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Outline

Reminder: some probability theory

The Frequentist and Bayesian view on probabililty
Confidence intervals, limits

Frequentist and Bayesian limit examples
Background, systematic uncertainties

Combining several bins or channels

Not covered:

* Discoveries, p-values, Bayes factors, ...

« Bayesian objective priors, ...
 Limit tools in Root
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Exercises

« Handout with 8 exercises, but time this afternoon is limited: only
a selection of the exercises to be worked through in detail

* Procedure: lecture is interrupted a few times for work on
exercises, followed by a discussion of the solutions

« Root macros
Initial version of the macros are on the virtual machine:
/statistics-school/limits/

Improved macros are on the web:
http://www.desy.de/~sschmitt/LimitLecture/
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Probability theory: selected items

Elements of Q2 : events, outcomes of an experiment

Probability of A: 0<P(4)<1,P(Q)=1

P(Q)=1,P(0)=0 P(Q\A4)=1-P(A)

: - : —u N
Example: Poisson distr P({ND:eNI«/l Q=(012...].4=[N)
Conditional probability of A given B: P(A|B)=P§jgf>
Bayes' law:
P(A4|B)P(B
p(Bla)=LABIPLB) N

P(4)
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Probability densities

 Probabilites on discrete sets: each element has a finite

probability Y
Example: Poisson distribution P<{N})=6N",l
— For event counts Q=(0,1,2,...]

» Probability densities: probabilities are defined by integrals

—(x—p)’

Example: normal distribution _ 1 e
. f<x>_\/2— €
— For systematic errors o
Q=R

P(ansb)=fo(x)dx
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Nuisance parameters

* Nuisance parameter: a parameter of a probability
density/distribution, not the measurement itself

Examples:
» Poisson distribution: o
. . P(Nj)=2E
U is a nuisance parameter N
« Normal distribution: f(X)=J%Ue >

U and o are nuisance parameters

« Symbol for nuisance parameters: ¥

Limits, Stefan Schmitt, April 5, 2011



Frequentist/Bayesian probabillity

* Frequentist view: probabilities describe the outcomes of
experiments
Models have unknown parameters (nuisances). Probabilities (to
make an observation) are given as a function of the model
parameters

« Bayesian extension: probabilities are also used to describe the
“degree of belief” in model parameters.

— The model parameters (nuisances) themselves can have
probabilities assigned.
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Bayesian definitions

A|B)P(B)
P(A)

p(Bl4)=2L

Prior: P(B) where B is the theory
_ikelihood: P(A|B) where A is the measurement
Posterior: P(BJ|A) is the result of the analysis

P(A) has no special name. Normalisation is often calculated
using P(B|A)+P(~B|A)=1
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Exercise on Bayes' law

e« Consider a disease and a test for the disease
* 0.1% of the population have the disease (prior)

 |f one has the disease, the test is positive with 99% probability
(likelihood)

 |f one does not have the disease, the test is positive with 1%
probability

 What is the (posterior) probability to have the disease, given a
positive test?
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Discussion exercise T

Prior probability: P(B)=0.1%

Likelihood: P(A|B)=99%

Normalisation:

P(A) = P(AnB)+P(An~B)=P(A|B)*P(B)+P(A|~B)*P(~B)
= 0.001%0.99+0.0170.99 = 0.01098

Posterior probability: P(B|A)=0.99"0.001/0.01098=9%

The posterior is a “Bayesian probability”: there is a true
parameter (has disease or not). The “degree of belief” to have
the disease is 9% given the positive test.
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Probabilities in high energy physics

Probability: predict number of events given the theory
(parameters) and the experimental setup

But we want to know what a specific observation tells about the
theory

Frequentist: give for each theory the probabillity of the
observation (there is no probability for a theory)

Bayes: assign probability (degree of belief) to theories
High energy physics: make use of both views
(preference for frequentist, in particular for discoveries)
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Confidence intervals, Limits

« Confidence intervals tell about parameters of the theory
(nuisances)

« Confidence level (CL): associated probability
« Note: different meaning of CL Frequentist/Bayesian

Frequentist: CL~P(obs|0)  Bayesian: CL~P(6|obs)

* Double-sided: measurement (usually CL=68%)
« Single-sided: limit (often CL=95%)

double—sided interval + central value single—sided interval
< > 9 ToC > o
0=u=*o|at 68% CL ] 0<0_. at95% CL
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Setting limits: step by step

