HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGI

### The HERA transverse polarimeter



Future Circular Collider Technical and Financial Feasibility Study 2d FCC Energy Calibration, Polarization and Mono-chromatisation workshop

### The HERATPOL Stefan Schmitt, DESY

### **FCC EPOL WORKSHOP**

19-30 September 2022 at CERN

https://indico.cern.ch/e/EPOL2022

remote participation possible

### Outline

HELMHOLTZ SPITZENFORSCHUNG FÜ GROSSE HERAUSFORDER

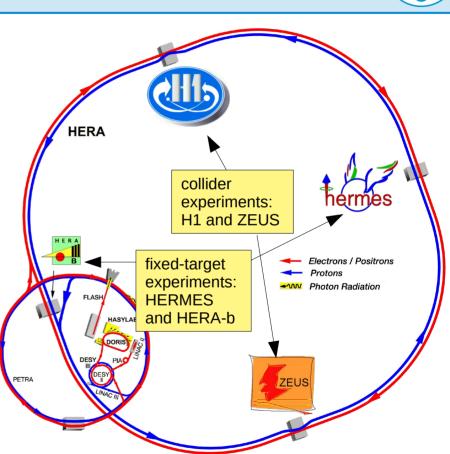


- Introduction
  - The HERA collider
  - Polarization at HERA and HERA polarimetry
  - The HERA Transverse Polarimeter (TPOL)
  - Systematic limitations of the HERA polarimeters

#### Disclaimer:

this talk is on HERA polarimetry, but reflects my personal opinions only. I have been working on with the POL2000 group in the years 2000-2007, mainly on the transverse polarimeter

### The HERA collider


DESY.

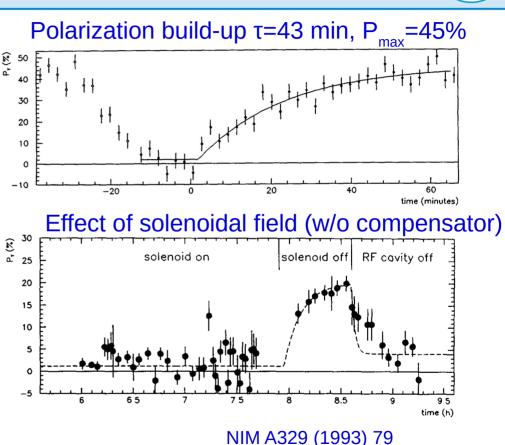
HEI MHOI T7 SPITZENFORSC

- Operated from 1992 to 2007
- Circumference 6.3 km
- Electrons or positrons colliding with protons
- Proton: 460-920 GeV, Leptons 27.6 GeV
- Peak luminosity ~7×10<sup>31</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Lepton beam polarization above 60% achieved








September 2022

S.Schmitt, HERA transverse polarimeter

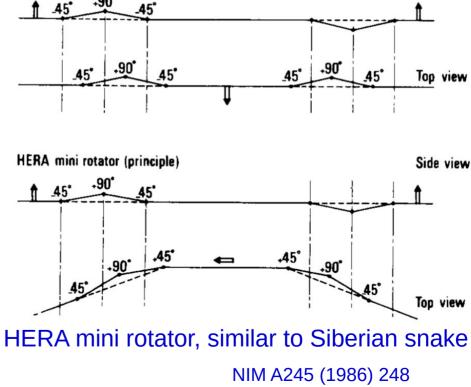
#### HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERU

### Beam polarization at HERA

- Proton-beam: unpolarized
- Lepton beam: unpolarized at injection energy (12 GeV)
- Lepton beam acquired transverse polarization at collision energy (27.5 GeV): Sokolov-Ternov effect
- Rise-time at HERA ~40 minutes (cf. duration of a fill: ~10 hours)
- Requirement: "flat" machine → compensating magnets for H1 & ZEUS solenoids






4

Side view

### Longitudinal polarization for experiments

Siberian snake of 1st kind

- First experiment making use of HERA beam polarisation: HERMES (start in 1995)
- Spin rotators: longitudinal polarization in the HERMES straight section, transverse polarization in the arcs
- Luminosity upgrade 2000-2002
  - Install spin-rotator pairs around H1 and ZEUS
  - Remove compensating coils






