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Outline

● Introduction
● Matrix inversion, bin-by-bin, Likelihood fit
● Regularised unfolding methods
● Prediction error and related quantities
● Choice of regularisation parameters

– Eigenvalue analysis
– L-curve scan
– SURE minimisation

Exercises:
• lecture will be interrupted 

a few times for exercises
• Exercise results will be 

discussed in the lecture
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Introduction
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Unfolding: what this talk is about

● Experimentalists record 
data which are “blurred” 
by detector effects

● Goal of data unfolding: 
present data independent 
of detector effects

● Decouples understanding 
of the detector from data  
interpretation

→ unfolded data are well suited for comparisons to (future) predictions
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Folding and Unfolding examples

● Particle physics: measurement of 
a differential cross section as a 
function of a particle’s energy

– Particle count suffers from 
statistical fluctuations

– Energy measurement is 
uncertain due to detector 
effects

● Unfold cross section: result 
independent of detector effects 
(still has “statistical 
uncertainties”) 

● Imaging (Astronomy, medical 
applications, etc)

– Pixels are blurred (camera) 
or the detector only 
measures projections 
(tomography)

– Light intensity in a detector 
element is uncertain (photon 
counting)

● Unfolding or “deconvolution”: 
present the image without 
blurring

original

+blurred

+noise
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Folding and Unfolding examples

● Particle physics: measurement of 
a differential cross section as a 
function of a particle’s energy

– Particle count suffers from 
statistical fluctuations

– Energy measurement is 
uncertain due to detector 
effects

● Unfold cross section: result 
independent of detector effects 
(still has “statistical 
uncertainties”) 

● Imaging (Astronomy, medical 
applications, etc)

– Pixels are blurred (camera) 
or the detector only 
measures projections 
(tomography)

– Light intensity in a detector 
element is uncertain (photon 
counting)

● Unfolding or “deconvolution”: 
present the image without 
blurring

original

+blurred

+noise

This talk: examples will be 
from particles physics
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Binning and Poisson statistics

d σ
d z

si=∫ai
bi
[
dσ
d z

]d z
μ i=ℒ×si

ℒ  : integrated luminosity
μ i  : Poisson parameter

P( yi ;μ i)=exp(−μ ab)
μ i
y i

yi!

d σ
d z

∼
si

bi−ai

ai bi

Expectation E(yi)=μi is estimated from data as yi

Variance σi
2=μi is also estimated from data as yi

● Particle physics: event counting

● Events are usually counted in bins i 
as a function of some observable

● Poisson probability distribution

● Expected event count is equal to 
cross section times integrated 
luminosity of the experiment

● Theorists can predict differential 
cross sections, so the outcome of 
the experiment can be used to test 
their models

μ i=ℒ×si
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Detector effects (1)

● Detectors have a finite resolution. Example: a 
calorimeter (H1 detector)

● Example: monoenergetic particle

– Perfect detector: all events in a single bin, 
but number of events has statistical 
uncertainty

– Real detector: events are spread over 
several bins. Event counts fluctuate 
around the expectation

xexpected=100
xdata=110

μi distribution
yi distribution
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Detector effects (2)

● Again the calorimeter, but now there are three 
different energies, produced at different 
probabilities each

● The detector is mixing up all the bins

● In this example it could difficult to  decide 
whether the “truth” energy spectrum really 
consisted of three lines or not 
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The folding equation

y i∼μ i=∑ j
A ij x j+bi

y i  : observation
μ i  : expected measurement (unknown)
A ij  : matrix of probabilities
x j  : truth (unknown)
bi  : background

efficiency: ε j=∑i
A ij

Folding equation

y∼μ=A x+b
matrix notation (matrices, vectors in bold)

A ij

x j

μ j  and y j

This example: 
no background.
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“Forward” folding

● Experimentalist can publish the 
measured y-b, the matrix A and  the 
uncertainties of y-b 

● Models predict x

● Test a theory: compare y-b to Axmodel

● Disadvantages:

– theorists to deal with detectors
– Can not compare a single bin xi, 

only the full spectrum x
– Anyway, this lecture is about 
unfolding, not forward folding

● Example paper: arXiv:2003.08742

● The relevant matrices are 
published, e.g. on their web-site:
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Recall some basics about statistics
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Probability density, random variables

