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Outline

* Reminder: some probability theory

* The Frequentist and Bayesian view on probabililty
* Confidence intervals, limits

* Comparison: Frequentist and Bayesian limits

* How to treat systematic uncertianties

* How to combine several channels

- Frequentist specific: CL_ and Power constraints
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Probability densities

* Probabilites on discrete sets: each element has a finite

probability o
o o P([N})=—
Example: Poisson distribution N
0=(0,1,2,...]

— For event counts

* Probability densities: probabilities are defined by integrals

—(x—p)’
1 202u

Example: normal distribution
— For systematic errors
Q=R
b
P(ansb)=faf(x)dx
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Nuisance parameters

* Nuisance: a parameter of a probability density/distribution, not
the measurement itself

Examples:
* Poisson distribution: P({N})=e]:[‘/‘
LIS a nuisance parameter
—(x—p)
* Normal distribution: __ | 20
f(x) \/ﬁO‘e

[ and o are nuisance parameters

* Symbol for nuisance parameters: %
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Frequentist/Bayesian probability

* Frequentist view: probabilities describe the outcomes of
experiments
Models have unknown parameters (nuisances). Probabilities (to
make an observation) are given as a function of the model
parameters

* Bayesian extension: probabilities are also used to describe the
“degree of belief” in model parameters.

— The model parameters (nuisances) themselves can have
probabilities assigned.
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Bayesian definitions

A|B)P(B)
P(A)

p(Bl4)=2t

* Prior: P(B) where B is the theory
* Likelihood: P(A|B) where A is the measurement

* Posterior: P(B|A) is the result of the analysis

* P(A) has no special name. Normalisation is often calculated by
integrating the posterior over all theories: P(B|A)+P(~B|A)=1
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Probabilities in high energy physics

* Probability: predict number of events given the theory
(parameters) and the experimental setup

* But we want to know what a specific observation tells about the
theory

* Frequentist: give for each theory the probabilllity of the
observation (there is no probabillity for a theory)

* Bayes: assign probability (degree of belief) to theories
* High energy physics: make use of both views
(some preference for frequentist, in particular for discoveries)
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Confidence intervals, Limits

* Confidence intervals tell about parameters of the theory
(nuisances)

* Confidence level (CL): associated probability
* Note: different meaning of CL Frequentist/Bayesian

Frequentist: CL~P(obs|0)  Bayesian: CL~P(6|obs)

* Double-sided: measurement (usually CL=68%)
* Single-sided: limit (often CL=95%)

double—sided interval + central value single—sided interval
< > 9 - > o
O=u=+o|at 68% CL | 0<0_. at95% CL
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Frequentist limits

* Frequentist limit: exclude all theories which produce

the data at small probabillity o Frequentist limit
less than 1-CL (typically: CL=0.95) sum (integrate)

over observations

«=P,(N<N,)<1-CL | * afsolca”ed upto N,
pryaie Repeat for each model
o CL
T 0, Nobs=1 =P 05%
: excluded
mu=1.7Y mu=29 " mu=4.1 " mu=5.3" "
P>0.05 P>0.05 P<0.05 P<0.05
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Bayesian limits

* Bayesian limit: exclude a set of theories, such that the posterior
probability of the excluded theories is 1-CL Enumerator: integrate

over excluded theories

P(N=N g|p) P(11)d p

n 00

1-CL=P(u=p|N=N_, )=—"
Jo P<N=N0bs|l’l>P<l’l>d“

P (u):prior probability of the model u Denominator: integrate all
P(N=N__ |u):Likelihood theories (normalisation)

M

Likelihood

Posterior probability
depends on the data

area—normalized Bayesian limit:
limit on model integrate over

parameter

excluded at models, fixed N
CL=1-a obs

b
Fail

model parameter

Prior probability (here: high probability

for standard model near zero)

model parameter model parameter
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Comparison Frequentist/Bayesian

* Frequentist limit tells about the Bayesian limit tells about the

probability of repeated model probability
(Gedanken-) experiments » Calculation is done by

* Calculation is done by integrating over models
integrating over possible * Result depends on prior
observations .

Often used: “flat” prior P(B)=const
* Problem of “Unphysical” limits: .

CL, and power constraints

But: result depends on model
formulation. For example: “flat”
* Systematic uncertainties? prior in cross section is non-flat

* Combining channels? in coupling
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Systematic uncertainties

* Systematic errors: detector effects, hadronisation, etc
* Described by nuisances, with given prior distributions
* Bayes: conceptually simple, just integrate over all nuisances

1=CL=P(uzp|N=Ny)oc] duP(u)[dOP(0)P(Nu,0)

* Frequentist limits are calculated by “marginalising” (integrating
over) systematic parameters, then using Frequentist methods

«=P (N<N,)=[d0oP(0)P,(N<N,|0)
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Example with systematic errors

* Consider signal

u=L(s+b), L:integrated luminosity, s, b: signal, background cross sections

with systematic errors:

L=L,*x0,, b=by,x0,

* Full probability density has three contributions

~(L—L,)’ —(b—b,)’
—L(s+b) N 20 20
P<N|S,L,b)=e (L{s+D)) 1 e 7 1 e 7
o N! - N2moy V21 o,
obser\v(ation e - — o —

Prior for syst. erroron L Prior for syst. error on b

* Nis observed, L and b are integrated out
P(N|s)=[dL [ dbP(Nls,L,b)
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Combining bins or channels

* Discussed so far: events are counted in a single channel
* More general case: several channels or several bins in one

6_

Channel "2 - HA1 Muon Channel
QO i
* Example: mass distribution oo
with N bins (signal/bgr shape) T
21 *
— N channels to be combined Z P
| LE e
0 75 150 225 300

M [GeV]
* What is the limit on the total number of signal events, given the
shape information in addition to the total number of events?
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Combining channels (2)

* Bayesian methods: use n-dimensional likelihood

—H chn N obs,chn

Likelihood =[] e

N obs,chn '/

- simple extension of the 1-dim case

* Frequentist: define “test statistic” X which combines information
of several channels, then analyze probability distribution P(X).