One channel, no background, no systematics
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Limits: Gaussian approximation

 |dea: determine the central value plus error (lecture by Olaf),

assume Gauss distribution
e Ay’=1,2,3,... corresponds to a certain probability

Ay 1 2 3
Single-sided CL | 84.1% @ 97.7% @ 99.9%
Single-sided CL | 95.0% @ 99.0%

Ay* 1.64 2.33

04

0.35

03

0151

0.05F

0.2

0.1F

Single-sid
CL

025

R S

-2 -1 0

1

2 3 4 5
X

* Problem: several approximations involved: distribution
approximated by Gaussian, ¢ independent of the model and o,u

are approximated by the measured value and measured error
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Frequentist limits

» Frequentist limit: exclude all theories which produce
the data at probabillity

Frequentist limit:
less than a=1-CL sum (integrate)
over observations
up to NObS
P, (N<N,,)<1-CL=« Repeat for each model
o CL
] Nobs=1 05%
excluded
mu=1.7Y mu=29 " mu=4.1 " mu=5.3" "
P>0.05 P>0.05 P<0.05 P<0.05
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Frequentist limit exercise

- Exercise 2a: counting experiment (Poisson), N =0 what is the 95%

CL limit on the parameter u?
Calculate analytically, using Poisson's law.
How does the calculation look like for Nobs=1,2,3,...?

. Exercise 2b: N =2,10,100 and compare to Gaussian approximation
(use root macros)
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Calculation of Poisson sums

e Sum over Poisson terms is related to y* distribution with number-of-
degrees of freedom “K”:

kI2—1 —x/2 “u N
e

T 2T (k12) N
e The Poisson sum can be expressed by an integral over the %°
distribution (proof by partial integration)

% (x k)

(i, N)=[ %’ 2(N+1)dx=Y " Plirn)

 Standard functions for % integrals can be used:
of ,N=TMat h:: Prob(2* ,2*(N+1)) and
=0. 5* TMVat h: : Chi squareQuantil e(1-o, 2*( N+1))
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Bayesian limits

« Bayesian limit: exclude a set of theories, such that the posterior

probability of the excluded theories is 1-CL

n 00

Enumerator: integrate
over excluded theories

P(N=N g|lut) P(1n)d

1-CL=P(u=p, |N=N_ )=—"

o

P (p):prior probability of the model p
P(N=N_|u):Likelihood

M

Likelihood

Posterior probability
depends on the data

area—normalized

b
Fail

model] parameter limit on model
parameter
Prior probability (here: high probability excluded at

CL=1-

for standard model near zero)

model parameter model parameter
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Denominator: integrate all
theories (normalisation)

Bayesian limit:
iIntegrate over
models, fixed N__




Bayesian limit exercise

Exercise 3a: calculate the Bayesian limit for N =0 assuming a “flat
prior in N”, P(u)=1.

Calculate analytically, using Poisson's law. How does the calculation
look like for Nobs=1,2,3,...?

Exercise 3b: calculate the Bayesian limit (root macro) for
N =210,100 (flat prior) & compare to exercise 2b

obs

Exercise 3c: use a prior P(u)=p, N_ ={0,2,10,100}
Exercise 3d: use a flat prior up to p__ =90, set to zero above pu_
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Discussion Exercise 2/3

« Gaussian approximation fails for small NObS

« Bayes with “flat” prior and Frequentist accidentially agree for the
simple Poisson case (also see page 16)

[, exp(- el
N N=0 N/
N_ =0 N =2 N, =10 N_ =100

Frequentist 3.0 6.3 17.0 118.1
Gauss.approx 0.0 4.3 15.2 116.4
Bayes flat prior 3.0 6.3 17.0 118.1
Bayes P(u)=pn 4.7 7.7 18.2 119.2
Bayes flat up to u=90 3.0 6.3 17.0 89.7
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Discussion exercise 2/3 continued

* Non-flat prior: differences between Bayes and Frequentist limits
« lll-chosen prior with =90 for N__ =100: limit is defined by prior!

