Tutorial/Lecture on Limits

Stefan Schmitt, DESY

Tutorial/lecture for the Terascale Statistics School

Mainz, April 5, 2011

Outline

- Reminder: some probability theory
- The Frequentist and Bayesian view on probability
- Confidence intervals, limits
- Frequentist and Bayesian limit examples
- Background, systematic uncertainties
- Combining several bins or channels
- Not covered:
 - Discoveries, p-values, Bayes factors, ...
 - Bayesian objective priors, ...
 - Limit tools in Root

Exercises

- Handout with 8 exercises, but time this afternoon is limited: only a selection of the exercises to be worked through in detail
- Procedure: lecture is interrupted a few times for work on exercises, followed by a discussion of the solutions
- Root macros

Initial version of the macros are on the virtual machine: /statistics-school/limits/

Improved macros are on the web: http://www.desy.de/~sschmitt/LimitLecture/

Probability theory: selected items

- Elements of Ω : events, outcomes of an experiment
- Probability of A: $0 \le P(A) \le 1, P(\Omega) = 1$ $P(\Omega) = 1, P(\emptyset) = 0$ $P(\Omega \setminus A) = 1 - P(A)$

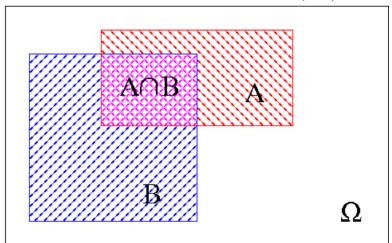
Example: Poisson distr
$$P(\{N\}) = \frac{e^{-\mu} \mu^{N}}{N!}, \Omega = \{0,1,2,...\}, A = \{N\}$$

• Conditional probability of A given B:

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Bayes' law:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$



Probability densities

- Probabilites on discrete sets: each element has a finite probability
 - Example: Poisson distribution
 - → For event counts

$$P(\lbrace N \rbrace) = \frac{e^{-\mu} \mu^{N}}{N!}$$

$$\Omega = \{0, 1, 2, ...\}$$

- Probability densities: probabilities are defined by integrals
 - Example: normal distribution
 - → For systematic errors

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$\Omega = \mathbb{R}$$

$$P(a \le x \le b) = \int_{a}^{b} f(x) dx$$

Nuisance parameters

 Nuisance parameter: a parameter of a probability density/distribution, not the measurement itself

Examples:

- Poisson distribution:
 - μ is a nuisance parameter
- Normal distribution:

$$P(\lbrace N \rbrace) = \frac{e^{-\mu} \mu^{N}}{N!}$$
$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2\sigma^{2}}}$$

 μ and σ are nuisance parameters

• Symbol for nuisance parameters: ϑ

Frequentist/Bayesian probability

- Frequentist view: probabilities describe the outcomes of experiments
 - Models have unknown parameters (nuisances). Probabilities (to make an observation) are given as a function of the model parameters
- Bayesian extension: probabilities are also used to describe the "degree of belief" in model parameters.
 - → The model parameters (nuisances) themselves can have probabilities assigned.

Bayesian definitions

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Prior: P(B) where B is the theory
- Likelihood: P(A|B) where A is the measurement
- Posterior: P(B|A) is the result of the analysis
- P(A) has no special name. Normalisation is often calculated using P(B|A)+P(~B|A)=1

Exercise on Bayes' law

- Consider a disease and a test for the disease
- 0.1% of the population have the disease (prior)
- If one has the disease, the test is positive with 99% probability (likelihood)
- If one does not have the disease, the test is positive with 1% probability
- What is the (posterior) probability to have the disease, given a positive test?

Discussion exercise 1

- Prior probability: P(B)=0.1%
- Likelihood: *P*(A|B)=99%
- Normalisation:

```
P(A) = P(A \cap B) + P(A \cap B) = P(A|B) + P(B) + P(A|B) + P(A|B) = 0.001 + 0.99 + 0.01 + 0.99 = 0.01098
```

- Posterior probability: P(B|A)=0.99*0.001/0.01098=9%
- The posterior is a "Bayesian probability": there is a true parameter (has disease or not). The "degree of belief" to have the disease is 9% given the positive test.

