Limits in High Energy Physics

Stefan Schmitt, DESY

Tutorial/lecture for the Terascale Statistics School

Hamburg, 20 March, 2013

Outline

- Part I: basic concepts, Bayes and Frequentist, simple example
- Part II: Poisson with background, expected limit, CL_s method
- Part III: systematic uncertainties and many channels, hybrid method, profile likelihood
- Exercises: Lecture is interleaved by exercises ~10-15 minutes each.
 Solutions are discussed in the lecture
- ROOT macros for exercises:

www.desy.de/~sschmitt/LimitStatSchool2013/macros

• If available on our computer, use wget:

wget -N -nd www.desy.de/~sschmitt/LimitStatSchool2013/macros.list
wget -N -nd -i macros.list

Probability theory: selected items

- Elements of Ω : events, outcomes of an experiment
- Probability of a set A: $0 \le P(A) \le 1, P(\Omega) = 1$ $P(\Omega \setminus A) = 1 P(A)$ $P(\Omega) = 1, P(\emptyset) = 0$
- Example: Poisson distribution

$$P(\{N\}) = \frac{e^{-\mu} \mu^{N}}{N!}, \Omega = \{0, 1, 2, ...\}, A = \{N\}$$

• Conditional probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Bayes' law:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Probability densities

Probabilites on discrete sets: each element has a finite probability

Example: Poisson distribution

 \rightarrow For event counts

$$P(\{N\}) = \frac{e^{-\mu} \mu^{N}}{N!}$$

$$\Omega = \{0, 1, 2, ...\}$$

• Probability densities: probabilities are defined by integrals Example: normal distribution $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ \rightarrow For systematic errors $\Omega = \mathbb{R}$

$$P(a \le x \le b) = \int_{a}^{b} f(x) dx$$

Parameters

Parameters of a probability density/distribution

The outcome of the
 experiments/possible
 observations

Examples:

- Poisson distribution:
 - *µ* is a parameter
- Normal distribution:

 μ and σ are parameters

• Symbol for (a set of) parameters: **0**

$$P(\lbrace N \rbrace) = \frac{e^{-\mu} \mu^N}{N!}$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Types of parameters

- During limit setting, parameters may be fixed or variable
- Types of variable parameters:
 - Parameter of interest

 \rightarrow Limits are set on this parameter (e.g. Higgs coupling)

Nuisances

→ These are "not of interest" (e.g. background normalisation)

- Special case of "fixed" parameters:
 - Parameter scan

→ limit calculation is repeated many times (e.g. Higgs mass)

Example: limit with parameter scan

- Example: search for Rp violating SUSY at HERA (resonant single squark production)
- Limit is set on the Rp-violating coupling $\boldsymbol{\lambda}$
- squark mass scanned (y-axis)
- Other SUSY parameters are also scanned (yellow area)

ep Collisions at HERA, Eur.Phys.J.C71 (2011) 1572

Frequentist/Bayesian probability

 Frequentist view: probabilities describe the outcomes of experiments

Models have unknown parameters. Probabilities (to make the given observation) are quoted as a function of the parameters

- Bayesian extension: probabilities are also used to describe the "degree of belief" in parameters.
 - \rightarrow The parameters themselves have probabilities assigned.

Bayesian definitions

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Prior: P(B) where B is the theory
- Likelihood: P(A|B) where A is the measurement
- Posterior: P(B|A) is the result of the analysis
- P(A) has no special name. The normalisation is often calculated using the relation P(B|A)+P(~B|A)=1

Exercise 1 (Bayes' law)

- Disease and a test for the disease
- 0.1% of the population have the disease (prior)
- If one has the disease, the test is positive with 99% probability (likelihood)
- If one does not have the disease, the test is positive with 1% probability
- What is the posterior probability to have the disease, given a positive test?

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Exercise 1 (Bayes' law)

- Disease and a test for the disease
- 0.1% of the population have the disease (prior)
- If one has the disease, the test is positive with 99% probability (likelihood)
- If one does not have the disease, the test is positive with 1% probability
- What is the posterior probability to have the disease, given a positive test?