● Probability distribution f(y)

→ quantifies probability to observe the 
data y (y: vector, dimension N)

→ f also depends on unknown 
parameters x (x: vector of dim M)

● Random variable z: a function 
depending on possible observations y

● Expectation value:
● Variance:
● “uncertainty”:
● Covariance:
● Correlation coefficient:

● Example: count events in N (mutually 
exclusive) bins

● Event count → y
● Number of bins → N
● Parameters μ 
● Large sample limit: Gaussian

Poisson distribution: 

f ( yi ;μ i)=e
−μ i

μ i
y i

yi !
Expectation value: 

E( yi)=μ i
Variance: 

Var( yi)=μ i
independent bins: 
Cov ( y i , y j)=δ ijμ i

E( z ( y ))=∫ z ( y ) f ( y )d y

Var (z)=E(( z−E(z))2)

Cov (a ,b)=E((a−E(a))(b−E(b)))

σ z=√Var (z)

ρ ij=
Cov (a ,b )
σ aσ b

Gaussian mean (unknown): μ i
Gaussian variance (from data): σ i

2
∼ y i
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Likelihood function, estimators

● Likelihood function: the probability 
density, evaluated for a fixed 
observation ydata (it still depends on 
the unknown parameters x)

● Parameter estimation: define an 
algorithm (a function) to estimate x 
from the observation y

● Example: maximum-likelihood fit

● Bias of an estimator:

● Unbiased estimator:

● Well-known example: the maximum-
likelihood estimator is unbiased

● Difficulty for practical applications: the 
parameters xtrue are not known!

→ the “true” bias can not be calculated

L(x)=f ( ydata ;x)

x̂( y )

∂L
∂ x|x̂=0

β ( x̂)=E( x̂−xtrue)

β ( x̂)=0
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Bootstrap and Toy experiments

Toy experiment:

– Have a model, with known 
parameters xmodel and b

– Expectation for y:

Data bootstrap experiment

– Have the observation ydata 
(unknown truth xtrue)

– Estimate expectation μ:μ=Axmodel
+b μ= ydata

● Toy and bootstrap are techniques used to estimate expectation values 
(and variances, covariances, etc)

E ( z)∼∑toy
z ( y toy

)/N toy

● Given μ, use pseudo-random numbers, generate new toy data ytoy

● Repeat this Ntoy times, estimate expectation value of z(y) as:

Very powerful tools, but with limitations:
Toy results depend on the given model parameters
Bootstrap results depend on the original data statistical fluctuations

Bootstrap is often 
used to estimate the 
result’s covariance 
matrix
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Unfolding methods
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Unfolding algorithms discussed in this talk

● No tunable parameter
– Matrix inversion
– Bin-by-bin “correction”
– Least-square or Likelihood fit

● With tunable parameter
– Tikhonov regularisation
– Iterative methods in general
– EM Iterative method 

(“D’Agostini”)

Part 1 (+exercises) Part 2 (+exercises)

Part3:  how to choose the regularisation parameter (+exercises)
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Unfolding methods without tunable parameter
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Matrix inversion

● Folding equation

● Why not simply solve the equation for x?

● Also want to know the resulting covariance 
(“uncertainties”)

● Data bins y are uncorrelated, but result bins 
xinvert are highly (anti-)correlated

y∼μ=Ax+b

x̂ invert
=A−1

( y−b)

Poisson: Cov ( yk , y l)=diag(√ yk)
Covariance of x̂ :

V x
invert

=A−1V y (A
−1
)
T

Example correlation coefficients

Diagonals: ρii=+1
For i≠j:
ρij>0 correlation
ρij<0 anti-correlation
Values |ρij|>0.8 are “large”
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Least-square, likelihood fit

● Generalisation of matrix inversion: 
use more bins on vector y than x

● Idea: using more information (fine 
y bins) will improve the result on x

● Ansatz: determine maximum 
likelihood (minimum of neg. log L)

● Least-square fit (independent bins, 
large sample limit): also called χ² fit

● Least-square solution:

● Covariance of x

∂[−2 log L]
∂ x |

x̂

=0

L  : likelihood function, given the data y

χ
2
=−2 log L(x)=∑i (

(Ax)i+bi− y i
σ i

)
2

+const

x̂=(ATW A)−1
(ATW ( y−b))

weight matrix W=diag (
1

σ i
2 )

V x=(A
TW A)−1
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Bin-by-bin unfolding

● Idea: the observed data in bin i are 
distortions of the corresponding 
truth, and can be “corrected”

● The correction factors depend on a 
physics model

● How large is the model dependence 
introduced by this method?