Probabilities in high energy physics

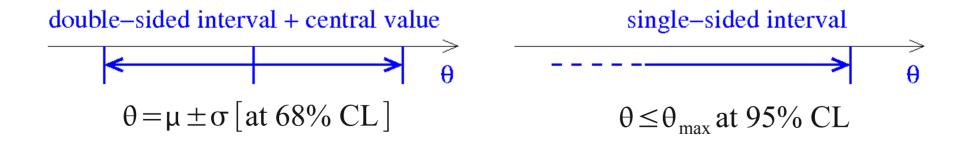
- Probability: predict number of events given the theory (parameters) and the experimental setup
- But we want to know what a specific observation tells about the theory
- Frequentist: give for each theory the probability of the observation (there is no probability for a theory)
- Bayes: assign probability (degree of belief) to theories
- High energy physics: make use of both views (preference for frequentist, in particular for discoveries)

Confidence intervals, Limits

- Confidence intervals tell about parameters of the theory (nuisances)
- Confidence level (CL): associated probability
 - Note: different meaning of CL Frequentist/Bayesian

Frequentist: $CL\sim P(obs|\theta)$ Bayesian: $CL\sim P(\theta|obs)$

- Double-sided: measurement (usually CL=68%)
- Single-sided: limit (often CL=95%)



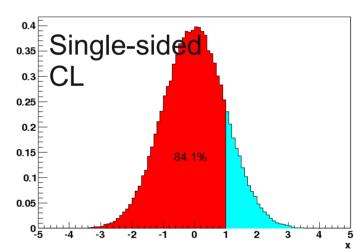
Setting limits: step by step

- One channel, no background, no systematics
- One channel, with background, no systematics
- One Channel, background and systematics
- Combining channels, no systematics
- Combining channels with systematics

Limits: Gaussian approximation

- Idea: determine the central value plus error (lecture by Olaf), assume Gauss distribution
- $\Delta \chi^2 = 1,2,3,...$ corresponds to a certain probability

$\Delta \chi^2$	1	2	3
Single-sided CL	84.1%	97.7%	99.9%
Single-sided CL	95.0%	99.0%	
$\Delta \chi^2$	1.64	2.33	



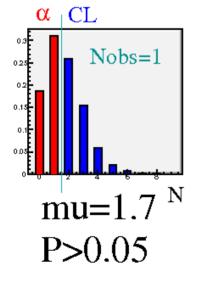
• Problem: several approximations involved: distribution approximated by Gaussian, σ independent of the model and σ , μ are approximated by the measured value and measured error

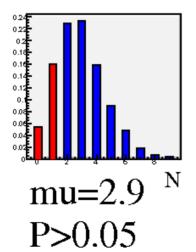
Frequentist limits

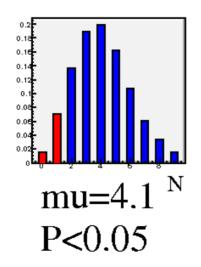
• Frequentist limit: exclude all theories which produce

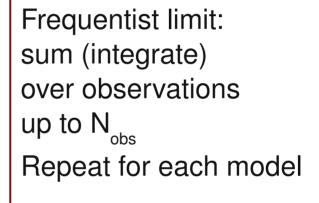
the data at probability less than $\alpha=1$ -CL

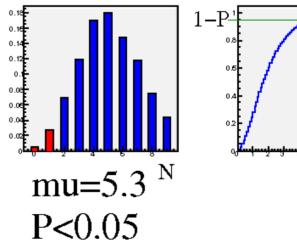
$$P_{\mu}(N \leq N_{\text{obs}}) < 1 - \text{CL} = \alpha$$

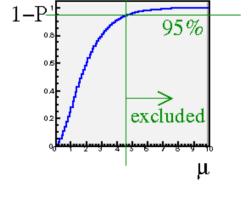












Frequentist limit exercise

- Exercise 2a: counting experiment (Poisson), N_{obs} =0 what is the 95% CL limit on the parameter μ ? Calculate analytically, using Poisson's law. How does the calculation look like for N_{obs} =1,2,3,...?
- Exercise 2b: N_{obs}=2,10,100 and compare to Gaussian approximation (use root macros)

