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Outline

● Introduction

– The HERA collider

– Polarization at HERA and HERA polarimetry

– The HERA Transverse Polarimeter (TPOL)

– Systematic limitations of the HERA polarimeters

Disclaimer:

this talk is on HERA polarimetry, but 
reflects my personal opinions only.
I have been working on with the 
POL2000 group in the years 2000-
2007, mainly on the transverse 
polarimeter
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The HERA collider

● Operated from 1992 to 2007

● Circumference 6.3 km

● Electrons or positrons colliding with protons

● Proton: 460-920 GeV, Leptons 27.6 GeV

● Peak luminosity ~7×1031 cm-2s-1 

● Lepton beam polarization above 60% achieved

collider 
experiments: 
H1 and ZEUS

Curved sectionStraight section

fixed-target 
experiments: 
HERMES 
and HERA-b
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Beam polarization at HERA

● Proton-beam: unpolarized

● Lepton beam: unpolarized at 
injection energy (12 GeV)

● Lepton beam acquired transverse 
polarization at collision energy (27.5 
GeV): Sokolov-Ternov effect

● Rise-time at HERA ~40 minutes

(cf. duration of a fill: ~10 hours)

● Requirement: “flat” machine → 
compensating magnets for H1 & 
ZEUS solenoids

Polarization build-up τ=43 min, P
max

=45%

Effect of solenoidal field (w/o compensator)

NIM A329 (1993) 79
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Longitudinal polarization for experiments

● First experiment making use of 
HERA beam polarisation: 
HERMES (start in 1995) 

● Spin rotators: longitudinal 
polarization in the HERMES 
straight section, transverse 
polarization in the arcs

● Luminosity upgrade 2000-2002

– Install spin-rotator pairs around 
H1 and ZEUS

– Remove compensating coils HERA mini rotator, similar to Siberian snake

NIM A245 (1986) 248
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The Polarimeters at HERA

● Three HERA polarimeters

– Transverse polarimeter 
(TPOL) 1992-2007

– Longitudinal polarimeter 
(LPOL) 1995-2007

– LPOL Cavity polarimeter 
operation 2006-2007

HERA-I phase (1992-2000):
no spin-rotators for H1 and ZEUS
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Polarimetry requirements at HERA

● Machine setup for tuning beam 
energy and “harmonic bumps”, to  
maximize polarization

– Resonably fast feedback
– Absolute scale uncertainty is 

less important (5-10%)

● Experiments

– Fast and reliable monitoring of 
polarization during data taking

– Colliding bunches (H1,ZEUS) 
and all bunches (HERMES)

– Absolute scale uncertainty 
better than 2%

● Transverse polarimeter (HERA-I design) ● Transverse polarimeter (HERA-II design) 
and offline analysis

● Longitudinal polarimeter near HERMES
● LPOL cavity polarimeter{Not covered in this talk, see backup slides
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Polarimetry at HERA

● Make use of backward Compton 
scattering off a laser beam

● Laser helicity is flipped regularly

● Polarization is proportional to  
differences between cross section 
data with opposite laser helicity

● Compton scattering cross section
d σ

dΩ
∼Σ0+S3(PY Σ2Y sin ϕ+PZ Σ2 Z)

S3  laser beam helicity
PY  transverse beam polarization
PZ  longitudinal beam polarization
Σ0 ,Σ2Y ,Σ2 Z  photon energy dependent terms

NIM A329 (1993) 79

Example: 
scattered photon 
energy for 
longitudinal beam 
polarisation
S

3
P

Z
={−1,0,+1}
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Transverse polarimeter (TPOL) setup

● Continuous-wave laser: single 
photon mode (Compton scattering 
probability per bunch <1%)

● Vertical crossing angle 3.1mrad

● Electron and photon beams are 
separated by dipoles

● Photon calorimeter is 65 meter away 
from interaction point (lead housing)

● Laser beam-dump with optical 
diagnostics (measure residual linear 
light polarization)

Laser light is transported over a 
distance of ~200m to the tunnel

Electron beam Twiss parameters at IP are chosen to 
give small vertical beam size of photon beam at 
calorimeter σ y∼0.5 mm, σ x∼2  mm

NIM A329 (1993) 79

10W cw Argon-
ion laser

Chopper wheel: measure 
beam-induced background
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The photon calorimeter

● Transverse beam polarisation causes 
spatial asymmetry in cross section (up-
donw asymmetry)

● Calorimeter is split into two optically 
isolated halves

● Shower-sharing between up and down 
depends on vertical impact point (non-
linear transformation)