● This is a general question for all 
unfolding methods

● One way to look at this: the prediction 
error

x̂ i
BBB

=( y i−bi)×f i
correction factor f i

f i=
xi

model

yi
model

−bi
=

x i
model

(A xmodel
)i

Each bin is treated 
separately, result has no 
statistical correlations
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The per-bin observed prediction error

● In statistics, “error” is the deviation 
of an observation from a prediction 
physicists often use “error” in a different meaning: 
Gaussian width, sqrt(variance)

● Unfolding: estimate x from y

● For error, get a prediction of y from 
the folding equation

● Per-bin prediction error, scaled to 
“uncertainty”:

● Compare the prediction to the data 
and relate it to the statistical 
uncertainty

● Deviations from zero of order unity 
or larger indicate a problem x̂( y )

ŷ ( y)=A x̂( y)+b

ŷi− y i
σ i

Notable deviation 
from zero in the first 
bins.
Difference  much 
larger than statistical 
uncertainty → data 
tell us there is a 
problem with this 
unfolding method

Example

êrrori=
ŷ i− y i
σ i

Fold back the 
unfolded data
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The observed prediction error (squared)

● Observed prediction error (squared): condense difference 
between data and estimator in a single number

● This is a model-independent estimator of the unfolding bias. 

● Sometimes this is called “training error”: same “training” data 
are used to get both     and   

● Expectation:      should be small (close to zero)

● If y has more bins than x: expect      to be close to Ny-Nx

êrr=−2 [ ln L( ŷ)−ln L( y) ]=∑i [
y i− ŷi
σ i ]

2

ŷ êrr

Sum of squares of the per-
bin observed prediction error

êrr

êrr
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Exercises 1-6
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Exercises: download and install

● The exercises are done 
using the ROOT6 framework

● If you plan to work on the 
exercises, make sure to have 
ROOT6 installed

● The exercises require some 
files to be downloaded:

● Solutions: 

● Download the zip file
● Create a new directory
● Unzip the files in the new 

directory

https://www.desy.de/~sschmitt/GRK2044/tutorialUnfolding_V2.zip

https://www.desy.de/~sschmitt/GRK2044/tutorialSolutions.zip

https://www.desy.de/~sschmitt/GRK2044/tutorialUnfolding_V2.zip
https://www.desy.de/~sschmitt/GRK2044/tutorialSolutions.zip
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Exercises: list of files

● There is one root file with histograms

● There is a library with functions which 
do not have to be modified (but can 
be interesting to look at)

● There are macros to get the 
exercises started

● Each macro will produce some plots

● The macros have to be modified and 
expanded during the exercises

tutorialIntroduction.pdf : brief documentation

tutorial_inputHisto.root ; histograms
tutorialLibrary.h tutorialLibrary.C : library 

tutorialPlotInput.C : show the input data

tutorialOwnUnfoldingExample.C : exercise 1-6

tutorialOwnIteration.C  : exercise 7,8
tutorialTikhonovExample.C : exercise 9,10

tutorialScanLCurve.C : exercise 11
tutorialScanSURE.C : exercise 12-14
tutorialFit.C : exercise 15
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Exercises: the tutorialLibrary

Definitions are in tutorialLIbrary.h

Classes:

TutorialInput : loads all required input histogram into memory for unfolding
TutorialResult: holds the result of an unfolding algorithm
TutorialUnfoldingAlgorithm : base class to run an unfolding algorithm
TutorialUnfoldTikhonov : Tikhonov unfolding
TutorialIterativeUnfolding: generic iterative unfolding (can select step function)

Auxillary classes:
TutorialUnfoldEMstep : step function for EM iterative unfolding

Namespaces:
TutorialPlotter : default plotting functions
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Exercises: the input histograms

● The histograms include various types of 
distributions

● The class TutorialInput loads the required 
distributions such that they can be accessed 
by the unfolding algorithms and for plots

● TutorialPlotter::showInputPlots() can be used 
to visualize a set of input distributions 