Calculation of Poisson sums

• Sum over Poisson terms is related to χ^2 distribution with number-of-degrees of freedom "k":

$$\chi^{2}(x;k) = \frac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)} \qquad P(N;\mu) = \frac{e^{-\mu}\mu^{N}}{N!}$$

• The Poisson sum can be expressed by an integral over the χ^2 distribution (proof by partial integration)

$$\alpha(\mu, N) = \int_{2\mu}^{\infty} \chi^{2}(x; 2(N+1)) dx = \sum_{i=0}^{N} P(i; \mu)$$

• Standard functions for χ^2 integrals can be used:

```
\alpha( ,N)=TMath::Prob(2* ,2*(N+1)) and
=0.5*TMath::ChisquareQuantile(1-\alpha,2*(N+1))
```

Bayesian limits

Bayesian limit: exclude a set of theories, such that the posterior probability of the excluded theories is 1-CL

over excluded theories $1 - \text{CL} = P(\mu \ge \mu_0 | N = N_{\text{obs}}) = \frac{\int_{\mu_0}^{\infty} P(N = N_{\text{obs}} | \mu) P(\mu) d\mu}{\int_{0}^{\infty} P(N = N_{\text{obs}} | \mu) P(\mu) d\mu}$ $P(\mu)$: prior probability of the model μ Denominator: integrate all $P(N=N_{obs}|\mu)$: Likelihood theories (normalisation) Likelihood Posterior probability Bayesian limit: depends on the data area-normalized integrate over model parameter limit on model models, fixed $N_{\rm obs}$ parameter Prior probability (here: high probability excluded at \downarrow CL=1- α for standard model near zero) model parameter model parameter

Bayesian limit exercise

- Exercise 3a: calculate the Bayesian limit for N_{obs}=0 assuming a "flat prior in N", P(μ)=1.
 Calculate analytically, using Poisson's law. How does the calculation look like for N_{obs}=1,2,3,...?
- Exercise 3b: calculate the Bayesian limit (root macro) for N_{obs}=2,10,100 (flat prior) & compare to exercise 2b
- Exercise 3c: use a prior $P(\mu)=\mu$, $N_{obs}=\{0,2,10,100\}$
- Exercise 3d: use a flat prior up to μ_{max} =90, set to zero above μ_{max}

Discussion Exercise 2/3

- Gaussian approximation fails for small N_{obs}
- Bayes with "flat" prior and Frequentist accidentially agree for the simple Poisson case (also see page 16)

$$\int_{\mu_0}^{\infty} \exp(-\mu) \frac{\mu^{N_0}}{N_0!} d\mu = \sum_{N=0}^{N_0} \exp(-\mu_0) \frac{\mu_0^N}{N!}$$

	N _{obs} =0	N _{obs} =2	N _{obs} =10	N _{obs} =100
Frequentist	3.0	6.3	17.0	118.1
Gauss.approx	0.0	4.3	15.2	116.4
Bayes flat prior	3.0	6.3	17.0	118.1
Bayes P(μ)=μ	4.7	7.7	18.2	119.2
Bayes flat up to μ=90	3.0	6.3	17.0	89.7

Discussion exercise 2/3 continued

- Non-flat prior: differences between Bayes and Frequentist limits
- Ill-chosen prior with μ_{max} =90 for N_{obs} =100: limit is defined by prior!
- Dependence on prior: main reason why Bayesian methods are not used that much in HEP

	N _{obs} =0	N _{obs} =2	N _{obs} =10	N _{obs} =100
Frequentist	3.0	6.3	17.0	118.1
Gauss.approx	0.0	4.3	15.2	116.4
Bayes flat prior	3.0	6.3	17.0	118.1
Bayes P(μ)=μ	4.7	7.7	18.2	119.2
Bayes flat up to μ=90	3.0	6.3	17.0	89.7

Comparison Frequentist/Bayesian

- Frequentist limit tells about the probability of repeated (Gedanken-) experiments
- Calculation is done by integrating over possible observations
- Problem of "Unphysical" limits
- Systematic uncertainties?
- **Next slides** Combining channels?
 - p-values