## The Polarimeters at HERA

- Three HERA polarimeters
  - Transverse polarimeter (TPOL) 1992-2007
  - Longitudinal polarimeter (LPOL) 1995-2007
  - LPOL Cavity polarimeter operation 2006-2007

HERA-I phase (1992-2000): no spin-rotators for H1 and ZEUS

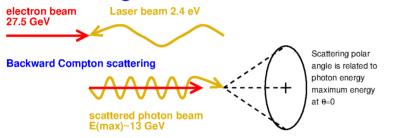


### Polarimetry requirements at HERA



- Machine setup for tuning beam energy and "harmonic bumps", to maximize polarization
  - Resonably fast feedback
  - Absolute scale uncertainty is less important (5-10%)

• Transverse polarimeter (HERA-I design)


- Experiments
  - Fast and reliable monitoring of polarization during data taking
  - Colliding bunches (H1,ZEUS) and all bunches (HERMES)
  - Absolute scale uncertainty better than 2%
- Transverse polarimeter (HERA-II design) and offline analysis
- Not covered in this talk, see backup slides
- Longitudinal polarimeter near HERMES
  - LPOL cavity polarimeter

### Polarimetry at HERA

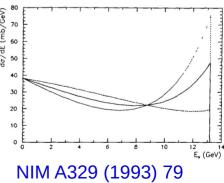


HEI MHOI T7

• Make use of backward Compton scattering off a laser beam



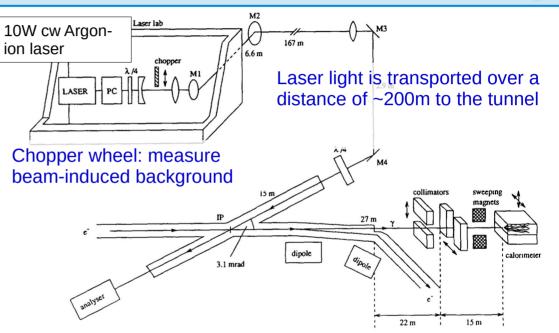
- Laser helicity is flipped regularly
- Polarization is proportional to differences between cross section data with opposite laser helicity


Compton scattering cross section

 $\frac{d\sigma}{d\Omega} \sim \Sigma_0 + S_3 (P_Y \Sigma_{2Y} \sin \phi + P_Z \Sigma_{2Z})$ 

- $S_3$  laser beam helicity
- $P_{Y}$  transverse beam polarization
- $P_{Z}$  longitudinal beam polarization

 $\boldsymbol{\Sigma}_{0},\boldsymbol{\Sigma}_{2Y},\boldsymbol{\Sigma}_{2Z}$  photon energy dependent terms


Example:  $\int_{40}^{10} \int_{20}^{70} \int_{40}^{70} \int_{50}^{70} \int_{50}^$ 



### Transverse polarimeter (TPOL) setup

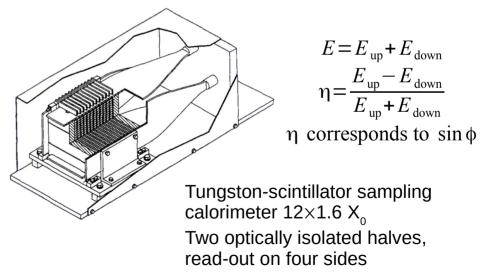


- Continuous-wave laser: single photon mode (Compton scattering probability per bunch <1%)</li>
- Vertical crossing angle 3.1mrad
- Electron and photon beams are separated by dipoles
- Photon calorimeter is 65 meter away from interaction point (lead housing)
- Laser beam-dump with optical diagnostics (measure residual linear light polarization)



Electron beam Twiss parameters at IP are chosen to give small vertical beam size of photon beam at calorimeter  $\sigma_v \sim 0.5 \text{ mm}, \sigma_x \sim 2 \text{ mm}$ 

S.Schmitt, HERA transverse polarimeter


### The photon calorimeter

- Transverse beam polarisation causes spatial asymmetry in cross section (up-donw asymmetry)
- Calorimeter is split into two optically isolated halves
- Shower-sharing between up and down depends on vertical impact point (non-linear transformation)
- Left and right channels for calibration and trigger

$$\frac{d\,\sigma}{d\,\Omega} \sim \Sigma_0 + S_3(\boldsymbol{P}_{\boldsymbol{Y}} \Sigma_{2\boldsymbol{Y}} \sin \phi)$$