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

A: positive test B: has disease

Prior: P(B)=0.001 Likelihood: P(A|B)=0.99 P(A|~B) =0.01

Normalisation: P(A)=P(A∩B)+P(A∩~B)= P(A|B)*P(B)+P(A|~B)*P(~B)= 0.99*0.001+0.01*0.999= 0.01098

Posterior: P(B|A)= 0.99*0.001/0.01098 = 9%

Because the disease is so rare, the probability is only 9%. The test has to be improved, 1% of false-positive tests is too much

Probabilities in high energy physics

- Probability: predict number of events given the theory (parameter of interest) and the experimental setup (nuisances)
- Question: what does a specific observation tell about the theory
- Frequentist: give for each theory the probability of the observation (there is no probability for a theory)
- Bayes: assign probability (degree of belief) to theories
- High energy physics: make use of both views (preference for frequentist, in particular for discoveries)

Confidence intervals, Limits

- Confidence intervals tell about parameters of the theory
- Confidence level (CL): associated probability
 - Different meaning of CL Frequentist/Bayesian:

Frequentist: CL=P(observation) Bayesian: CL=P(theory)

- Double-sided interval: measurement (usually CL=68%)
- Single-sided: limit (often CL=95%)

Frequentist limit: Neyman construction

- For each value of the parameter θ, find single-sided interval with probability≥CL (CL is fixed, e.g. CL=0.95)
- Interconnect interval edges
- For a given observation find the largest θ , where x_{obs} is just contained in the interval \rightarrow limit on θ

Example: interval in x for $\theta = 6.8$ 10 Example X_____=3.2 Neyman construction CL=0.95 **Probability density** 6 8 10 θ

Frequentist upper limit, Poisson data

- Neyman construction, for each µ find N_{obs}-interval with P≥CL
- Then: read off μ_{limit} for a given N_{obs}
- Note: discrete $N_{_{Obs}}$ but continuous $\mu \rightarrow$ steps in the limit

Exercise 2 (Neyman construction)

- Poisson experiment, determine limits on the parameter $\mu,$ given $N_{_{obs}}$
 - a) determine the range $N_{obs} \le N \le \infty$ for CL=0.95 and µ=2,3,5,10. What is the probability to find the measurement in these ranges
 - b) determine the limit on μ for N_{obs}=0,2,10,100
- Hint: the probability to find N in the interval
 - N_{obs} ≤N≤∞ is given by:

Probability: $\sum_{N \ge N_{obs}}^{\infty} \frac{e^{-\mu}(\mu)^N}{N!} = 1 - \alpha = 1 - \text{TMath::Prob}(2 * \mu, 2 * N_{obs})$

Inverse function: $2*\mu$ = TMath::ChisquareQuantile $(1-\alpha, 2*N_{obs})$

(a)	μ	$N_{_{obs}}$	1-α
	2		
	3		
	5		
	10		

Exercise 2 (Neyman construction)

- Poisson experiment, determine limits on the parameter $\mu,$ given $N_{_{obs}}$
 - a) determine the range $N_{obs} \le N \le \infty$ for CL=0.95 and µ=2,3,5,10. What is the probability to find the measurement in these ranges
 - b) determine the limit on μ for N_{obs}=0,2,10,100
- Hint: the probability to find N in the interval
 - N_{obs} ≤N≤∞ is given by:

Probability: $\sum_{N \ge N_{obs}}^{\infty} \frac{e^{-\mu}(\mu)^N}{N!} = 1 - \alpha = 1 - \text{TMath::Prob}(2 * \mu, 2 * N_{obs})$ (I

