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Outline
● Part I: basic concepts, Bayes and Frequentist, simple example

● Part II: Poisson with background, expected limit, CL
S
 method

● Part III: systematic uncertainties and many channels, hybrid method, 

profile likelihood

● Exercises: Lecture is interleaved by exercises ~10-15 minutes each. 

Solutions are discussed in the lecture

● ROOT macros for exercises: 
www.desy.de/~sschmitt/LimitStatSchool2013/macros

● If available on our computer, use wget:
wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list

wget -N -nd -i macros.list

http://www.desy.de/~sschmitt/LimitStatSchool2013/macros
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Probability theory: selected items

● Elements of Ω: events, outcomes of an experiment

● Probability of a set A: 

● Example: Poisson distribution

● Conditional probability of A given B:

● Bayes' law:

P {N }= e− N

N !
,={0,1,2 , ...} , A={N }

0≤P A≤1, P =1

P A∣B= P A∩B
P B

P B∣A=
P A∣BP B 

P A

P =1 , P ∅=0

P ∖ A=1−P A
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Probability densities

● Probabilites on discrete sets: each element has a finite 

probability

Example: Poisson distribution

→ For event counts

● Probability densities: probabilities are defined by integrals

Example: normal distribution

→ For systematic errors 

={0,1, 2, ... }

=ℝ

P {N }= e− N

N !

f x = 1

2
e
− x−2

2 2

P a≤x≤b=∫a

b
f  x dx
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Parameters

 

Examples:

● Poisson distribution:

μ is a parameter

● Normal distribution:

μ and σ are parameters

● Symbol for (a set of) parameters: θ

P {N }= e− N

N !

f x = 1

2
e
− x−2

2 2

Parameters of a 
probability 
density/distribution

The outcome of the 
experiments/possible 
observations
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Types of parameters
● During limit setting, parameters may be fixed or variable

● Types of variable parameters:

● Parameter of interest

→ Limits are set on this parameter (e.g. Higgs coupling)

● Nuisances

→ These are “not of interest” (e.g. background normalisation)

● Special case of “fixed” parameters:

● Parameter scan

→ limit calculation is repeated many times (e.g. Higgs mass)
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Example: limit with parameter scan

● Example: search for Rp 

violating SUSY at HERA 

(resonant single squark 

production)

● Limit is set on the Rp-violating  

coupling λ

● squark mass scanned (y-axis)

● Other SUSY parameters are 

also scanned (yellow area) Example plot: Search for Squarks in 
R-parity Violating Supersymmetry in 
ep Collisions at HERA, 
Eur.Phys.J.C71 (2011) 1572
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Frequentist/Bayesian probability

● Frequentist view: probabilities describe the outcomes of 

experiments

Models have unknown parameters. Probabilities (to make the 

given observation) are quoted as a function of the parameters

● Bayesian extension: probabilities are also used to describe the 

“degree of belief” in parameters.

 → The parameters themselves have probabilities assigned.
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Bayesian definitions

● Prior: P(B) where B is the theory

● Likelihood: P(A|B) where A is the measurement

● Posterior: P(B|A) is the result of the analysis

● P(A) has no special name. The normalisation is often calculated 

using the relation P(B|A)+P(~B|A)=1

P (B∣A)=
P (A∣B)P (B)

P (A)
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Exercise 1 (Bayes' law)

● Disease and a test for the disease

● 0.1% of the population have the disease 

(prior)

● If one has the disease, the test is positive 

with 99% probability (likelihood)

● If one does not have the disease, the test 

is positive with 1% probability

● What is the posterior probability to have 

the disease, given a positive test? 

P B∣A=
P A∣BP B 

P A
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Exercise 1 (Bayes' law)

● Disease and a test for the disease

● 0.1% of the population have the disease 

(prior)

● If one has the disease, the test is positive 

with 99% probability (likelihood)

● If one does not have the disease, the test 

is positive with 1% probability

● What is the posterior probability to have 

the disease, given a positive test? 