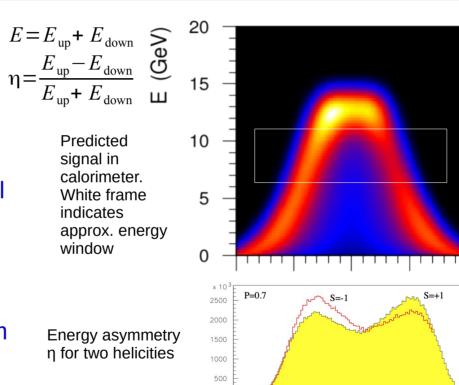
 $S_3$  laser beam helicity

- $P_{Y}$  transverse beam polarization
- $\Sigma_0, \Sigma_{2Y}$  photon energy dependent terms



### Transverse polarimeter online data analysis

- Polarization measurement:
  - In selected energy window: get mean of up/down asymmetry for both laser helicity states (S<sub>3</sub>=L,R)
  - Difference of means is proportional to polarization


$$P = AP \times (\langle \eta \rangle_{S_3 = L} - \langle \eta \rangle_{S_3 = R})$$

 Analyzing power depends on beam parameters and calorimeter properties

Stat.precision: ~1% per minute (all bunches averaged)

September 2022

S.Schmitt, HERA transverse polarimeter



-0.8

-0.6 -0.4 -0.2

11

0.6 0.8

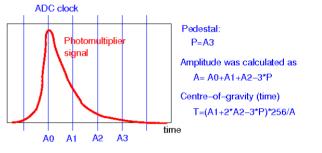
spatial coordinate

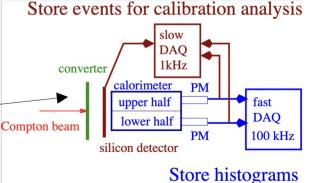
04

### Operation of transverse polarimeter



- Between fills: center laser on analyzer box, measure residual linear light polarisation of L and R helicity states
- Injection and ramp: keep collimator closed, protect calorimeter
- At collision energy:
  - Adjust mirrors to maximize Compton rate (luminosity)
  - Adjust calorimeter position to have beam in its center
  - Adjust HV for calorimeter calibration
  - Measure polarisation
- Autonomous operation (autopilot)