Inverse function: $2*\mu$ = TMath::ChisquareQuantile $(1-\alpha, 2*N_{obs})$

(a)	μ	N _{obs}	1-α
	2	0	1
	3	1	0.95
	5	2	0.96
	10	5	0.97

b)	N _{obs}	μ_{limit}
	0	3.0
	2	6.3
	10	17.0
	100	118.1

Coverage

0.98

0.96

0.94<u></u>∟

5

- Coverage: given a limit procedure, calculate for each θ the probability to exclude the theory coverage Poisson experiment
- Poisson example (exercise 2)

$$P_{\text{excl}}(\mu_{\text{truth}}) = \sum_{N} P_{\mu, \text{truth}}(N) \Theta(\mu_{\text{truth}} \leq \mu_{\text{limit}}(N))$$

where $\Theta(\mu_{\text{truth}} \leq \mu_{\text{limit}}) = \begin{cases} 1 \text{ if } \mu_{\text{truth}} \leq \mu_{\text{limit}} \\ 0 \text{ otherwise} \end{cases}$

- coverage=0.95: exact coverage
- coverage<0.95: undercoverage
- coverage>0.95: overcoverage, "conservative" limit
- "Simple" Poisson case: overcoverage (discrete measurement)

15

 $\mu_{ extsf{truth}}$

Coverage CL=0.95 limit

10

Bayesian limits

 Bayesian limit: exclude a set of theories, such that the posterior probability of the excluded theories is 1-CL
 Enumerator: integrate over allowed theories

Exercise 3 (Bayesian limit)

• Exercise 3a: Bayesian limit for

N_{obs}=0,2,10,100 (flat prior)

(use Root macro)

- Exercise 3b: use a prior P(μ)= μ , N_{obs}={0,2,10,100}
- Exercise 3c: use a flat prior up to μ_{max} =90, set prior to zero

above μ_{max}

• Compare to exercise 2

- Bayesian limit with arbitrary prior
 → numerical integration
 - GetPosterior.C(muLimit, nObs) Posterior ~ $\int_{0}^{\mu_{0}} d\mu \operatorname{Prior}(\mu) \frac{\exp[-\mu]\mu^{N_{obs}}}{N_{obs}!}$
- Vary muLimit until Posterior=0.95

	frequentist	Bayes flat	Bayes P(µ)=µ	Bayes flat µ _{max} =90
N _{obs}	μ_{limit}	μ_{limit}	$\mu_{\sf limit}$	μ_{limit}
0	3.0			
2	6.3			
10	17.0			
100	118.1			

Bayesian limit exercise

• Exercise 3a: Bayesian limit for

N_{obs}=0,2,10,100 (flat prior)

(use Root macro)

- Exercise 3b: use a prior $P(\mu)=\mu$, $N_{obs}=\{0,2,10,100\}$
- Exercise 3c: use a flat prior up to μ_{max} =90, set prior to zero

above μ_{max}

• Compare to exercise 2

- For this example: Bayes flat=Frequentist
- Prior P(µ)=µ gives more conservative limit
- μ_{max} =90 fails for N_{obs}=100

	frequentist	Bayes flat	Bayes P(µ)=µ	Bayes flat µ _{max} =90
N _{obs}	μ_{limit}	μ_{limit}	$\mu_{\sf limit}$	μ_{limit}
0	3.0	3.0	4.7	3.0
2	6.3	6.3	7.8	6.3
10	17.0	17.0	18.2	17.0
100	118.1	118.2	119.3	89.7

Lecture Part I, Summary

- Setting limits: related to parameter estimation, hypothesis tests
- Limit: special case of a confidence interval (single-sided)
- Frequentist limit: Neyman construction (sum over observations)
- Concept of "coverage": test the validity of the limit procedure
- Bayesian limit: integral over parameter of interest
- Dependence on the choice of prior (for parameter of interest)

Limits with background

• Expected number of events: sum of a signal and background cross section, times integrated luminosity

 $\mu = s + b$, *s*, *b*: signal and background event yield, respectively

- s=0: standard model
- s>0: new physics
- Assume background known. What is the limit on the signal?
- Frequentist: set limit on μ , then subtract b
- Bayesian: use prior probability which is zero for s<0

Exercise 4 (limit with background)

Calculate Frequentist and Bayesian limits for N_{obs}={0,2} and

b={0.5,2.0,3.5}

Poisson parameter: $\mu = s + b$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian						
Frequentist						

- Frequentist: use methods from exercise 2
- Bayes: try to modify exercise 3 macro, or use macro GetPosteriorWithBackground.C

Exercise 4 (limit with background)

Calculate Frequentist and Bayesian limits for N_{obs}={0,2} and

b={0.5,2.0,3.5}

Poisson parameter: $\mu = s + b$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8

• Problem for Frequentist limit, N_{obs}=0 and b=3.5:

limit excludes all signal above s=-0.5.