Example macro: in root type these commands:
.L tutorialLibrary.C+
.L tutorialPlotInput.C
tutorialPlotInput(1)
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Exercises: choosing input variants

● When constructing TutorialInput, 
select the model, the input data for 
the unfolding, and the binning

There are two models

There are data (without truth information)
The models also can be used as input

There are three bin sizes to choose from::
COARSE (16 bins truth, 16 bins reco)
RECO_FINE (16 bins truth, 31 bins reco)
BOTH_FINE (31 bins truth, 31 bins fine) 

Example: tutorialPlotInput(2)
…
  case 2:
    input=new TutorialInput(TutorialInput::MODEL2,

    TutorialInput::INPUT_DATA,
    TutorialInput::RECO_FINE);

RECO_FINE
16 bins        31 bins
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The tutorialPlotter utilities

These utilities can be used 
to obtain sets of plots from 
the classes in the library.
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Exercises 1-6

● Exercise 1: run tutorialOwnUnfoldingExample.C (matrix inversion), discuss the result

● Exercise 2: implement the bin-by-bin method, discuss the result

● Exercise 3: repeat (1-3) using MODEL2 for the unfolding, what changes?

● Exercise 4: plot the per-bin prediction error, compare Exercise 1, & 2.
Hint: use TUnfoldingResult::getYhat(), define a new histogram or graph

extra exercises, only if there is time left:
● Exercise 5*: implement the minimum χ².

Use binning RECO_FINE and unfold the data. Compare to Exercise 1.
● Exercise 6*: repeat the likelihood fit, with MODEL2 and 1000 toy samples. Plot the 

observed prediction error, compare to χ² distribution (how many degrees of freedom?)

x̂ i
BBB

=( y i−bi)×f i

f i=
xi

model

y i
model

−bi
=

x i
model

( A xmodel
)i

x̂=(ATW A)−1
(ATW ( y−b))

weight matrix W=diag (
1

σ i
2 )

êrror i=
ŷi− yi
σ i
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Discussion of exercises 1 and 2

Exercise 1
Matrix inversion

Exercise 2
bin-by-bin

Unfolded data
● Matrix inversion: 

Wild oscillations
● Bin-by-bin: nice 

and smooth

Comparison at reco 
level
● Matrix inversion: 

on top of the data
● Bin-by-bin: 

significant 
differences to 
data

Is Bin-by-bin better (because it looks nicer)? 
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Discussion exercise 3 (matrix inversion)

Exercise 1
Matrix inv.
MODEL1

Exercise 4
Matrix inv.
MODEL2

Unfolded data 
agree well. Only 
small differences, 
well hidden in the 
quoted statistical 
uncertainties.

→ negligible model 
dependence

→ large statistical 
uncertainties, large 
(anti-)correlations
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Discussion exercise 3 (bin by bin)

Exercise 
Bin by bin
MODEL1

Exercise 4
Bin by bin
MODEL2

Unfolded data do 
not agree.

→ strong model 
dependence

→ small stat. 
Uncertainties, zero 
correlations

Conclusion: bin-by-bin gives “wrong” results.
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Discussion of exercise 4

● Per-bin prediction 
error: very poor 
performance of the 
bin-by-bin algorithm

Different results for 
different models

● Matrix inversion: 
zero per-bin 
prediction error, no 
model dependence

Exercise 3 Exercise 4



September 2022 S.Schmitt, data unfolding 36

Discussion exercise 5

Exercise 5
Maximum 
likelihood

Exercise 1
Matrix 
inversion

Use 31 reco bins 
as compared to 
16 reco bins

Results are very 
similar

Prediction has 16 
degrees of freedom but 
data have 31 bins
→ data fluctuate around 
the folded-back result
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Discussion exercise 6

● Plot of the prediction error follows 
χ² distribution with 15 degrees of 
freedom

● Expected from 31 data bins minus 
16 truth bins (=15 fit parameters)

● Expected for maximum-likelihood 
fit in the large-sample limit

● unfolding algorithm: accept a 
somewhat increased prediction 
error in exchange for much 
reduced variances
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Unfolding methods with tunable parameters
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Iterative methods

● Idea: start with a prediction

● Iterative prescription “F” to improve 
this using the data

● Natural choice: an algorithm which 
converges for N→infinity to the 
maximum-likelihood solution

● Common choice: EM iterations 

x̂(−1)
= x̂model

x̂(N+1)
=F ( x̂(N ) , y )

For small “N” this method gives a 
solution biased to the prediction. For 
sufficiently large N, there is hope to 
have a small bias with still moderate 
statistical fluctuations.