### User interface: auto-pilot, main window, details


|                                   |                                           |                                                        |                                                                                 |                        | e                                           | 0                                                                                                                                                                                                                                                                                           |
|-----------------------------------|-------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | Session type                              | <ul> <li>not connect</li> </ul>                        | ted On                                                                          | nonitor                | <ul> <li>control</li> </ul>                 | ⊖ expert                                                                                                                                                                                                                                                                                    |
|                                   | Global DAQ status:                        |                                                        | UP                                                                              |                        |                                             |                                                                                                                                                                                                                                                                                             |
|                                   | Pilot control                             | Pilot status                                           | Laser                                                                           | Collimators            | horizontal coll.                            | vertical coll.                                                                                                                                                                                                                                                                              |
|                                   | AUTOPILOT                                 | IDLE                                                   | OFF                                                                             | CLOSED                 | CLOSED                                      | DISABLED                                                                                                                                                                                                                                                                                    |
|                                   | Lightpol control                          | Lightpol meas                                          | Analyserbox                                                                     | Diode                  | Power <sup>D</sup> meter                    | Prism                                                                                                                                                                                                                                                                                       |
| File Expert Fran<br>run control S | OFF                                       | IDLE                                                   | IDLE                                                                            | IDLE                   | IDLE                                        | ZERO                                                                                                                                                                                                                                                                                        |
| Polarizati<br>Polarizati          | Mirror center                             | Mirror scan                                            | Mirror 2H                                                                       | Mirror 2V              | Mirror 3H                                   | Mirror 3V                                                                                                                                                                                                                                                                                   |
| 80 LPOL pol                       | ABOX                                      | IDLE                                                   | CENTER                                                                          | CENTER                 | STOPPED                                     | STOPPED                                                                                                                                                                                                                                                                                     |
| 40                                | Event data                                | Cycle                                                  | Fast DAQ                                                                        | Scaler                 | Chopper                                     | Pockelcell                                                                                                                                                                                                                                                                                  |
| 12:00                             | STOPPED                                   | STOPPED                                                | STOPPED                                                                         | RESET                  | OPEN<br>Set time                            | OFF                                                                                                                                                                                                                                                                                         |
|                                   | Hera leptons<br>NOBEAM<br>Enter new comme | 15:00 16:00<br>DAQ status NORI D<br>HERA leptons INJEC | 20<br>0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 20.00 21.00            | short II<br>Bean F<br>Delay<br>22:00 23 Upp | th         5.0 h         30.0 min           h         2.5 h         15.0 min           n         1.0 h         5.0 min           n         30.0 min         2.5 min           variables         Change Y-axis           position         Change Y-axis           position         Hide axis |
| P(colliding)                      | 0.0 +/- 0.0 % Polariza                    | Pilot control AUTC                                     | 80                                                                              | avy (1/0)              |                                             | polarisation Change Y-axis                                                                                                                                                                                                                                                                  |
| P(non-colliding)<br>P(all)        | -3.4 +/- 4.0 % Five Mi                    | FIIOL ACTION IDLE                                      | 60                                                                              |                        | coll. bu                                    | TPOL ratio 5 🗠 linear lightpol diode (%)<br>unch pol. 10r<br>unch pol. 1m                                                                                                                                                                                                                   |
| On Off Rate                       | 20.8   6.4 kHz                            | Collimators CLOS                                       | 40                                                                              |                        | coll. bu                                    | unch pol. 30r<br>unch pol. 5m<br>bunch currei                                                                                                                                                                                                                                               |
| Beam Y Offset                     | 0.063+/-0.004 mm                          | Laser 10W                                              | 20                                                                              | A Carlos and a carlos  | non-co                                      | oll. bunch po                                                                                                                                                                                                                                                                               |
| Beam Spot                         | 0.675+/-0.006 mm                          | Chopper OPEN<br>Pockels Cell OFF                       | 0.5 20.5 40.5 60.5                                                              | 80.5 100.5 120.5 140.5 | 160.5 180.5 200.5                           | date display                                                                                                                                                                                                                                                                                |
| Linear Light                      | 1.6+/-2.5 % -3.4 +/-                      |                                                        | -                                                                               |                        |                                             |                                                                                                                                                                                                                                                                                             |
| Luminosity                        | 41.9+/-0.2 %                              | Calibration NOMINA                                     |                                                                                 | ما به : ما ب           | officier                                    | $\sim \sim $                                                                                                                                                                                           |

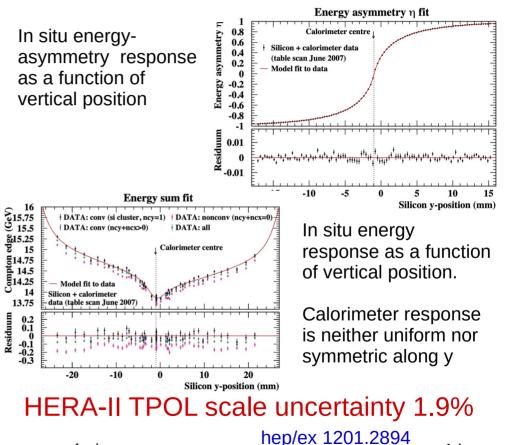
Very high efficiency >95%

### Detector upgrade in 2000-2002

- Spin rotators for HERMES, H1 and ZEUS: have to measure both polarisation of colliding bunches and all bunches
- DAQ upgrade: electronics from H1 luminosity system. Sampling ADC with two independent pipelines
- Digitisation at 40 MHz, readout by dedicated 20 MHz bus (fast DAQ branch) or by VME
- Per-pulse pedestal subtraction
- Detector upgrade: silicon-strip sensor
- Goal: in-situ calibration of energy-asymmetry response






for polarisation analysis



### **TPOL** offline analysis



- Original analyzing power was based on simulations → polarization scale accurate to 8% NIM A329 (1993), 79
- Non-linear transformation, corrections from beam emittance, IP position, ...
- HERA-II upgrade: converter plate and silicon-strip detector  $\rightarrow$  in situ calibration
- New offline-analysis based on in-situ measurement of η-y transformation and energy response
- Offline Analysis power takes into account all known corrections, e.g.: η-y transformation, beam size and position