Even the "standard model" s=0 is excluded

Discussion Exercise 4

- Frequentist analysis can give limits where all models are "excluded" at a given CL (even the model with s=0)
 - N_{obs} =0, μ =s+b, b=3.5
 - \rightarrow limit s<-0.5 @ 95% CL but s>=0 physical bound
- Bayesian limit uses prior knowledge s>=0

Limits near a boundary

- What to do if frequentist analysis excludes parameters beyond the sensitivity of the experiment or beyond boundaries?
- Give expected limit to show sensitivity of the experiment (exercise 5)
- CL_s method, also known as "modified frequentist" (exercise 6)
- Bayesian methods (see exercise 4)

Expected limit (exercise 5)

• Expected limit: limit weighted by background probability

$$\langle s_{\text{limit}} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b} b^n}{n!} \text{LimitOnSignal}(b, n)$$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected						·

- Calculate expected limits for b={0.5,2.0,3.5}
- Macro GetExpectedLimit.C

Expected limit (exercise 5)

• Expected limit: limit weighted by background probability

$$\langle s_{\text{limit}} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b} b^n}{n!} \text{LimitOnSignal}(b, n)$$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected	3.3		4.2		4.9	

• Problematic case: expected limit differs a lot from observed limit

 \rightarrow Recognize statistical fluctuation or problem with background

The CL_s (modified frequentist) method

- Frequentist limit: $1-CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s+b)$
- CL_s limit: $1 - CL \ge CL_s = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s + b)}{P(N \le N_{obs}; \mu = b)}$
- Probability is normalized to background probability
- $CL_B \leq 1 \rightarrow CL_S \geq CL_{SB}$: same α requires larger signal bgr only signal+bgr Limit is "conservative"
- For zero signal: CL_s=1

 \rightarrow zero signal is never excluded

Exercise 6 (CL_s method)

- Frequentist limit: $1 CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s + b)$
- CL_S limit: $1-CL \ge CL_S = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s+b)}{P(N \le N_{obs}; \mu = b)}$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CL _s						
Expected	3.3		4.2		4.9	

Use macro GetCLsLimit.C to calculate CL_s, iterate to get limit

Exercise 6 (CL_s method)

- Frequentist limit: $1-CL \ge \alpha = CL_{SB} = P(N \le N_{obs}; \mu = s+b)$
- CL_S limit: $1-CL \ge CL_S = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = s+b)}{P(N \le N_{obs}; \mu = b)}$

	b=0.5		b=2.0		b=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
CLs	3.0	5.8	3.0	4.8	3.0	4.3
Expected	3.3		4.2		4.9	

• For this example, CL_s is identical to Bayesian (with flat prior)

Limits with background, coverage

- CL_s method avoids problem
 with limits better than the
 experiments sensitivity
- Disadvantage: CL_s method is conservative, in particular for small signals

Lecture part II, summary

- Poisson experiment with background
- Unnaturally good limit if number of events is much smaller than background expectation
- "Solutions":
 - Quote expected limit (sensitivity of the experiment)
 - CLS method (never excludes background-only)
 - Bayesian method (prior knows about boundaries)

Systematic errors, multiple bins/channels

- Examples discussed so far : events for are counted in a single channel, no systematic errors
- General case: several channels (or bins) and systematic errors
- Example: mass distribution with N bins (signal and bgr shape)
 - \rightarrow N channels to be combined
 - \rightarrow Background normalisation error

Example plot: search for single top production at HERA, Phys.Lett. B678 (2009) 450

Simple example with two syst. errrors

• Consider signal in one bin

 $\mu = l(s+b)$, *l*: integrated luminosity, *s*, *b*: signal, background cross sections with systematic errors:

 $l = l_{obs} \pm \sigma_l, \ b = b_{obs} \pm \sigma_b$

• Full probability density has three contributions

- Three channels (measurements): N_{obs}, I_{obs}, b_{obs}
- Nuisances I,b and parameter of interest s

20 March 2013

Simple Example???