● Left and right channels for calibration 
and trigger Tungston-scintillator sampling 

calorimeter 12 1.6 X⨉
0

Two optically isolated halves, 
read-out on four sides

E=E up+Edown

η=
Eup−Edown

E up+E down

η  corresponds to sin ϕ

d σ

dΩ
∼Σ0+S 3(PY Σ2Y sin ϕ)

S3  laser beam helicity
PY  transverse beam polarization
Σ0 ,Σ2Y  photon energy dependent terms
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Transverse polarimeter online data analysis

● Polarization measurement:

– In selected energy window: get 
mean of up/down asymmetry for 
both laser helicity states (S

3
=L,R)

– Difference of means is proportional 
to polarization

– Analyzing power depends on beam 
parameters and calorimeter 
properties 

Predicted 
signal in 
calorimeter.
White frame 
indicates 
approx. energy 
window

Energy asymmetry 
η for two helicities

P=AP×(⟨η⟩S 3=L
−⟨η⟩S 3=R

)

E=Eup+ Edown

η=
Eup−Edown

Eup+ Edown

Stat.precision: ~1% per minute (all bunches averaged)
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Operation of transverse polarimeter

● Between fills: center laser on analyzer 
box, measure residual linear light 
polarisation of L and R helicity states

● Injection and ramp: keep collimator 
closed, protect calorimeter

● At collision energy:

– Adjust mirrors to maximize 
Compton rate (luminosity)

– Adjust calorimeter position to have 
beam in its center

– Adjust HV for calorimeter calibration
– Measure polarisation

● Autonomous operation (autopilot)

User interface: auto-pilot, main window, details

Very high efficiency >95%
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Detector upgrade in 2000-2002

● Spin rotators for HERMES, H1 and ZEUS: have to 
measure both polarisation of colliding bunches and all 
bunches

● DAQ upgrade: electronics from H1 luminosity system. 
Sampling ADC with two independent pipelines

● Digitisation at 40 MHz, readout by dedicated 20 MHz 
bus (fast DAQ branch) or by VME

● Per-pulse pedestal subtraction

● Detector upgrade: silicon-strip sensor

● Goal: in-situ calibration of energy-asymmetry response
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TPOL offline analysis

● Original analyzing power was based on 
simulations → polarization scale 
accurate to 8%

● Non-linear transformation, corrections 
from beam emittance, IP position, ...  

● HERA-II upgrade: converter plate and 
silicon-strip detector→in situ calibration

● New offline-analysis based on in-situ 
measurement of η-y transformation 
and energy response

● Offline Analysis power takes into 
account all known corrections, e.g.: η-y 
transformation, beam size and position

NIM A329 (1993), 79

In situ energy 
response as a function 
of vertical position.

Calorimeter response 
is neither uniform nor 
symmetric along y

HERA-II TPOL scale uncertainty 1.9%
hep/ex 1201.2894

In situ energy-
asymmetry  response 
as a function of 
vertical position
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Summary

● HERA: lepton beam polarisation above 60% for HERA-I (above 40% for 
HERA-II) achieved using the Sokolov-Ternov effect

● First polarimeter in operation: transverse polarimeter (TPOL)

● CW Argon laser with 10W gave Compton interaction rate up to 50 kHz (0.5% 
of the 10 MHz bunch-crossing rate)

● Simple calorimeter design with two optically separated halves and four 
channels → build for reliability, not for precision

● Very robust design, fully autonomous operation

● Absolute scale precision below 2% reached only after adding converter plate 
and silicon detector for HERA-II operation [plus years of analysis]
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Backup slides
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Achieved Polarisation during HERA operation

Luminosity upgrade for H1 and ZEUS ↔ down-grade for HERA beam polarisation
Losses from extra spin rotators and beam-beam effects (different polarization for colliding and non-colliding bunches)

HERA-I
Spin-rotators for HERMES
Compensating coils for H1 &ZEUS

Polarization ~60%

HERA-II
Spin-rotators for
H1, HERMES, ZEUS
No compensating coils

Polarization ~40%
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Transverse calorimeter online calibration

● Average over both helicities

● Subtract laser-off background

● Left (L) and Right (R) channel calibration

– Make sure L/(L+R) is at 0.5

– Compton edge at expected L+R (~13.8 GeV)

● Up (U) and Down (D) channel calibration

– Ratio (U+D)/(L+R) is analyzed as a function of 
x=U/(U+D)

– Extrapolate to x=0: D calibration

– Extrapolate to x=1: U callibration

– Cross-check: U+D Compton edge

L−R
L+R

L+R
U+D

U+D
L+R

vs 
U
U+D

Compton edge
(maximum photon 
energy)

Brems edge
(beam energy)
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Operational difficulties (selection)

● Main weakness: transport system of 
laser light over 200 metres

● Limited diagnostics and slow mirror 
controllers – difficulties to steer the 
laser into the tunnel after long 
shutdowns

● Longer-term: somewhat limited laser 
stability, rather high cost (maintenance 
contract with company)

● Residual linear light polarisation: 
difficult to adjust optics (could have 
profited from 2nd Pockel’s cell)

● Over longer periods: 
damage on Mirror M4 (close 
to beam). Not clear whether 
it was from radiation or 
because of the (more 
focussed) laser beam

● Potential weakness: laser 
steered to electron beam, 
could not monitor light 
polarisation in that position.