A: positive test
B: has disease

Prior: P(B)=0.001
Likelihood: P(A|B)=0.99
P(A|~B) =0.01

Normalisation:
P(A)=P(A∩B)+P(A∩~B)=
   P(A|B)*P(B)+P(A|~B)*P(~B)=
  0.99*0.001+0.01*0.999= 0.01098

Posterior: P(B|A)=
  0.99*0.001/0.01098 = 9%
  
Because the disease is so rare, the 
probability is only 9%.
The test has to be improved, 1% of 
false-positive tests is too much

P B∣A=
P A∣BP B 

P A
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Probabilities in high energy physics

● Probability: predict number of events given the theory 

(parameter of interest) and the experimental setup (nuisances)

● Question: what does a specific observation tell about the theory

● Frequentist: give for each theory the probabillity of the 

observation (there is no probability for a theory)

● Bayes: assign probability (degree of belief) to theories

● High energy physics: make use of both views

(preference for frequentist, in particular for discoveries)
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Confidence intervals, Limits

● Confidence intervals tell about parameters of the theory

● Confidence level (CL): associated probability

● Different meaning of CL Frequentist/Bayesian:

Frequentist: CL=P(observation)    Bayesian: CL=P(theory)

● Double-sided interval: measurement (usually CL=68%)

● Single-sided: limit (often CL=95%)

=± [at 68% CL ] ≤max at 95% CL
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Frequentist limit: Neyman construction

● For each value of the 

parameter θ, find single-sided 

interval with probability≥CL 

(CL is fixed, e.g. CL=0.95)

● Interconnect interval edges

● For a given observation find 

the largest θ, where x
obs

 is 

just contained in the interval 

→ limit on θ

Example:
X

obs
=3.2

Example: interval 
in x for θ=6.8
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Frequentist upper limit, Poisson data

● Neyman construction, for each μ find N
obs

-interval with P≥CL

● Then: read off μ
limit

 for a given N
obs

  

● Note: discrete N
obs

 but continuous μ → steps in the limit
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Exercise 2 (Neyman construction)

● Poisson experiment, determine limits on the parameter μ, given N
obs

a) determine the range N
obs

≤N≤∞ for CL=0.95 and μ=2,3,5,10. What 

is the probability to find the measurement in these ranges

b) determine the limit on μ for N
obs

=0,2,10,100

● Hint: the probability to find N in the interval

 N
obs

≤N≤∞ is given by:

Probability: ∑
N≥N obs

∞ e−μ(μ)N

N !
=1−α=1−TMath::Prob(2∗μ , 2∗N obs)

Inverse function: 2∗μ=TMath::ChisquareQuantile (1−α , 2∗N obs)

μ N
obs 1-α

2

3

5

10

N
obs

μ
limit

0

2

10

100

(a)

(b)
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Exercise 2 (Neyman construction)

● Poisson experiment, determine limits on the parameter μ, given N
obs

a) determine the range N
obs

≤N≤∞ for CL=0.95 and μ=2,3,5,10. What 

is the probability to find the measurement in these ranges

b) determine the limit on μ for N
obs

=0,2,10,100

● Hint: the probability to find N in the interval

 N
obs

≤N≤∞ is given by:

Probability: ∑
N≥N obs

∞ e−μ(μ)N

N !
=1−α=1−TMath::Prob(2∗μ , 2∗N obs)

Inverse function: 2∗μ=TMath::ChisquareQuantile (1−α , 2∗N obs)

μ N
obs 1-α

2 0 1

3 1 0.95

5 2 0.96

10 5 0.97

N
obs

μ
limit

0 3.0

2 6.3

10 17.0

100 118.1

(a)

(b)
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Coverage

● Coverage: given a limit procedure, calculate for each θ the 

probability to exclude the theory

● Poisson example (exercise 2)

● coverage=0.95: exact coverage 

● coverage<0.95: undercoverage

● coverage>0.95: overcoverage, “conservative” limit

● “Simple” Poisson case: overcoverage (discrete measurement)