September 2022

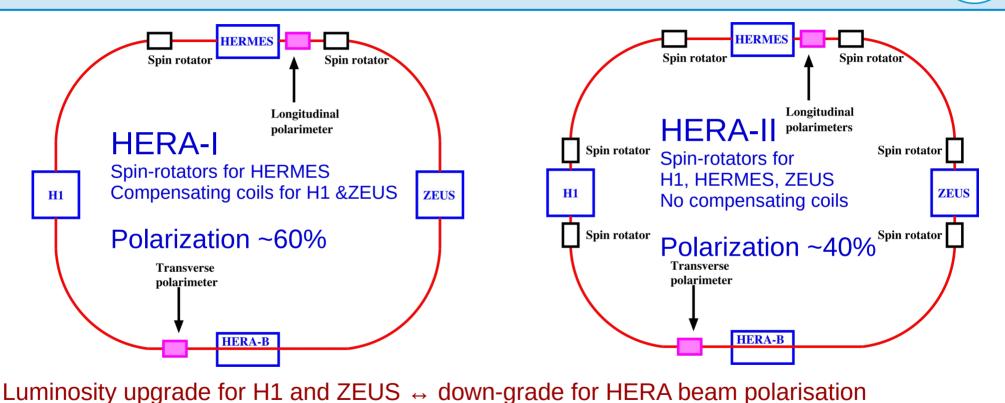
S.Schmitt, HERA transverse polarimeter

### Summary



- HERA: lepton beam polarisation above 60% for HERA-I (above 40% for HERA-II) achieved using the Sokolov-Ternov effect
- First polarimeter in operation: transverse polarimeter (TPOL)
- CW Argon laser with 10W gave Compton interaction rate up to 50 kHz (0.5% of the 10 MHz bunch-crossing rate)
- Simple calorimeter design with two optically separated halves and four channels  $\rightarrow$  build for reliability, not for precision
- Very robust design, fully autonomous operation
- Absolute scale precision below 2% reached only after adding converter plate and silicon detector for HERA-II operation [plus years of analysis]




### **Backup slides**

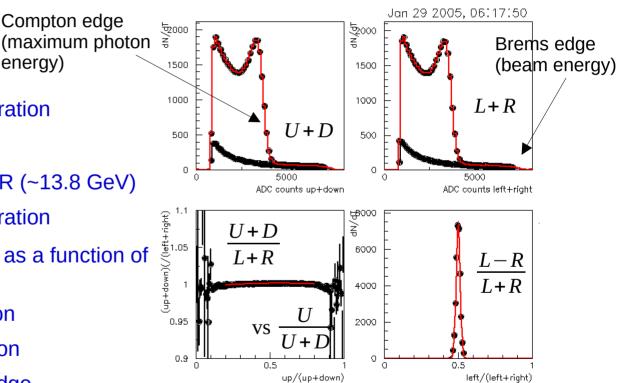
September 2022

S.Schmitt, HERA transverse polarimeter

Losses from extra spin rotators and beam-beam effects (different polarization for colliding and non-colliding bunches)

### Achieved Polarisation during HERA operation






### Transverse calorimeter online calibration

Compton edge

energy)

- Average over both helicities .
- Subtract laser-off background •
- Left (L) and Right (R) channel calibration •
  - Make sure L/(L+R) is at 0.5
  - Compton edge at expected L+R (~13.8 GeV)
- Up (U) and Down (D) channel calibration •
  - Ratio (U+D)/(L+R) is analyzed as a function of x=U/(U+D)
  - Extrapolate to x=0: D calibration
  - Extrapolate to x=1: U callibration
  - Cross-check: U+D Compton edge





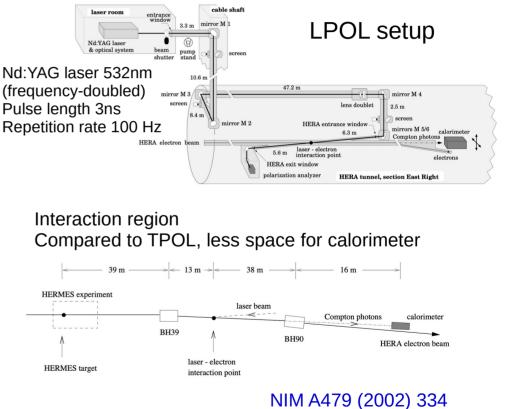
HEI MHO

HELMHOLTZ SPITZENFORSCHUNG FÜL GROSSE HERAUSFORDER

### **Operational difficulties (selection)**

- Main weakness: transport system of laser light over 200 metres
- Limited diagnostics and slow mirror controllers difficulties to steer the laser into the tunnel after long shutdowns
- Longer-term: somewhat limited laser stability, rather high cost (maintenance contract with company)
- Residual linear light polarisation: difficult to adjust optics (could have profited from 2<sup>nd</sup> Pockel's cell)