- Three observables: $N_{_{obs}}$, $I_{_{obs}}$, $b_{_{obs}}$
- Nuisances I,b and parameter of interest s
- This looks quite complicated already
- Observed: N_{obs} , I_{obs} , b_{obs} and parameters I, b, s
 - \rightarrow Neyman construction in six dimensions? Perhaps not...
- How to get rid of nuisance parameters?
- How to combine channels (measurements)?

Bayesian method

- Bayesian treatment of nuisance parameters: the measurements I_{obs} and b_{obs} correspond to priors for I,b
- Define marginalized likelihood, where the nuisances are integrated out

 $L(s) = \int dl \, db \, L(s, l, b)$

- Only depends on s (and the observations N_{obs}, I_{obs}, b_{obs})
- Analysis (Bayesian) as for the case without systematic errors

Hybrid method

- Bayesian treatment of nuisance parameters: the measurements I_{obs} and b_{obs} correspond to priors for I,b
- Use marginalized likelihood as if it were the probability density for N_{obs} (after integrating out the nuisances) $P_{s,marginalized}(N_{obs}) = \int dl \, db \, P_{s,l,b}(N_{obs}, ...)$
- Only depends on s (and the observation N_{obs})
- Analysis (Neyman) as for the case without systematic errors

Exercise 7 (limits from hybrid method)

- CL_s limit, systematic error treated with hybrid method $\mu = l(s+b)$
- Background error: zero or $\sigma_{b} = 50\% [b_{obs} = \{0.5, 3.5\}]$
- Luminosity error: zero or $\sigma_1 = 10\% [I_{obs} = 1.0]$

CL _s limits	b=	0.5	bgr=3.5		
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	
No syst	3.0	5.8	3.0	4.3	
σ_{b} /b=50%					
σ _ι /I=10%					
Both syst.					

Use root macro GetClsSys.C

Exercise 7 (limits from hybrid method)

- Typical example for the use of Monte Carlo methods to calculate probabilities
- Probabilities are calculated by counting the outcomes of toy experiments

Exercise 7 (limits from hybrid method)

- Background error: zero or $\sigma_{b} = 50\% [b_{obs} = \{0.5, 3.5\}]$
- Luminosity error: zero or $\sigma_1 = 10\%$ [I_{obs}=1.0]
- Systematic errors make limits somewhat worse

CL _s limits	b=0.5		bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
No syst	3.0	5.8	3.0	4.3
σ_{b}^{\prime} /b=50%	3.0	5.8	3.0	4.9
σ _ι /l=10%	3.1	6.0	3.2	4.5
Both syst.	3.1	6.0	3.1	5.0

Small background: background error has little influence

 $\mu = L(s+b)$

Large background: background error has larger influence

Luminosity error visible in all cases

Multiple bins/channels

- Case of multiple bins/channels
 brings additional complication for
 Frequentist analysis:
- Many bins: vector of observations
- Neyman construction: not possible for a vector of observations
- Solution: define 1-dimensional random variable (test statistic X)

Test statistic: X=X(N1,N2,N3,...) where N1,N2,N3... are the event counts in bin 1,2,3,... respectively

Choice of the test statistics

- Log Likelihood ratio $X = \log \left[\frac{L(\text{signal+bgr})}{L(\text{bgr})} \right]$
- Likelihood normalized to maximum $X = \log X$

$$X = \log \left[\frac{L(\text{signal+bgr})}{L_{\text{max}}} \right]$$

- Other choices: weighted sum of all channels, weight taken from signal/bgr ratio or something similar $X = \sum w_i N_i^{\text{obs}}$, where for example $w_i = \frac{(s_i + b_i) - b_i}{(s_i + b_i) + b_i}$
- Note: log of likelihood ratio also is a weighted sum:

$$\log L(\operatorname{signal+bgr}) - \log L(\operatorname{bgr}) \sim \sum_{i} \underbrace{\log(1 + \frac{s_i}{b_i})}_{W_i} N_i^{\operatorname{obs}}$$

What is a good test statistic?