P excl(μ truth)=∑N
Pμ , truth (N )Θ(μ truth≤μlimit (N ))

    where Θ(μ truth≤μ limit)={1 if μ truth≤μ limit

0 otherwise
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Bayesian limits

● Bayesian limit: exclude a set of theories, such that the posterior 

probability of the excluded theories is 1-CL

CL=P (μ≤μ0∣N=N obs)=1−α=
∫0

μ0

P (N=N obs∣μ)P (μ)d μ

∫0

∞
P (N=N obs∣μ)P (μ)dμ

P (μ): prior probability of the model μ
P (N=N obs∣μ): Likelihood

Bayesian limit:
integrate over 
models, fixed N

obs

Enumerator: integrate
over allowed theories

Denominator: integrate all
theories (normalisation)

Frequentist limit:
integrate over 
N

obs
, test each model
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Exercise 3 (Bayesian limit)

● Exercise 3a: Bayesian limit for  

N
obs

=0,2,10,100 (flat prior)

(use Root macro)

● Exercise 3b: use a prior P(µ)=µ, 

N
obs

={0,2,10,100}

● Exercise 3c: use a flat prior up 

to µ
max

=90, set prior to zero 

above µ
max

● Compare to exercise 2

● Bayesian limit with arbitrary prior 

→ numerical integration
● GetPosterior.C(muLimit,nObs)

● Vary muLimit until Posterior=0.95

Posterior∼∫
0

μ0

dμ Prior (μ)
exp[−μ]μN obs

N obs !

frequentist
Bayes 

flat
Bayes 
P(μ)=μ

Bayes flat 
μ

max
=90

N
obs

μ
limit

μ
limit

μ
limit

μ
limit

0 3.0

2 6.3

10 17.0

100 118.1
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Bayesian limit exercise

● Exercise 3a: Bayesian limit for  

N
obs

=0,2,10,100 (flat prior)

(use Root macro)

● Exercise 3b: use a prior P(µ)=µ, 

N
obs

={0,2,10,100}

● Exercise 3c: use a flat prior up 

to µ
max

=90, set prior to zero 

above µ
max

● Compare to exercise 2

● For this example: Bayes 

flat=Frequentist

● Prior P(µ)=µ gives more 

conservative limit

● µ
max

=90 fails for N
obs

=100

frequentist
Bayes 

flat
Bayes 
P(μ)=μ

Bayes flat 
μ

max
=90

N
obs

μ
limit

μ
limit

μ
limit

μ
limit

0 3.0 3.0 4.7 3.0

2 6.3 6.3 7.8 6.3

10 17.0 17.0 18.2 17.0

100 118.1 118.2 119.3 89.7
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Lecture Part I, Summary

● Setting limits: related to parameter estimation, hypothesis tests

● Limit: special case of a confidence interval (single-sided)

● Frequentist limit: Neyman construction (sum over observations)

● Concept of “coverage”: test the validity of the limit procedure

● Bayesian limit: integral over parameter of interest

● Dependence on the choice of prior (for parameter of interest)



20 March 2013 Limits in HEP, Stefan Schmitt 23

Limits with background

● Expected number of events:  sum of a signal and background 

cross section, times integrated luminosity

● s=0: standard model

● s>0: new physics

● Assume background known. What is the limit on the signal?

● Frequentist: set limit on μ, then subtract b

● Bayesian: use prior probability which is zero for s<0

μ=s+b , s , b : signal and background event yield, respectively
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Exercise 4 (limit with background)

● Calculate Frequentist and Bayesian limits for N
obs

={0,2} and 

b={0.5,2.0,3.5}

● Frequentist: use methods from exercise 2

● Bayes: try to modify exercise 3 macro, or use macro 

GetPosteriorWithBackground.C

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian

Frequentist

Poisson parameter: μ=s+b
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Exercise 4 (limit with background)

● Calculate Frequentist and Bayesian limits for N
obs

={0,2} and 

b={0.5,2.0,3.5}

● Problem for Frequentist limit, N
obs

=0 and b=3.5:

limit excludes all signal above s=-0.5.

Even the “standard model”  s=0 is excluded

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Poisson parameter: μ=s+b
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Discussion Exercise 4
● Frequentist analysis can give 

limits where all models are 

“excluded” at a given CL 

(even the model with s=0) 

N
obs

=0, µ =s+b, b=3.5

→ limit s<-0.5 @ 95% CL but 

s>=0 physical bound

● Bayesian limit uses prior 

knowledge s>=0

Unphysical region
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Limits near a boundary

● What to do if frequentist analysis excludes parameters beyond 

the sensitivity of the experiment or beyond boundaries?