● The EM iterative method has proven 
properties: for Poisson-distributed data, 
it converges to the corresponding 
maximum-likelihood solution

● In Particle physics this is often called 
“D’Agostini” after his 1995 paper

x̂ j
(N+1)

=
x̂ j
(N )

ϵ j ∑i

A ij yi

∑k
Aik x̂k

(N )
+bi Question: how many iterations?
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Tikhonov regularisation

● Likelihood fit leads to large 
statistical fluctuations – can these 
be damped?

● Tikhonov regularisation: add a 
penalty term to suppress large 
deviations from a model

Minimize:

∑i

( y i−(Ax)i−bi)
2

σ i
2

⏟
χ

2  function

+s∑ j
(x j−x j

model
)

2

⏟
penalty term

In literature: sometimes s  is named τ or τ² 
A more general formulation also includes a 
matrix L of regularisation conditions.

general regularisation condition:
…+s∑ j

(L(x−xmodel)) j
2

typical choice: curvature matrix

L=(
1 −2 1 0 …

0 1 −2 1
⋮ ⋱

)

s=0: maximum-likelihood. Small, nonzero 
parameter s: solution without the large 
variances of the likelihood fit. The bias to 
the model grows with “s”.

Penalty grows with distance from model
Penalty is suppressed by s
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Tikhonov eigenvalue analysis (1)

● Write the function F which is to be minimized in matrix form

● In our case, W is diagonal

● In general, W may include off-diagonal elements. However, it has to be 
symmetric and positive (all Eigenvalues >0). 

F (x)=( y−b−Ax)TW ( y−b−Ax)+s|x−xmodel
|
2

W  : (symmetric) weight matrix

W=diag(1/σ i
2
)
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Tikhonov eigenvalue analysis (2)

● Diagonalize  W

● Singular Value Decomposition of  

W=OW DWOW
T

OW  is orthogonal, DW  is diagonal with DW ,ii>0

F (x)=|√DWOW
T
( y−b)−√DWOW

T A x|
2
+s|x−xmodel

|
2

√DWOW
T A

√DWOW
T A=O1DO2

T

O1  and O2  are ortogonal
D  is rectangular and diagonal, Dii>0

F (x)=|O1
T
√DWOW

T
( y−b)−DO2

T x|
2
+s|x−xmodel

|
2

● Substitute variables

● New Function to minimize:

● Matrix D is diagonal

z=O1
T
√DWOW

T
( y−b)

t=O2
T x  and tmodel

=O2
T xmodel

F (t )=|z−D t|2+|t−tmodel
|
2

t̂ j=
D j z j+s  t j

model

D j
2
+s

F (x)=( y−b−Ax)TW ( y−b−Ax)+s|x−xmodel
|
2
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Tikhonov eigenvalue analysis summary

● The variables are transformed

● The transformed data z are often 
called “modes”. Resulting t:

● The transfomed data zi have variance=1 
(σz,i=1)

● Maximum-likelihood (s=0): the unfolded tj 
are equal to zj amplified by 1/Dj

● Regularisation s>0 suppresses modes 
with Dj²<s

● Eigenvalue analysis: look at zi and Dj, 
find a good compromize for s

z=O1
T
√DWOW

T
( y−b)

t=O2
T x  and tmodel

=O2
T xmodel

t̂ j=
D j z j+s  t j

model

D j
2
+s

for s→0

t̂ j|s=0=
z j
D j

The “SVD unfolding” uses a similar eigenvalue 
analysis, yet with non-diagonal regularisation pattern L

for s→∞  : 
t̂ j|s=∞=t j

model
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Exercises 7-10
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Exercises 7-10

● Exercise 7: try tutorialOwnIteration.C Look at the unfolding result for various choices of 
the number of iterations (0..100). Plot observed prediction error as a function of n(iter)

hint: TutorialUnfoldingResult::getPredictionError()

● Exercise 8: modify tutorialOwnIteration.C use the bin-by-bin method as step function. 
Repeat exercise 7 (with max. iterations=20)

● Exercise 9: try tutorialTikhonovExample.C Look at the unfolding result for various 
choices of s. Plot the observed prediction error as a function of s

● Exercise 10: modify tutorialTikhonovExample.C to plot the vector z and the eigenvalues 
D. Why are the dimension of z and D different? What could be a good choice of s, such 
that insignificant modes zi are suppressed?