* Dependence on prior: main reason why Bayesian methods are not
used that much in HEP

N =0 N =2 N =10 N_ =100
Frequentist 3.0 6.3 17.0 118.1
Gauss.approx 0.0 4.3 15.2 116.4
Bayes flat prior 3.0 6.3 17.0 118.1
Bayes P(u)=pn 4.7 7.7 18.2 119.2
Bayes flat up to u=90 3.0 6.3 17.0 89.7
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Next slides

Comparison Frequentist/Bayesian

» Frequentist limit tells about the Bayesian limit tells about the

probability of repeated model probability
(Gedanken-) experiments « Calculation is done by
 Calculation is done by integrating over models
integrating over possible » Result depends on model
observations formulation, “flat” prior in cross
» Problem of “Unphysical” limits section is non-flat in coupling
 Systematic uncertainties? « Possibility to have “objective”
« Combining channels? priors
+ p-values  Bayes factors

Red: not discussed in this lecture
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Setting limits: step by step

One channel, no background, no systematics
One channel, with background, no systematics
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Limits with background

Expected number of events is given by the sum of a signal and
background contribution, both growing with the integrated
luminosity

u=L(s+b), L:integrated luminosity, s, b: signal, background cross sections

Luminosity and background are known, find limit on the signal
contribution

Frequentist: set limit on |, then divide by L and subtract b
Bayesian: use prior which is zero for s<0

Limits, Stefan Schmitt, April 5, 2011
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Exercise with background

« Exercise 4: calculate Frequentist and Bayesian limits for L=1,
N . .={0,2} and b={0.5,2.0,3.5}

bgr=0.5 bgr=2.0 bgr=3.5
N =0 N =2 N =0 N =2 N =0 N =2

obs obs obs obs obs obs

Bayesian

Frequentist

* Frequentist: set limit on L, then subtract b
« Bayesian: use prior which is zero for s<0
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Exercise with background

« Exercise 4: calculate Frequentist and Bayesian limits for L=1,
N . .={0,2} and b={0.5,2.0,3.5}

bgr=0.5 bgr=2.0 bgr=3.5

|\Iobs=o Nobs=2 Nobs=O Nobs=2 Nobs=O |\Iobs=2
Bayesian 3.0 5.8 3.0 4.8 3.0 4.3
Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8

* Problem for Nobs=0 and bgr=3.5: limit excludes all signal above
-0.5. Even the “standard model” s=0 is excluded
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Discussion Exercise 4

* Frequentist analysis can give

. — 6

limits where all models are z nobT
“excluded” at a given CL c 5 nobs=3

(even the model with s=0) £

nobs=1

Nobs=0, u=s+b, b=3.5

— |imit s<-0.5 @ 95% CL but
s>=0 physical bound

« Can not happen for Bayesian 1
limit, because prior
knowledge s>=0 is used "Unphysical region \ B
Loy

llllllIllllllllllllllllllllll l L1 L1 | Illllllll
05 1 15 2 25 3 35 4 45 5
bgr

~

Bayesian
limits

nobs=0

Frequentist
limits
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Limits near a boundary

What to do if frequentist analysis excludes parameters beyond
the sensitivity of the experiment or beyond boundaries?

Quote “expected” limit to show the sensitivity of the experiment
(limit averaged over many experiments)

“Modified Frequentist” op Ly P(N<N, :u=S+B)
(CL, method) T

- CLB_ P(NSNobs;M:B)
Use Bayesian methods (prior knows about boundaries)

See PDG review on statistics for detailed discussion

Limits, Stefan Schmitt, April 5, 2011
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Expected limit exercise

« Expected limit: average limit of repeated background
experiments (sensitivity), in our case:

(Wijim) = Z,io

» Exercise 5: calculate expected limits for b={0.5,2.0,3.5} and
compare to exercise 4

LimitOnSignal (b, n)

_b
e b
n!

bgr=0.5 bgr=2.0 bgr=3.5
Nobs=O I\Iobs=2 Nobs=O Nobs=2 Nobs=O Nobs=2
Bayesian 3.0 5.8 3.0 4.8 3.0 4.3
Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8
Expected 3.3 4.2 4.9
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CLS: exercise

CLg; P(N=<Ng, u=S+B)

obs ?

Modified Freq.ulenj[ist limit: | CL = L. P_ﬁ,NsNobs;FB)
signal probability is normalized to bgr probability
At given N_ :for zero signal, CL_=1. For large signal, CL_=0

Use CLS like oo — Standard model never excluded

“conservative”, over-coverage
Exercise 6: calculate limits , Dberonly _— signal+bgr
using the CLS method

CL_B—R

~
5 E,f_l_W ‘l_\

/
CL_SB

v
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. CL limit agrees with Bayesian limit for flat prior!