● Give expected limit to show sensitivity of the experiment 

(exercise 5)

● CL
S
 method, also known as “modified frequentist” (exercise 6)

● Bayesian methods (see exercise 4)
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Expected limit (exercise 5)
● Expected limit: limit weighted by background probability

● Calculate expected limits for b={0.5,2.0,3.5}

● Macro GetExpectedLimit.C

〈s limit〉=∑n=0

∞ e−b bn

n !
LimitOnSignal(b , n )

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Expected
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Expected limit (exercise 5)
● Expected limit: limit weighted by background probability

● Problematic case: expected limit differs a lot from observed limit

→ Recognize statistical fluctuation or problem with background

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

Expected 3.3 4.2 4.9

〈s limit〉=∑n=0

∞ e−b bn

n !
LimitOnSignal(b , n)
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The CL
S 
 (modified frequentist) method

● Frequentist limit:

● CL
S
 limit: 

● Probability is normalized to background probability

● CL
B
≤1 → CL

S
≥CL

SB
: same α requires larger signal

Limit is “conservative”

● For zero signal: CL
S
=1

→ zero signal is never excluded

1−CL≥CLS=
CLSB

CLB

=
P (N≤N obs ;μ=s+b)

P (N≤N obs ;μ=b)

1−CL≥α=CLSB=P (N≤N obs ;μ=s+b)
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Exercise 6 (CL
S 
 method)

● Frequentist limit:

● CL
S
 limit:

●  Use macro GetCLsLimit.C to calculate CL
S
, iterate to get limit

1−CL≥CLS=
CLSB

CLB

=
P (N≤N obs ;μ=s+b)

P (N≤N obs ;μ=b)

1−CL≥α=CLSB=P (N≤N obs ;μ=s+b)

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

CL
S

Expected 3.3 4.2 4.9
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Exercise 6 (CL
S 
 method)

● Frequentist limit:

● CL
S
 limit:

●  For this example, CL
S
 is identical to Bayesian (with flat prior)

1−CL≥CLS=
CLSB

CLB

=
P (N≤N obs ;μ=s+b)

P (N≤N obs ;μ=b)

1−CL≥α=CLSB=P (N≤N obs ;μ=s+b)

b=0.5 b=2.0 b=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

Bayesian 3.0 5.8 3.0 4.8 3.0 4.3

Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

CL
S

3.0 5.8 3.0 4.8 3.0 4.3

Expected 3.3 4.2 4.9
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Limits with background, coverage

● CL
S
 method avoids problem 

with limits better than the 

experiments sensitivity

● Disadvantage: CL
S
 method is 

conservative, in particular for 

small signals
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Lecture part II, summary

● Poisson experiment with background

● Unnaturally good limit if number of events is much smaller than 

background expectation

● “Solutions”:

● Quote expected limit (sensitivity of the experiment)

● CLS method (never excludes background-only)

● Bayesian method (prior knows about boundaries)
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Systematic errors, multiple bins/channels

● Examples discussed so far : events 

are counted in a single channel, no 

systematic  errors

● General case: several channels (or 

bins) and systematic errors

● Example: mass distribution with N 

bins (signal and bgr shape)

→ N channels to be combined

→ Background normalisation error

Example plot: search for single top 
production at HERA, Phys.Lett. 
B678 (2009) 450
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Simple example with two syst. errrors

● Consider signal in one bin

with systematic errors: 

● Full probability density has three contributions

● Three channels (measurements): N
obs

, l
obs

, b
obs

 

● Nuisances l,b and parameter of interest s

μ=l (s+b) ,  l : integrated luminosity, s , b : signal, background cross sections

l=l obs±σ l , b=bobs±σb

P s , l , b(N obs , lobs , bobs)=
e−l(s+b)(l (s+b))obs

N

N obs !⏟
event counting

1

√2πσ l

e

−(l−lobs)
2

2σl
2

⏟
measurement of l

1

√2πσb

e

−(b−bobs)
2

2σb
2

⏟
measurement of b
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Simple Example???