● Exit window → true laser 
polarisation inside vaccum 
not known
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Longitudinal polarimeter

● HERMES physics operation: need 
better polarimeter with precision 1-2%

(TPOL precision ~8% at the time)

● Measure longitudinal polarization 
between spin rotators

● Pulsed laser, multi-photon mode

Per shot, the total energy of ~1000 
photons is measured in a crystal 
calorimeter

● Asymmetry between two laser helicity 
states → beam polarization

NIM A479 (2002) 334

LPOL setup

Nd:YAG laser 532nm
(frequency-doubled)
Pulse length 3ns
Repetition rate 100 Hz

Interaction region
Compared to TPOL, less space for calorimeter
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Longitudinal polarimeter analysis

● Energy asymmetry is fairly robust 
against systematic effects, analyzing 
power is known analytically

● Experimental difficulties

– Pedestal from synchroton radiation 
 → data with non-charged laser

– Timing and intensity jitter

→ fixed energy 100mJ per shot

→ correction based on laser timing

– Calorimeter linearity

→ crystal calorimeter, test beam

LPOL crystal 
calorimeter

Intensity profile of the 
laser pulse 

P=AP×
I 1/2−I 3 /2

I 1/2+ I 3 /2

I  : timing-corrected energy
1 /2, 3 /2 : laser helicity states

AP=0.1838 for the HERA setup

Result: HERA-II LPOL scale 
uncertainty 2% hep/ex 1201.2894
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HERA LPOL Fabry-Perot polarimeter

● Added Fabry-Perot cavity in the 
electron beam-line near the original 
LPOL IP

● Cavity is driven by 0.7W Nd:YAG laser 
(1064 nm), effective power in cavity 
~3000 KW. Optical table in the tunnel.

● Use sampling calorimeter from original 
LPOL setup to detect photons

● Read out and histogram calorimeter 
data at the HERA bunch crossing rate 
of 10.4 MHz → quite difficult (FPGA 
and CPU limitations 20 years ago)

LPOL setup and 
location of cavity

Cavity and 
optical table in 
HERA tunnel

JINST 5 (2010) P06005
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Fabry-Perot optical setup

● Two high-reflectiveness mirrors (R>0.999)

● Optical components mounted on optical 
table. Mechanically decoupled from HERA 
vacuum vessel using a system of bellows

● Laser is frequency-locked to a cavity 
resonance using an active feedback 
system

● Laser helicity is selected using a rotating 
quarter-wave plate

● Light polarization is measured behind the 
second cavity mirror

JINST 5 (2010) P06005
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LPOL Cavity analysis

● Measured energy spectrum receives 
contributions from

– Compton scattering (BCP)

– Bremsstrahlung (BGP)

– Synchrotron radiation (SRP)
● For a given events there are contributions 

from 1,2,3,... superimposed photons

● Analytic fit extracts relative size of these 
components, calorimeter properties, beam 
polarization, etc

JINST 5 (2010) P06005
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LPOL cavity results

● LPOL cavity was commissioned rather 
late → not used for regular operation, 
only in dedicated runs

However, results were very good

– Fast and accurate measurement 
(every 20 s for groups of bunches)

– Statistical accuracy for a single 
bunch: 2% per minute

– Systematic scale uncertainty 0.9%

Per-bunch 
polarization: 
colliding and non-
colliding bunches 
have different 
polarization 
(different 
depolarizing 
effects)

Correlation of bunch 
polarization with 
proton-bunch current:

Strongest correlation 
early in the fill (small 
p-beam emittance)JINST 5 (2010) P06005

Depolarizing effect 
of proton beam
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Sokolov-Ternov Effect: risetime

● Build-up of polarisation in a flat 
machine (only Dipoles)

● Rise-time depends on 
circumference, energy, magnetic 
field strength along the ring

● Exact formula can be found in

 NIM A329 (1993), 79

τ≈105h
C (C−S)2

E5

C  : circumference [km]
S  : straight sections [km]

E  : energy [GeV]

My personal estimates … add a big grain of salt...

Circumference Energy Risetime
HERA 6.3 km 27.5 GeV ~1/2 hour
LEP 27 km 45 GeV ~10 hours
FCC 90 km 45 GeV ~400 hours
FCC 90 km 150 GeV ~1 hour
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