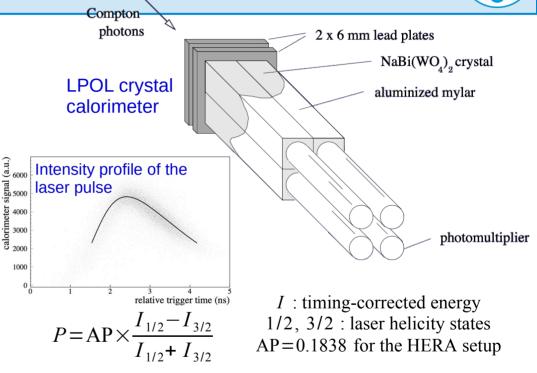
- Over longer periods: 167 m damage on Mirror M4 (close to beam). Not clear whether it was from radiation or because of the (more focussed) laser beam
- Potential weakness: laser steered to electron beam, could not monitor light polarisation in that position.
- Exit window → true laser polarisation inside vaccum not known




2.9 m

M4

# Longitudinal polarimeter


- HERMES physics operation: need better polarimeter with precision 1-2%
   (TPOL procision ~8% at the time)
  - (TPOL precision ~8% at the time)
- Measure longitudinal polarization between spin rotators
- Pulsed laser, multi-photon mode
  - Per shot, the total energy of ~1000 photons is measured in a crystal calorimeter
- Asymmetry between two laser helicity states → beam polarization

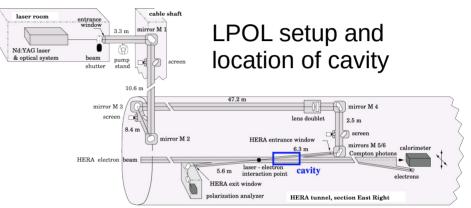


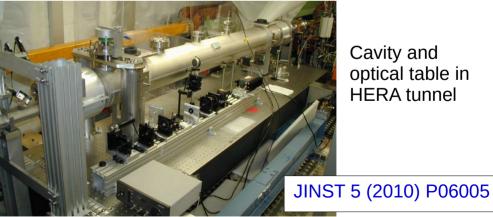


### Longitudinal polarimeter analysis

- Energy asymmetry is fairly robust against systematic effects, analyzing power is known analytically
- Experimental difficulties
  - Pedestal from synchroton radiation
     → data with non-charged laser
  - Timing and intensity jitter
    - $\rightarrow$  fixed energy 100mJ per shot
    - $\rightarrow\,$  correction based on laser timing
  - Calorimeter linearity
    - $\rightarrow$  crystal calorimeter, test beam




Result: HERA-II LPOL scale uncertainty 2%


hep/ex 1201.2894

S.Schmitt, HERA transverse polarimeter

### HERA LPOL Fabry-Perot polarimeter

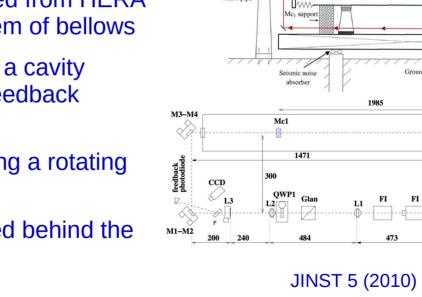
- Added Fabry-Perot cavity in the • electron beam-line near the original LPOL IP
- Cavity is driven by 0.7W Nd:YAG laser • (1064 nm), effective power in cavity ~3000 KW. Optical table in the tunnel.
- Use sampling calorimeter from original • LPOL setup to detect photons
- Read out and histogram calorimeter ٠ data at the HERA bunch crossing rate of 10.4 MHz  $\rightarrow$  quite difficult (FPGA and CPU limitations 20 years ago)