● Three observables: N
obs

, l
obs

, b
obs

 

● Nuisances l,b and parameter of interest s

● This looks quite complicated already

● Observed: N
obs

, l
obs

, b
obs

 and parameters l, b, s

→ Neyman construction in six dimensions? Perhaps not...

● How to get rid of nuisance parameters?

● How to combine channels (measurements)?

P s , l , b(N obs , lobs , bobs)=
e−l(s+b)(l (s+b))obs

N

N obs !⏟
event counting

1

√2πσ l

e

−(l−lobs)
2

2σl
2

⏟
measurement of l

1

√2πσb

e

−(b−bobs)
2

2σb
2

⏟
measurement of b
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Bayesian method

● Bayesian treatment of nuisance parameters: the 

measurements l
obs

 and b
obs

 correspond to priors for l,b

● Define marginalized likelihood, where the nuisances are 

integrated out

● Only depends on s (and the observations N
obs

, l
obs

, b
obs

)

● Analysis (Bayesian) as for the case without systematic errors

L (s , l , b)=
e−l (s+b)(l (s+b))obs

N

N obs !⏟
event counting

1

√2πσ l

e

−(l−l obs)
2

2σ l
2

⏟
measurement of l

1

√2πσb

e

−(b−bobs)
2

2σb
2

⏟
measurement of b

L (s)=∫ dl db L(s , l ,b)
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Hybrid method

● Bayesian treatment of nuisance parameters: the 

measurements l
obs

 and b
obs

 correspond to priors for l,b

● Use marginalized likelihood as if it were the probability density 

for N
obs

 (after integrating out the nuisances)

● Only depends on s (and the observation N
obs

)

● Analysis (Neyman) as for the case without systematic errors

P s , l ,b(N obs , lobs , sobs)=
e−l(s+b)(l (s+b))obs

N

N obs !⏟
event counting

1

√2πσ l

e

−( l−l obs)
2

2σ l
2

⏟
measurement of l

1

√2πσb

e

−(b−bobs)
2

2σb
2

⏟
measurement of b

P s , marginalized (N obs)=∫dl db P s , l ,b(N obs , ...)
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Exercise 7 (limits from hybrid method)
● CL

S
 limit, systematic error treated with hybrid method 

● Background error: zero or σ
b
=50% [b

obs
={0.5, 3.5} ]

● Luminosity error: zero or σ
l
=10% [l

obs
=1.0]

CL
S
 limits b=0.5 bgr=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

No syst 3.0 5.8 3.0 4.3

σ
b
/b=50%

σ
l
/l=10%

Both syst.

Use root macro
GetClsSys.C

μ=l (s+b)
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Exercise 7 (limits from hybrid method)

● Typical example for the use of Monte Carlo methods to 

calculate probabilities

● Probabilities are calculated by counting the outcomes of toy 

experiments
l=rnd->Gaus(1.0,dLumi);
b=rnd->Gaus(bgr,dBgr);
Int_t n_b=rnd->Poisson(l*b);
Int_t n_sb=rnd->Poisson(l*(signal+b));
. . .
if(n_b<=nobs) nexp_b += 1.0;
if(n_sb<=nobs) nexp_sb += 1.0;
. . .
Double_t cl_s=nexp_sb/nexp_b;
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Exercise 7 (limits from hybrid method)
● Background error: zero or σ

b
=50%  [b

obs
={0.5, 3.5} ]

● Luminosity error: zero or σ
l
=10%  [l

obs
=1.0]

● Systematic errors make limits somewhat worse

CL
S
 limits b=0.5 bgr=3.5

N
obs

=0 N
obs

=2 N
obs

=0 N
obs

=2

No syst 3.0 5.8 3.0 4.3

σ
b
/b=50% 3.0 5.8 3.0 4.9

σ
l
/l=10% 3.1 6.0 3.2 4.5

Both syst. 3.1 6.0 3.1 5.0

Small background: 
background error 
has little influence

Large background: 
background error 
has larger influence

Luminosity error 
visible in all cases

μ=L (s+b)