Hint: use the methods TutorialUnfoldTikhonov::getEigenValues() and 
TutorialUnfoldTikhonov::getZ()
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Exercise 7 discussion

● Classical EM 
interations 
(“D’Agostini”)

● Prediction error 
starts off high 
(large bias to 
model)

● Perhaps the point 
where it flattens 
out is a good 
choice?

n(iter)=1 n(iter)=10
n(iter)=100

Prediction error
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Exercise 8 discussion

● Our “iterative bin-
by-bin” behaves 
similar to the 
standard EM 
iterations: 
prediction error 
falls of with 
#iterations

● Seems to converge 
faster → less fine-
tuning possible

n(iter)=1 n(iter)=3
n(iter)=10

Prediction error
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Exercise 9 discussion

● Tikhonov is “opposite” to 
“iterative”

– Iterative starts with 
model, approaches 
non-regularized 
solution

– Tikhonov starts with 
maximum-likelihood, 
approaches model 
with growing s

● Possible choice of s: kink 
of the curve?

s=10-5 s=10-4 s=10-3

Observed prediction error
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Exercise 10 discussion

● Dimension of z=31 (31 reco bins)

● 16 eigenvalues (16 truth bins)

● Modes zj with j>16 do not contribute to 
the solution t

● First ~9 modes of z are significant, 
others fluctuate around zero → suppress 
these by choosing s large enough

→ Good choice of s is near the ninth 
Eigenvalue, s~D9

2 =0.000138

Mode z

Mode z on larger y-scale

eigenvalues
Onset of “significant” measurements z
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Choosing regularisation parameters
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The L-curve method

● For Tikhonov method: can do 
eigenvalue analysis. Involves a 
choice on “which z is significant”

● Another method for Tikhonov 
regularisation: the L-curve method

● Tikhonov minimizes this function

● Parametric plot of

is shaped like the letter L

● Select the geometrical “kink”

∑i

( y i−(A x+b)i)
2

σ i
2

⏟
Lx

+s∑ j
(x j−(xmodel) j)

2

⏟
L y

log10 Lx(s)  wrt log10 L y(s)

Lx: observed prediction error
Ly: penalty term (excluding s)

constant χ²

Geometrical 
curvature:
inverse of 
radius
Note the 
different 
scales on x 
and y axisconstant penalty
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The SURE method

● General data-driven method to 
select “best” parametric model: 
minimise SURE

Stein’s Unbiased Risk Estimate 

● Observed Prediction error

● Effective number of degrees of 
freedom

● SURE

● SURE probes the “true” prediction 
error

The expectation value of SURE is 
equal to the true squared error.

→ minimizing SURE is trying to 
minimize the “true” prediction error 
The “true” prediction error is 
unknown. But SURE can estimate it 
from the data (model-independent)

êrr=∑i [
yi− ŷ i
σ i ]

2

D̂F=∑i [ ∂ ŷi∂ yi ]

E (SURE)=E(∑i [μ i
true
− ŷi
σ i ]

2

)

SURE=êrr+2D̂F
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Tikhonov number of degrees of freedom

● For Tikhonov, the variable DF can 
be expressed by the Eigenvalues

● It only depends on the 
Eigenvalues, not on the data z

s=0: 

● For s>0: DF corresponds to the 
number of modes which contribute 
to the result (modes with Di

2<s are 
suppressed) D̂F=∑i [ ∂ ẑi∂ zi ]=∑i

Di
2

Di
2
+s

D̂F|s=0=N x

number of x  bins

Example: 3 EV
If the EVs are 
well separated, 
there are steps 
in the DF 
function, by 
one unit at 
each EV
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Exercise 11-15
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Exercise 11-15

● Exercise 11: try out the L-curve scan tutorialScanLCurve.C. Best s?

● Exercise 12: try out the SURE minimisation tutorialScanSURE.C. Best s?