Properties of X: high X means observation is signal-like, low X
means observation is background-like
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Example choices of the test statistics

* Example: likelihood ratio  y = £(Naxlsignal+ber) _ L (signal+bgr)
P(N |bgr) L (bgr)

* Other choices are possible, for example: weighted sum of all
channels, weight taken from signal/bgr ratio or something
similar

X =Z w, N ?bs simple choice: wi=%

* Note: log of likelihood ratio also is a weighted sum:

log (L (signal+bgr )—1log L(bgr)) Z log (1
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Many channels + systematic errors

* HEP problems are of this type

* Bayesian: use N-dim Likelihood, integrate using given priors for
systematic errors and model parameters — limits

* Frequentist: define a “good” test statistic X, then

* Integrate over systematic errors, calculate confidence levels
as a function of model parameters = limits

* Question: what is a “good” test statistic?
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Choice of test statistic with syst.errors

* No unique method to choose test statistic X
* Requirement: robustness against systematic errors
* “Standard” method: profile likelihood

* Use likelihood maximized wrt systematic parameters as
test statistic. Computational heavy! Example: integrate over
O(10000) syst. configurations, call MINUIT 10000 times!

obs

* Alternative methods, e.g. based on weighted sums, X=> w,N;
where bin weights w. are fixed, optimised for systematic errors
Much faster, in practise very similar results to profile likelihood.

P. Bock, JHEP 0701 (2007) 080 [arXiv:hep-ex/0405072]
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Frequentist/Bayesian calculation summary

* Frequentist: calculate * Bayesian: calculate

x(w=[, , dx[dOP@O)P(X|un,0) I(u)=[, duP(u)] dOP(6)P(Nylu,0)

. [ 0
* Exclude if: «(u)<1-CL - Exclude u>p 125)) =1-CL
* Integrating over 8 and X is * Integrating over 6 is simple,
simple, well known well known probability
probability densities densities
* Calculation has to be * Integrating over p requires
repeated for many models sophisticated methods

(many choices of u)
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Frequentist and downward fluctuations

* General problem with Frequentist methods if a is small for very small or

vanishing signals

* Example: theory parameter is the signal cross section, Standard model
has signal cross-section zero, observe downward fluctuation in data.

> C
= - Observed X
2 i near bgr maximum
(] 0.4 L Jié':]
© - [ Sig+Bgr
2> I
= 0.3
Q0 .
o L
Qo i
o 0.2
o i

L 5

0.1 Jiyd h
B }‘:’0’0’0
ok
-4 2 0 2 4

Low o for signal hypothesis < exclude

large o for background hypothesis - keep

probability density

i Observed X
| | downward fluctuation

Note: this problem
is not there for
Bayesian limits.
The Bayesian
integral over
excluded models
by construction
never includes the
Standard Model

Low o for background only hypothesis
Exclude model with zero signal?
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The CLS method

- Use ratio of two probabilities CL instead of o to test against CL

CLSB—O(=f P(X|signal+bgr)dX o CL,,
ST CL,

> X

CL —f P(X|bgr)dX

X<X,

o Standard model has CLS=1 and is never excluded

."? Observed X "? - | observed X

2 i near bgr maximum 2 . | downward fluctuation

o 0.4~ o o

L 'j,,,

© - f Sig+Bgr ©

z z

% 0.3 =

8 <

0 o)

o 0.2- o

Q. - Q.

0.1- ¢
“'V:. I
CL;~0.6 i .:go...;:::: CL;~0.05 © .
CL~17x 2 0 2 4 CL~20x -4 -2 0 2 4
Test statistic X Test statistic X
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Power constraint limits

* Conservative version a"° of probability o

a=fX<X0bsP(X|signa1—|—bgr)dX (xPC=maX(o<,f P (X |signal +bgr)dX )

X<<ngr>

(~ quote expected limit if it is more conservative)
* Standard model has a"°=0.5 and is never excluded Note: possibility

to use <X >-0

- E o ¢ E for less
= - i | Observed X = - | Observed X conservative PC
2 . : | near bgr maximum 2 _ | downward fluctuation
Q 0-4j ,J:%':L o 0'4—_
'g'. - isee i Sig+Bgr -:. - Sig+Bgr
et L
= 030 jai = 0.3
Fr8h I
g _ %: § '
© 02 ¢ © 0.2/
Q. = o
01 / ol 0.1-
X ><ngl”> 0’000‘%0 XObS<<ngr> et Lol :E:‘::’oo
o(PC=0( 240 2 4 re_ 20 0 2 4
Test statistic X X -~& Test statistic X
Limit taken from data Limit taken from MC
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Summary

* Overview of limit setting methods
* Bayesian method

* Frequentist method

* Treatment of systematic uncertainties

* Combining channels

* Modifications of the Frequentist method
» CL,

* Power constraints
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