- Bayesian limit tells about the model probability
- Calculation is done by integrating over models
- Result depends on model formulation, "flat" prior in cross section is non-flat in coupling
- Possibility to have "objective" priors
- Bayes factors

Red: not discussed in this lecture

Setting limits: step by step

- One channel, no background, no systematics
- One channel, with background, no systematics
- One Channel, background and systematics
- Combining channels, no systematics
- Combining channels with systematics

Limits with background

 Expected number of events is given by the sum of a signal and background contribution, both growing with the integrated luminosity

```
\mu = L(s+b), L: integrated luminosity, s, b: signal, background cross sections
```

- Luminosity and background are known, find limit on the signal contribution
- Frequentist: set limit on μ, then divide by L and subtract b
- Bayesian: use prior which is zero for s<0

Exercise with background

Exercise 4: calculate Frequentist and Bayesian limits for L=1,
 N_{obs}={0,2} and b={0.5,2.0,3.5}

	bgr=0.5		bgr=2.0		bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian						
Frequentist						

- Frequentist: set limit on μ, then subtract b
- Bayesian: use prior which is zero for s<0

Exercise with background

Exercise 4: calculate Frequentist and Bayesian limits for L=1,
 N_{obs}={0,2} and b={0.5,2.0,3.5}

	bgr=0.5		bgr=2.0		bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8

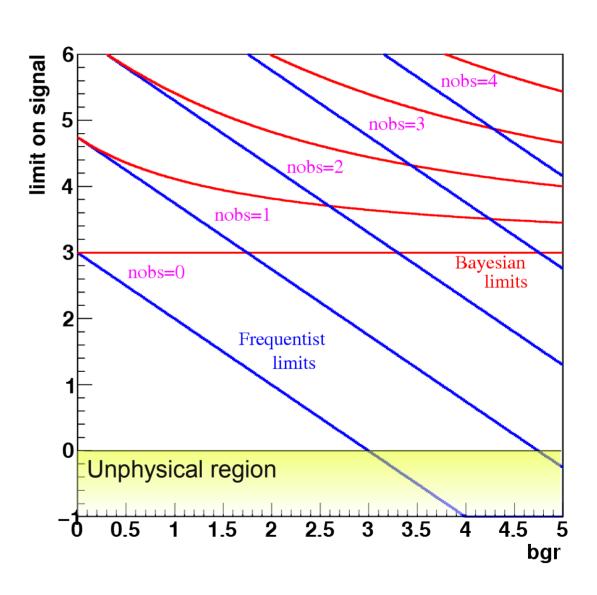
Problem for Nobs=0 and bgr=3.5: limit excludes all signal above
 -0.5. Even the "standard model" s=0 is excluded

Discussion Exercise 4

 Frequentist analysis can give limits where all models are "excluded" at a given CL (even the model with s=0)

$$N_{obs} = 0$$
, $\mu = s + b$, $b = 3.5$

- \rightarrow limit s<-0.5 @ 95% CL but s>=0 physical bound
- Can not happen for Bayesian limit, because prior knowledge s>=0 is used



Limits near a boundary

- What to do if frequentist analysis excludes parameters beyond the sensitivity of the experiment or beyond boundaries?
- Quote "expected" limit to show the sensitivity of the experiment (limit averaged over many experiments)
- "Modified Frequentist" $\alpha = CL_S = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{\text{obs}}; \mu = S + B)}{P(N \le N_{\text{obs}}; \mu = B)}$
- Use Bayesian methods (prior knows about boundaries)
- . . .
- See PDG review on statistics for detailed discussion

Expected limit exercise

 Expected limit: average limit of repeated background experiments (sensitivity), in our case:

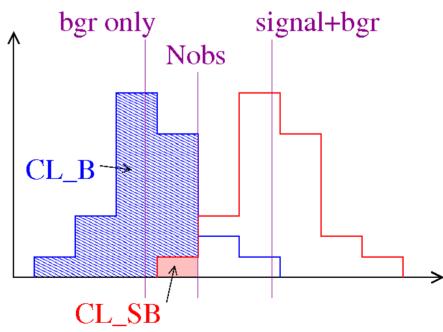
$$\langle \mu_{\lim} \rangle = \sum_{n=0}^{\infty} \frac{e^{-b}b^n}{n!} \text{LimitOnSignal}(b, n)$$