20 March 2013 Limits in HEP, Stefan Schmitt 43

Multiple bins/channels
● Case of multiple bins/channels 

brings additional complication for 

Frequentist analysis:

● Many bins: vector of observations

● Neyman construction: not possible 

for a vector of observations

● Solution: define 1-dimensional 

random variable (test statistic X)
Test statistic:
    X=X(N1,N2,N3,...)
where N1,N2,N3... are the 
event  counts in bin 1,2,3,... 
respectively
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Choice of the test statistics

● Log Likelihood ratio

● Likelihood normalized to maximum

● Other choices: weighted sum of all channels, weight taken from 

signal/bgr ratio or something similar

● Note: log of likelihood ratio also is a weighted sum:

X=log [ L(signal+bgr )
L(bgr) ]

X=∑ wi N i
obs , where for example wi=

(si+bi)−bi

(si+bi)+bi

log L (signal+bgr )−log L (bgr)∼∑i
log (1+

si

bi

)
⏟

wi

N i
obs

X=log [ L (signal+bgr)
Lmax

]
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What is a good test statistic?

● Good sensitivity to signal

● Little sensitivity to systematic 

effects

● Ideal case: probability density 

P(X) of test statistic is largely 

independent of the nuisances

→ use of hybrid method not 

needed → pure frequentist 

limit

● “Standard” choice: profile 

likelihood ratio

● Idea: nuisances are 

estimated from the data

X (s∣measurements)=−2log [ L(s , θ̂(s))

L( ŝ , ̂̂θ) ]
 
s : signal strength, θ: nuisances
L (s ,θ): Likelihood function
θ̂(s): value of θ which maximizes L  given s

ŝ  and ̂̂θ : global maximum of L
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Profile likelihood ratio

● Basic idea: nuisances are 

estimated from the data

● Likelihood ratio: maximum 

indicates signal position

● Numerical analysis: use 

-2*log(likelihood ratio)

● X(s) has a minimum near the 

best signal

X (s∣measurements)=−2log [ L(s , θ̂(s))

L( ŝ , ̂̂θ) ]
 
s : signal strength, θ: nuisances
L (s ,θ): Likelihood function
θ̂(s): value of θ which maximizes L  given s

ŝ  and ̂̂θ : global maximum of L
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Profile likelihood analysis

● Profile likelihood is expected 

to have probability density

in the large sample limit

● Direct access to CL
SB

, CL
S
 

using Tmath::Prob()

● Need to verify P(X) and 

dependence on nuisances 

with Monte Carlo methods

● Example:

● Measurements: N
obs

 and b
obs

● Vary b → some influence
P (X )≃χndf =1

2 (X )

μ=s+b
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Summary

● Basic concepts of setting limits:

● Frequentist/Bayesian methods

● Coverage, expected limit, CL
S
 method

● Systematic errors, nuisances, marginalization

● Combining channels: test statistic, e.g. likelihood

● Standard method: profile likelihood
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Backup
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Calculation of Poisson sums
● Sum over Poisson terms is related to χ2 distribution with number-of-

degrees of freedom “k”:

● Poisson sum equals integral over χ2 distribution (partial integration)

● Standard functions for χ2 integrals:

α(μ,N)=TMath::Prob(2*μ,2*(N+1)) and

μ=0.5*TMath::ChisquareQuantile(1-α,2*(N+1))

 2 x ; k = xk /2−1 e−x /2

2k /2 k /2
P N ; =e− N

N !

 , N =∫2

∞
 2 x ; 2 N1d x=∑i=0

N
P i ;
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Frequentist upper limit, Gaussian case

● Fixed σ, measurement x
obs

, parameter of interest μ
truth

● Define 95% probability area under Gaussian

● If μ
truth

 is too large, it is outside the 95% → excluded

CL=∫
xobs

∞

exp[−1/2(
x−μ truth

σ )
2

] 1

√2πσ
d x
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Limits with background, comparison

● Frequentist limit may become 

“unphysicsal” or “too good”

● Expected limit: sensitivity of 

the experiment

● CL
S
 method: normalize to 

“standard model”,  never 

exclude zero signal

● Disadvantage of CL
S
? Study 

coverage
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