parameter μ, given $N_{\text {obs }}$
a) determine the range $\mathrm{N}_{\text {obs }} \leq \mathrm{N} \leq \infty$ for $\mathrm{CL}=0.95$ and $\mu=2,3,5,10$. What is the probability to find the measurement in these ranges
b) determine the limit on μ for $N_{\text {obs }}=0,2,10,100$
- Hint: the probability to find N in the interval
$\mathrm{N}_{\text {obs }} \leq \mathrm{N} \leq \infty$ is given by:
Probability: $\sum_{N \geq N_{\text {obs }}}^{\infty} \frac{e^{-\mu}(\mu)^{N}}{N!}=1-\alpha=1-$ TMath:: $\operatorname{Prob}\left(2 * \mu, 2 * N_{\text {obs }}\right)$ Inverse function: $2 * \mu=$ TMath::ChisquareQuantile $\left(1-\alpha, 2 * N_{\text {obs }}\right)$
(a)

μ	$N_{\text {obs }}$	$1-\alpha$
2		
3		
5		
10		

(b)

$N_{\text {obs }}$	$\mu_{\text {limit }}$
0	
2	
10	
100	

Exercise 3 (Bayesian limit)

- Exercise 3a: Bayesian limit for
$\mathrm{N}_{\text {obs }}=0,2,10,100$ (flat prior)
(use Root macro)
- Exercise 3b: use a prior $\mathrm{P}(\mu)=\mu$, $\mathrm{N}_{\text {obs }}=\{0,2,10,100\}$
- Exercise 3c: use a flat prior up to $\mu_{\max }=90$, set prior to zero above $\mu_{\text {max }}$
- Compare to exercise 2

Exercise 4 (limit with background)

- Calculate Frequentist and Bayesian limits for $\mathrm{N}_{\mathrm{obs}}=\{0,2\}$ and

$$
\mathrm{b}=\{0.5,2.0,3.5\} \quad \text { Poisson parameter: } \mu=s+b
$$

	$\mathrm{b}=0.5$		$\mathrm{~b}=2.0$		$\mathrm{~b}=3.5$	
	$\mathrm{~N}_{\text {obs }}=0$	$\mathrm{~N}_{\text {obs }}=2$	$\mathrm{~N}_{\text {obs }}=0$	$\mathrm{~N}_{\text {obs }}=2$	$\mathrm{~N}_{\text {obs }}=0$	$\mathrm{~N}_{\text {obs }}=2$
Bayesian						
Frequentist						

- Frequentist: use methods from exercise 2
- Bayes: try to modify exercise 3 macro, or use macro GetPosteriorWithBackground.C

Expected limit (exercise 5)

- Expected limit: limit weighted by background probability

$$
\left\langle s_{\text {limit }}\right\rangle=\sum_{n=0}^{\infty} \frac{e^{-b} b^{n}}{n!} \operatorname{LimitOnSignal}(b, n)
$$

	$\mathrm{b}=0.5$		$\mathrm{b}=2.0$		$\mathrm{b}=3.5$	
	$\mathrm{N}_{\text {obs }}=0$	$\mathrm{N}_{\text {obs }}=2$	$\mathrm{N}_{\text {obs }}=0$	$\mathrm{N}_{\text {obs }}=2$	$\mathrm{N}_{\text {obs }}=0$	$\mathrm{N}_{\text {obs }}=2$
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected						

- Calculate expected limits for $b=\{0.5,2.0,3.5\}$
- Macro GetExpectedLimit.C

Exercise $6\left(\mathrm{CL}_{\mathrm{s}}\right.$ method)

- Frequentist limit: $1-C L \geq \alpha=\mathrm{CL}_{S B}=P\left(N \leq N_{\text {obs }} ; \mu=s+b\right)$
- CL_{s} limit:

$$
1-C L \geq \mathrm{CL}_{S}=\frac{\mathrm{CL}_{S B}}{\mathrm{CL}_{B}}=\frac{P\left(N \leq N_{\mathrm{obs}} ; \mu=s+b\right)}{P\left(N \leq N_{\text {obs }} ; \mu=b\right)}
$$

	$\mathrm{b}=0.5$		$\mathrm{~b}=2.0$		$\mathrm{~b}=3.5$	
	$\mathrm{~N}_{\mathrm{obs}}=0$	$\mathrm{~N}_{\mathrm{obs}}=2$	$\mathrm{~N}_{\text {obs }}=0$	$\mathrm{~N}_{\text {obs }}=2$	$\mathrm{~N}_{\text {obs }}=0$	$\mathrm{~N}_{\text {obs }}=2$
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CL_{s}						
Expected						

- Use macro GetCLsLimit.C to calculate CL_{s}, iterate to get limit

Exercise 7 (limits from hybrid method)

- CL_{s} limit, systematic error treated with hybrid method $\mu=l(s+b)$
- Background error: zero or $\sigma_{b}=50 \%\left[b_{\text {obs }}=\{0.5,3.5\}\right]$
- Luminosity error: zero or $\sigma_{1}=10 \%\left[l_{\text {obs }}=1.0\right]$

$C L_{s}$ limits	$b=0.5$		$b g r=3.5$	
	$N_{\text {obs }}=0$	$N_{\text {obs }}=2$	$N_{\text {obs }}=0$	$N_{\text {obs }}=2$
No syst				
$\sigma_{b} / b=50 \%$				
$\sigma_{1} / l=10 \%$				
Both syst.				

Use root macro GetClsSys.C