- Good sensitivity to signal
- Little sensitivity to systematic effects
- Ideal case: probability density
 P(X) of test statistic is largely
 independent of the nuisances
 → use of hybrid method not
 needed → pure frequentist
 limit

- "Standard" choice: profile likelihood ratio
- Idea: nuisances are estimated from the data

$$X(s|\text{measurements}) = -2\log\left[\frac{L(s,\hat{\theta}(s))}{L(\hat{s},\hat{\hat{\theta}})}\right]$$

s: signal strength, θ : nuisances $L(s, \theta)$: Likelihood function $\hat{\theta}(s)$: value of θ which maximizes L given s \hat{s} and $\hat{\hat{\theta}}$: global maximum of L

Profile likelihood ratio

- Basic idea: nuisances are estimated from the data
- Likelihood ratio: maximum indicates signal position

- Numerical analysis: use
 -2*log(likelihood ratio)
- X(s) has a minimum near the best signal

$$X(s|\text{measurements}) = -2\log\left[\frac{L(s,\hat{\theta}(s))}{L(\hat{s},\hat{\theta})}\right]$$

s: signal strength, θ : nuisances $L(s, \theta)$: Likelihood function $\hat{\theta}(s)$: value of θ which maximizes L given s \hat{s} and $\hat{\theta}$: global maximum of L

20 March 2013

Profile likelihood analysis

• Profile likelihood is expected to have probability density $P(X) \simeq \chi^2_{ndf=1}(X)$

in the large sample limit

- Direct access to CL_{SB}, CL_S using Tmath::Prob()
- Need to verify P(X) and dependence on nuisances with Monte Carlo methods

- **Example**: $\mu = s + b$
- Measurements: N_{obs} and b_{obs}
- Vary $b \rightarrow some influence$

Summary

- Basic concepts of setting limits:
 - Frequentist/Bayesian methods
 - Coverage, expected limit, CL_s method
 - Systematic errors, nuisances, marginalization
 - Combining channels: test statistic, e.g. likelihood
 - Standard method: profile likelihood

Backup

Calculation of Poisson sums

• Sum over Poisson terms is related to χ^2 distribution with number-of-degrees of freedom "k":

$$\chi^{2}(x;k) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)} \qquad P(N;\mu) = \frac{e^{-\mu}\mu^{N}}{N!}$$

• Poisson sum equals integral over χ^2 distribution (partial integration)

$$\alpha(\mu, N) = \int_{2\mu}^{\infty} \chi^{2}(x; 2(N+1)) dx = \sum_{i=0}^{N} P(i; \mu)$$

• Standard functions for χ^2 integrals:

 $\alpha(\mu, N) = TMath:: Prob(2*\mu, 2*(N+1))$ and

 $\mu=0.5*TMath::ChisquareQuantile(1-\alpha, 2*(N+1))$

Frequentist upper limit, Gaussian case

$$CL = \int_{x_{obs}}^{\infty} \exp\left[-\frac{1}{2}\left(\frac{x - \mu_{truth}}{\sigma}\right)^{2}\right] \frac{1}{\sqrt{2\pi\sigma}} dx$$

- Fixed σ , measurement x_{obs} , parameter of interest μ_{truth}
- Define 95% probability area under Gaussian
- If $\mu_{\mbox{truth}}$ is too large, it is outside the 95% \rightarrow excluded

Limits with background, comparison

- Frequentist limit may become "unphysicsal" or "too good"
- Expected limit: sensitivity of the experiment
- CL_s method: normalize to "standard model", never
 exclude zero signal
- Disadvantage of CL_s? Study

coverage