 Exercise 5: calculate expected limits for b={0.5,2.0,3.5} and compare to exercise 4

	bgr=0.5		bgr=	=2.0	bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected	3.3		4.2		4.9	

CL_s: exercise

- Modified Frequentist limit: $CL_S = \frac{CL_{SB}}{CL_B} = \frac{P(N \le N_{obs}; \mu = S + B)}{P(N \le N_{obs}; \mu = B)}$ signal probability is normalized to bgr probability
- At given N_{obs} : for zero signal, $CL_{s}=1$. For large signal, $CL_{s}=0$
- Use CL_s like $\alpha \to Standard model never excluded "conservative", over-coverage$
- Exercise 6: calculate limits using the CL_s method



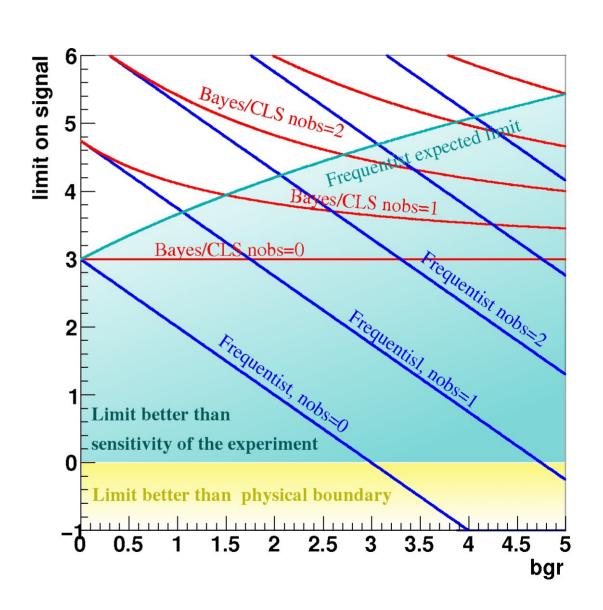
Exercise 6 discussion

- CL_s limit agrees with Bayesian limit for flat prior!
- Reason: identity of Poisson sums and integrals (slide 16)
- Note: agreement is valid only for the simplest case. Picture changes if there are many channels and systematic errors

	bgr=0.5		bgr=	=2.0	bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
Bayesian =CL _s	3.0	5.8	3.0	4.8	3.0	4.3
Frequentist	2.5	5.8	1.0	4.3	-0.5	2.8
Expected	3.3		4.2		4.9	

Summary limits with background

- Frequentist limit may become "unphysicsal" or "too good"
- Expected limit: sensitivity of the experiment
- CL_s method: agrees with
 Bayesian (with flat prior) for the case of 1 bin and no syst.
- By construction: CL_s limit never excludes model with zero signal



Setting limits: step by step

- One channel, no background, no systematics
- One channel, with background, no systematics
- One Channel, background and systematics
- Combining channels, no systematics
- Combining channels with systematics

Systematic uncertainties

- Systematic errors: detector effects, hadronisation, etc
- Describe by nuisances, with given prior distributions
 Example: energy scale, measured energies are multiplied by a factor f, with error df
 - \rightarrow prior of f is a Gaussian with μ =1 and σ =df
- Limits are often calculated by "marginalising" (integrating over) systematic parameters, then using Frequentist methods
- Note: marginalisation is Bayesian → "hybrid method"

Example with systematic errors

Consider signal

 $\mu = L(s+b)$, L: integrated luminosity, s, b: signal, background cross sections with systematic errors:

$$L=L_0\pm\sigma_L, b=b_0\pm\sigma_b$$

Full probability density has three contributions

$$P(N, L, b) = \underbrace{\frac{e^{-L(s+b)}(L(s+b))^{N}}{N!}}_{\text{observation}} \underbrace{\frac{1}{\sqrt{2\pi}\sigma_{L}}}_{\text{syst. error on L}} \underbrace{\frac{e^{-(L-L_{0})^{2}}}{2\sigma_{L}^{2}}}_{\text{syst. error on b}} \underbrace{\frac{1}{\sqrt{2\pi}\sigma_{b}}}_{\text{syst. error on b}} e^{\frac{-(b-b_{0})^{2}}{2\sigma_{b}^{2}}}$$