● Exercise 13a: modify tutorialScanSURE.C to apply the SURE scan to the 
EM iterative method. What is the best number of iterations?

● Exercise 13b repeat 13a with COARSE binning

● Exercise 14: modify tutorialScanSURE.C to apply the SURE scan to the bin-
by-bin iterative method. What is the best number of iterations?

● Exercise 15: try/modify the macro tutorialFit.C to fit the respective optimized 
unfolding result with a function. Compare the results to the “data” truth: 
peak=6 GeV, width=1.8 GeV
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Exercise 11 discussion

● The algorithm puts a point at the 
“kink” position

● No interpolation is done.

● Best choice of s from l-curve

s=0.000106
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Exercise 12 discusison

● SURE at work:

– Prediction error increases with s
– Effective DF decreases with s
– SURE has a minimum

● Again, no interpolation is done

● Best s from SURE:

s=0.000127
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Exercise 13 a+b discussion

● Iterative method starts with large 
prediction error and small DF

● DF increases with the number of 
iterations, pred. error decreases

● Similar result for RECO_FINE 
binning

● Minimum SURE reached for

nIter=12 (coarse binning)

nIter=10 (fine binning)

Coarse binning
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Exercise 14 discussion

● Similar to EM iterations, but 
minimum is reached faster

● Minimum SURE reached at

nIter=3
● This method would be difficult to 

fine-tune (large change from 
iteration to iteration)
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Exercise 15 discussion

● SURE results are not too far apart from each other

● Fit parameters vary a bit

● Summary table shows that bin-by-bin has largest bias: 
width comes out is far to large

Tihkonov

EM iterative
Iterative 
bin-by-bin

algorithm peak width
data truth 6 1.8
maximum L 6.06+/-0.09 1.75+/-0.07
Bin-by-bin 5.91+/-0.08 2.08+/-0.05
Tikhonov SURE 5.95+/-0.08 1.95+/-0.05
EM iterative SURE [C] 6.21+/-0.08 1.69+/-0.05
EM iterative SURE [F] 6.20+/-0.08 1.69+/-0.05
Iterative BBB SURE 6.00+/-0.09 1.81+/-0.06
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Some practical hints for unfolding
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Determining the matrix of probabilities

● In particle physics, the matrix A often is 
determined using Monte Carlo (MC) 
simulations

● Simulations use:

– Models for the unknown process 
(to be measured)

– Models for hadronisation and QCD

– Models for the detector response
● Alternatives for less complex setups: 

measure response for known test data, 
use known response function, etc.

● MC method: draw events according to 
some high-dimensional probability 
distribution

● Simulates a large number of events

● For each simulated event, the truth bin 
j and the observed bin i are known

count events in j  : x j
MC

count events in i  : yi
MC

count events in both i  and j  : N ij
MC

matrix of probabilities: A ij=
N ij

MC

x j
MC
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Common pitfalls with constructing the matrix

● The matrix A and the background b together 
describe the expected event count

● Make sure all events are counted 
“somewhere”

● A frequent mistake:

– Underflow and overflow bins on truth 
level are often neglected. But they may 
migrate into the observed sample

– Always make sure the underflow and 
overflow are included OR are accounted 
for with the background (“fakes”)
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Unfolding and phase-space boundaries

● Many analyses have complicated 
phase-space cuts

– Example: jet minimum 
transverse momentum and 
angular range, number of jets, 
etc

● Each phase-space cut is 
connected with migrations

● Truth events below these cuts may 
migrate into the sample (fakes)

● Two options

– Fixed prediction for fakes: 
subtract as background.

Introduces a model 
dependence

– Use extra normalisation bins to 
determine fakes from data

Requires extra “reco” bins 
(control regions) to be included 
in the unfolding
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Unfolding of multi-dimensional distributions

● For unfolding multi-dimensional 
distributions, map the 2D bins on a 1D 
histogram

● In many cases the number of reco bins 
is different from truth bins

→ two mappings, for truth and for reco

→ mapping also may require extra bins 
to account for fakes and control regions

● A complex example is shown to the right
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Common unfolding tools

● In this lecture: we have used our own unfolding tools

● Not so difficult after all – and we knew exactly what we are doing

● Otherwise : can use unfolding packages. With ROOT for example:

– RooUnfold

– TUnfold

● Make sure the package is doing what you expect it to do! If unsure, read the 
code!

https://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html

https://www.desy.de/~sschmitt/tunfold.html

https://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html
https://www.desy.de/~sschmitt/tunfold.html
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 Iterative method – background subtraction

● Background subtraction
– EM iterative method: must 

not subtract background from 
data (instead add it in the 
denominator)

● Not sure this is handled properly in 
RooUnfold…

● Always check your tools

x̂ j
(N+1)

=
x̂ j
(N )

ϵ j ∑i

Aij yi
(∑k

A ik x̂k
(N )
)+bi

x̂ j
(N+1)

=
x̂ j
(N )

ϵ j ∑i

A ij ( y i−bi)

(∑k
A ik x̂k

(N )
)

Proper formula: converges to the Poisson 
maximum likelihood. All numbers are 
guaranteed to be positive.

The other formula has no proven properties. 
Small (y-b) could fool the algorithm about the 
statistical uncertainty in that bin
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Iterative method – normalisation of fakes

● RooUnfold adds up the content of 
the event matrix and compares it to 
the predicted “reco” distribution

● These “fake” events are 
background

● If the fakes are >0, RooUnfold 
allocates an extra bin to determine 
their normalisation in the iterative 
method (this was suggested by 
D’Agostini (?))

● Possible effect: user has given N x N 
matrix

● But RooUnfold uses N x (N+1) matrix 
(+1 fake normalisation bin)

● So one unfolds N+1 bins from only N 
data bins - NOT GOOD

● And the fakes normalisation may be 
different from what one thinks it is 
(because RooUnfold adjusts it in the 
unfolding)
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TUnfold difficulties

● TUnfold is now version 17.9 (and soon 17.10)

● But in Root6 there is version 17.6

● Make sure to use the latest version (bug fixes, SURE scan, etc)

● TUnfold has a strange concept to account for inefficiencies

– Reco underflow and overflow are counted as “not reconstructed” 
(possibility to account for inefficiencies)

– In contrast, truth underflow and overflow are unfolded (similar to “fakes” 
in RooUnfold iterative method) 

– Special care to be taken when setting up the bins (→TUnfoldBinning)
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Summary
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Unfolding methods (1)

● Unregularised unfolding: matrix inversion, maximum likelihood

– Result is unbiased
– But there are large statistical fluctuations and anti-correlated bins

● Bin-by-bin method

– Very strong bias to the model
– Do not use
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Unfolding methods (2)

● Least square plus Tikhonov

– Very flexible, regularisation pattern and regularisation strength
– For s=0 obtain maximum likelihood result

● EM iterative method

– Seemingly very robust and easy to use
– Too small number of iterations results in large bias to the model
– Convergence to the maximum likelihood is very slow 
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Setting regularisation parameters

● Tikhonov regularisation: three methods

– Eigenvalue analysis: understand all the details of the data modes
– L-curve scan: intuitive geometrical picture
– SURE minimisation: statistician’s choice

● Iterative methods

– SURE minimisation works well , but is not widely used in the HEP 
community

– Physicists often use handwaving arguments (result does not change for 
more than 4  iterations … 4 is the default in RooUnfold ...) Be careful! 
The method converges very slowly!
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Tools

● Frequently used with Root
– RooUnfold
– TUnfold

● Both are nice tools, but each with their own difficulties
– RooUnfold: originally putting emphasis on easy comparison of 

methods
– TUnfold : original intention to have “minimal” input: only the matrix of 

events. This lead to a confusing role of underflow+overflow bins

If in doubt, do not hesitate to contact the authors for help. I am glad to help with TUnfold
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Not covered in this talk

● Many unfolding methods exist but are not covered here

– SVD with curvature regularisation
– Fully Bayesian unfolding, BAT

… and many other tools
● Brand-new tool: machine learning unfolding (OMNIFOLD)

– Unbinned unfolding: ML based reweighting of the Monte Carlo to look 
like data. Reweight bootstrap samples to get uncertainties

– Can do arbitrary plots of the unfolded Monte Carlo truth parameters
– First physics paper using that method published recently: PRL 128 

(2022), 132002
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Thank you for your attention

Please apologize for the improper preparation of the exercises 
(should have gone together with a root tutorial?)
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