Exercise 6 discussion

« Reason: identity of Poisson sums and integrals (slide 16)

« Note: agreement is valid only for the simplest case. Picture
changes if there are many channels and systematic errors

bgr=0.5 bgr=2.0 bgr=3.5
N =0 N =2 N =0 N =2 N =0 N =2
Bayesian =CL_ 3.0 5.8 3.0 4.8 3.0 4.3
Frequentist 2.5 5.8 1.0 4.3 -0.5 2.8
Expected 3.3 4.2 4.9
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Summary limits with background

Frequentist limit may become
“unphysicsal” or “too good”
Expected limit: sensitivity of
the experiment

CL, method: agrees with
Bayesian (with flat prior) for
the case of 1 bin and no syst.
By construction: GL _ limit

never excludes model with
zero signal

limit on signal

»

191

S/CLS nobs=]

obs=0)

Baves/C

Limit better than

sensitivity of the experiment

05 1 15 2 25 3 35 4 45 5
bgr
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Setting limits: step by step

One channel, no background, no systematics
One channel, with background, no systematics
One Channel, background and systematics

Limits, Stefan Schmitt, April 5, 2011
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Systematic uncertainties

Systematic errors: detector effects, hadronisation, etc
Describe by nuisances, with given prior distributions

Example: energy scale, measured energies are multiplied by a
factor f, with error df

— prior of fis a Gaussian with p=1 and o=df

Limits are often calculated by “marginalising” (integrating over)
systematic parameters, then using Frequentist methods

Note: marginalisation is Bayesian — “hybrid method”

Limits, Stefan Schmitt, April 5, 2011
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Example with systematic errors

Consider signal
u=L(s+b), L:integrated luminosity, s, b: signal, background cross sections

with systematic errors:
L=L,*0,, b=by,*0,

Full probability density has three contributions

_(L_Lo)2 _(b_bo)2
—L(s+b N
P(N,L, b)=S B UACE:)) LD S BT
T N! V21O, V2To,
observation = syst. er}:)r onL T syst. er?or onb -

N is observed, L and b are integrated over
Exercise 7: limits for N__={0,2} with/without syst. errors on b, L

Limits, Stefan Schmitt, April 5, 2011
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Exercise 7 macro

« Typical example for the use of Monte Carlo methods to calculate
probabilities

» Probabilities are calculated by counting the outcomes of toy
experiments

| =r nd- >Gaus( 1. 0, dLumi ) : bgr only signal+bgr
b=r nd- >Gaus( bgr, dBgr) ; Nobs
I nt _t n_b=rnd->Poi sson(l *b); S
Int_t n_sb=rnd->Poi sson(l *(signal +b)); §§
| f (n_b<=nobs) nexp_b += 1.0; CL_B i§§
i f (n_sb<=nobs) nexp _sb += 1.0; %\
-
Doubl e t cl _s=nexp_sb/ nexp_b; §\§ /”" —
CL_SB
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Discussion exercise 7/

« Systematic uncertainties have some impact on the result
* QOur example:
* |f background is small, bgr errors have small influence

« Luminosity affects both signal and background — all limits

CL limits bgr=0.5 bgr=3.5
obs=0 obs=2 obs=0 obs=2
No syst 3.0 5.8 3.0 4.3
o, /b=50% 3.0 5.8 3.1 4.9
c, /L=10% 3.1 6.0 3.1 4.6
Both syst. 3.1 6.0 3.1 5.0
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Setting limits: step by step

One channel, no background, no systematics
One channel, with background, no systematics
One Channel, background and systematics
Combining channels, no systematics

Limits, Stefan Schmitt, April 5, 2011
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Combining bins or channels

Up to now: events are counted in a single channel

More general case: several channels or several bins in one
channel

« Example: mass distribution

6 —
. HA1 Muon Channel

Events

with N bins (signal/bgr shape) i
— N channels to be combined _

225 300

: . * {“:1!30' |
For each channel, specify efficiency*Br M [GeV]

What is the limit on the total number of signal events?
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Combining channels (2)

» Bayesian methods: use n-dimensional likelihood

—H chn Nobs,chn

e
Likelihood =], ~— Hoin
obs,chn *

— simple extension of the 1-dim case

» Frequentist: define “test statistics” X which combines
information of several channels, then analyze probability
distribution P(X).