- N is observed, L and b are integrated over
- Exercise 7: limits for $N_{obs} = \{0,2\}$ with/without syst. errors on b, L

Exercise 7 macro

- Typical example for the use of Monte Carlo methods to calculate probabilities
- Probabilities are calculated by counting the outcomes of toy experiments

```
l=rnd->Gaus(1.0,dLumi);
b=rnd->Gaus(bgr,dBgr);
Int_t n_b=rnd->Poisson(l*b);
Int_t n_sb=rnd->Poisson(l*(signal+b));
...
if(n_b<=nobs) nexp_b += 1.0;
if(n_sb<=nobs) nexp_sb += 1.0;
...
Double_t cl_s=nexp_sb/nexp_b;</pre>
CL_SB
```

Discussion exercise 7

- Systematic uncertainties have some impact on the result
- Our example:
 - If background is small, bgr errors have small influence
 - Luminosity affects both signal and background → all limits

CL _s limits	bgr=0.5		bgr=3.5	
	N _{obs} =0	N _{obs} =2	N _{obs} =0	N _{obs} =2
No syst	3.0	5.8	3.0	4.3
$\sigma_{b}/b=50\%$	3.0	5.8	3.1	4.9
$\sigma_{L}/L=10\%$	3.1	6.0	3.1	4.6
Both syst.	3.1	6.0	3.1	5.0

Setting limits: step by step

- One channel, no background, no systematics
- One channel, with background, no systematics
- One Channel, background and systematics
- Combining channels, no systematics
- Combining channels with systematics

Combining bins or channels

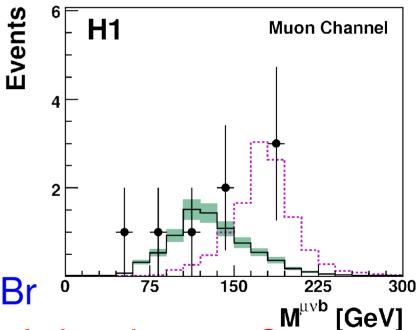
Up to now: events are counted in a single channel

More general case: several channels or several bins in one

channel

Example: mass distribution
 with N bins (signal/bgr shape)

→ N channels to be combined



For each channel, specify efficiency*Br

What is the limit on the total number of signal events?

Combining channels (2)

Bayesian methods: use n-dimensional likelihood

$$Likelihood = \prod_{chn} \frac{e^{-\mu_{chn}} \mu_{chn}^{N_{obs,chn}}}{N_{obs,chn}!}$$

- → simple extension of the 1-dim case
- Frequentist: define "test statistics" X which combines information of several channels, then analyze probability distribution P(X).
- Properties of X: high X means observation is signal-like, low X means observation is background-like

Choice of the test statistics

- Example: likelihood ratio
- Or likelihood normalised to its maximum

$$X = \frac{L(\text{signal+bgr})}{L(\text{bgr})}$$

$$X = \frac{L(\text{signal+bgr})}{L_{\text{max}}}$$

 Other choices are possible, for example: weighted sum of all channels, weight taken from signal/bgr ratio or something similar

$$X = \sum w_i N_i^{\text{obs}}$$
 simple choice: $w_i = \frac{s_i}{b_i}$

• Note: log of likelihood ratio also is a weighted sum:

$$\log(L(\text{signal+bgr}) - \log L(\text{bgr})) \sim \sum_{i} \log(1 + \frac{s_{i}}{b_{i}}) N_{i}$$

Exercise with two channels

- Consider two channels, ε_{i} =efficiency*BR=0.5
 - $\mu_i = \epsilon_i * s + b_i$
- One channel dominated by signal, the other dominated by background
- Exercise 8a: calculate the CL_s limit on the number of signal events using only channel 1 or only channel 2
- Exercise 8b: calculate the limit by adding the two channels
- Exercise 8c: calculate the limit using both channels

and
$$X=w_1N_1+w_2N_2$$

where $w_i=s_i/b_i$ ($s_i=s^*\epsilon_i$)