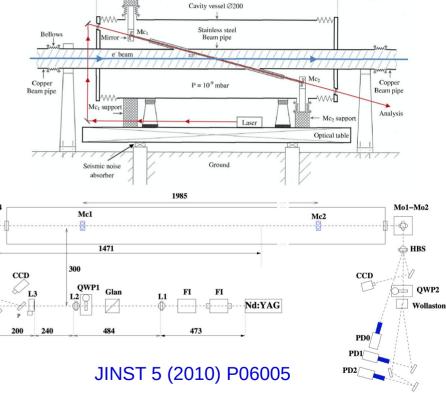
Cavity and optical table in HERA tunnel

September 2022


S.Schmitt, HERA transverse polarimeter

CALORIMETER

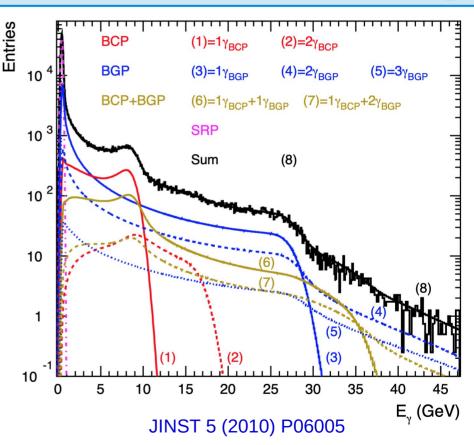
~ 60m


### Fabry-Perot optical setup

- Two high-reflectiveness mirrors (R>0.999) .
- Optical components mounted on optical table. Mechanically decoupled from HERA vacuum vessel using a system of bellows
- Laser is frequency-locked to a cavity • resonance using an active feedback system
- Laser helicity is selected using a rotating guarter-wave plate
- Light polarization is measured behind the . second cavity mirror



HERMES


+ 100m



2700

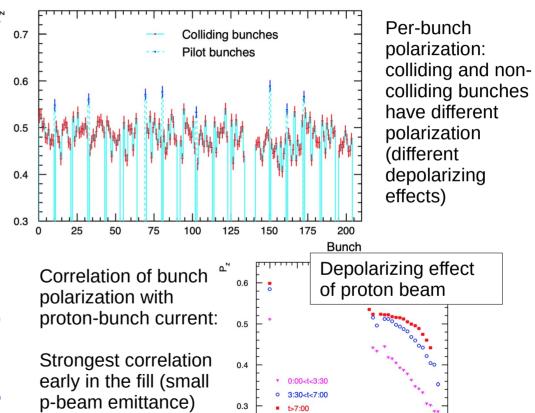
# LPOL Cavity analysis

- Measured energy spectrum receives contributions from
  - Compton scattering (BCP)
  - Bremsstrahlung (BGP)
  - Synchrotron radiation (SRP)
- For a given events there are contributions from 1,2,3,... superimposed photons
- Analytic fit extracts relative size of these components, calorimeter properties, beam polarization, etc





HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE


# LPOL cavity results

 LPOL cavity was commissioned rather late → not used for regular operation, only in dedicated runs

However, results were very good

- Fast and accurate measurement (every 20 s for groups of bunches)
- Statistical accuracy for a single bunch: 2% per minute
- Systematic scale uncertainty 0.9%





S.Schmitt, HERA transverse polarimeter

600

 $I_{p}(\mu A)$ 

S.Schmitt, HERA transverse polarimeter

.

- Build-up of polarisation in a flat machine (only Dipoles)
- Rise-time depends on circumference, energy, magnetic field strength along the ring
- Exact formula can be found in NIM A329 (1993), 79

$$\tau \approx 10 \ h \frac{E^5}{E^5}$$
  
*C* : circumference [km]  
*S* : straight sections [km]  
*E* : energy [GeV]

 $C(C-S)^{2}$ 

My personal estimates ... add a big grain of salt...

|      | Circumference | Energy   | Risetime   |
|------|---------------|----------|------------|
| HERA | 6.3 km        | 27.5 GeV | ~1/2 hour  |
| LEP  | 27 km         | 45 GeV   | ~10 hours  |
| FCC  | 90 km         | 45 GeV   | ~400 hours |
| FCC  | 90 km         | 150 GeV  | ~1 hour    |