» Properties of X: high X means observation is signal-like, low X
means observation is background-like

Limits, Stefan Schmitt, April 5, 2011
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Choice of the test statistics

S . L (signal+bgr)
Example: likelihood ratio X= f(bgr) :
Or likelihood normalised to its maximum _ L(signaltber)
L

max

Other choices are possible, for example: weighted sum of all
channels, weight taken from signal/bgr ratio or something
similar

obs : : Si
X= Z w, Nl.b simple choice: W=

Note: log of likelihood ratio also is a weighted sum:

log (L (signal+bgr)—1log L(bgr)) Z log(1

Limits, Stefan Schmitt, April 5, 2011
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Exercise with two channels

Consider two channels, e=efficiency*BR=0.5 =€ *s+Db,

One channel dominated by signal, the other dominated by
background

Exercise 8a: calculate the CL_ limit on the number of signal

events using only channel 1 or only channel 2

Exercise 8b: calculate the limit by adding the two channels
Exercise 8c: calculate the limit using both channels

and X=w N +w N,

bgr

obs

Channel 1 V4 6.5
Channel 2 2 1.8

where w=s/b. (s=s"¢)
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Discussion Exercise 8

* The two channels give different limit
« Combined limit is better than each channel alone
« Combined limit is better than the plain sum of the two channels

N, =0 bgr CL, limit
Channel 1 7 6.5 14.8
Channel 2 2 1.8 9.9
Added 9 8.3 8.2
Weighted sum (7,2) (6.5, 1.8) 7.3
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Setting limits: step by step

One channel, no background, no systematics
One channel, with background, no systematics
One Channel, background and systematics
Combining channels, no systematics
Combining channels with systematics

Limits, Stefan Schmitt, April 5, 2011
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Many channels + systematic errors

« Most common case in HEP (example: Higgs search)

« Bayesian: use Likelihood and integrate using given priors for
systematic errors and models — limits

» Frequentist: define “good” test statistics X, then

e (Calculate confidence levels similar to the case of one
channel+systematic errors — limits

e Question: what is a “good” test statistics?

Limits, Stefan Schmitt, April 5, 2011
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Many channels + systematics (2)

 Why not to use channel weight w~s/b. like exercise 87

« Example 1:two channels with same s/b, but different systematic

errorsonb
eff bgr
Channel1 | 0.5 4.0£0.5
Channel 2 0.5 4.0£3.0

— channel with larger (systematic)

error is less sensitive to the signal,

it should have a smaller weight.
—> wi=ei/bi IS not the best choice,

best expected limit for w ~0.7, w_~0.3

E i Scan w1, where
S 14;+ X=w1*N1+(1-w1)*N2
Q L
©13.5/
Q L
> i
@ 13
12.5
12
0.4 05 06 07 08 0.9

w1
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Many channels + systematics (3)

« Example 2: two channels with correlated bgr systematics, one
channel with low s/b, one channel with high s/b

eff bgr Bgr norm. error

E 25
Channel 1 0.1 20.0 ; I Scan w1, where
50% Q X=w1*N1+(1-w1)*N2
Channel 2 0.9 10.0 8
Q =
s 20

correlation: if bgr is high in channel 1

it is also high in channel 2

— measure bgr from channel 1 and -
subtract from channel 27 1_535- B Ry —

— negative w ~-0.6 (w_~1.6) gives best exbected imit w1
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Many channels + systematics (4)

No unique method to set limits for the multi-channel +sys case
“Standard” method: profile likelihood (RooStat)

« Use likelihood maximized wrt systematic parameters as test
statistics

Bayesian method: use marginalised likelihood + prior (RooStat)
Alternative methods, e.g. based on weighted sums, x=2 w,N}™

where bin weights w. are optimised for syst. errors
P. Bock, JHEP 0701 (2007) 080 [arXiv:hep-ex/0405072]
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Summary

» Basic concepts of setting limits:
* Frequentist/Bayesian methods

» Examples for specific problems:
» Signal plus background, expected limit, CL_ method

Not covered:

Bayesian “objective” priors, etc
Discoveries: p-values, Bayes factors, etc
Standard tools in Root

... and many more things

e + systematic uncertainties
« Combining several channels
e + systematic uncertainties

> Limit calculation is a wide field. Impossible to do justice to all
methods in a few hours
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