	N _{obs}	bgr
Channel 1	7	6.5
Channel 2	2	1.8

Discussion Exercise 8

- The two channels give different limit
- Combined limit is better than each channel alone
- Combined limit is better than the plain sum of the two channels

	N _{obs} =0	bgr	CL _s limit
Channel 1	7	6.5	14.8
Channel 2	2	1.8	9.9
Added	9	8.3	8.2
Weighted sum	(7,2)	(6.5, 1.8)	7.3

Setting limits: step by step

- One channel, no background, no systematics
- One channel, with background, no systematics
- One Channel, background and systematics
- Combining channels, no systematics
- Combining channels with systematics

Many channels + systematic errors

- Most common case in HEP (example: Higgs search)
- Bayesian: use Likelihood and integrate using given priors for systematic errors and models → limits
- Frequentist: define "good" test statistics X, then
 - Calculate confidence levels similar to the case of one channel+systematic errors → limits
 - Question: what is a "good" test statistics?

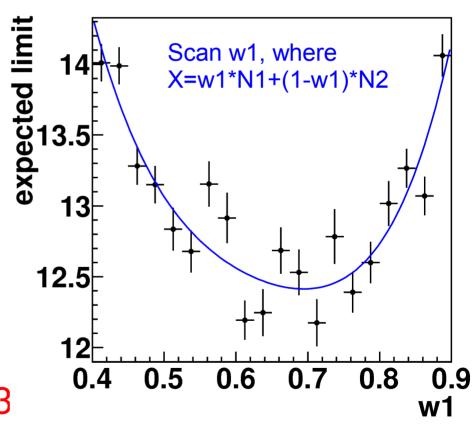
Many channels + systematics (2)

- Why not to use channel weight w_i~s_i/b_i like exercise 8?
- Example 1: two channels with same s/b, but different systematic errors on b

	eff	bgr
Channel 1	0.5	4.0±0.5
Channel 2	0.5	4.0±3.0

→ channel with larger (systematic) error is less sensitive to the signal, it should have a smaller weight.

 \rightarrow w_i= ϵ_i /b_i is not the best choice, best expected limit for w₁~0.7, w₂~0.3

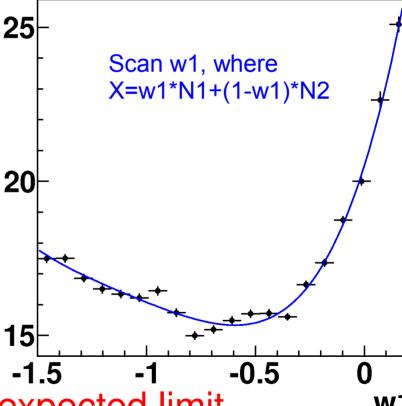


Many channels + systematics (3)

 Example 2: two channels with correlated bgr systematics, one channel with low s/b, one channel with high s/b

	eff	bgr	Bgr norm. error	
Channel 1	0.1	20.0	F00/	
Channel 2	0.9	10.0	50%	

expected limit



correlation: if bgr is high in channel 1 it is also high in channel 2

- → measure bgr from channel 1 and subtract from channel 2?
- \rightarrow negative w₁~-0.6 (w₂~1.6) gives best expected limit

Many channels + systematics (4)

- No unique method to set limits for the multi-channel +sys case
- "Standard" method: profile likelihood (RooStat)
 - Use likelihood maximized wrt systematic parameters as test statistics
- Bayesian method: use marginalised likelihood + prior (RooStat)
- Alternative methods, e.g. based on weighted sums, $X = \sum w_i N_i^{\text{obs}}$ where bin weights \mathbf{w}_i are optimised for syst. errors
 - P. Bock, JHEP 0701 (2007) 080 [arXiv:hep-ex/0405072]

Summary

- Basic concepts of setting limits:
 - Frequentist/Bayesian methods
- Examples for specific problems:
 - Signal plus background, expected limit, CL_s method
 - + systematic uncertainties
 - Combining several channels
 - + systematic uncertainties

Not covered:

Bayesian "objective" priors, etc Discoveries: p-values, Bayes factors, etc Standard tools in Root ... and many more things

Limit calculation is a wide field. Impossible to do justice to all methods in a few hours