HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

HERA Collider physics - introduction

Stefan Schmitt

Results from H1 and ZEUS

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNG

- Introduction
 - The HERA collider and collider experiments
 - HERA kinematics
- Selected physics results in perturbative QCD
 - Inclusive cross sections, structure functions, PDFs
 - Heavy flavor production

Next talk: E. Gallo about searches and electroweak physics at HERA

Disclaimer:

this talk is on HERA result, but reflects my personal opinions only.

There is a slight preference in showing results from H1 rather than ZEUS, simply because I know the H1 results better. Please apologize for that.

The HERA collider

i

200

100

- Operated from 1992 to 2007
- Circumference 6.3 km
- Electrons or positrons colliding with protons
- Proton: 460-920 GeV, Leptons 27.6 GeV
- Peak luminosity ~7×10³¹ cm⁻²s⁻¹
- Lepton beam polarisation up to 40-60% (Sokolov-Ternov effect, rise-time ~30 minutes)

S.Schmitt, HERA introduction

HELMHOI .

HERA compared to other colliders

 HERA at construction time: energy frontier (E_p~Tevatron, E_e~ ½ LEP)

Detectors were designed for discoveries, not so much for precision

- EIC compared to HERA:
 - Reduced center-of-mass energy ×0.3
 - Much higher luminosity ×100
 - Better lepton polarisation
 - Target polarisation
 - Heavy targets
 - Much improved detectors: tracking, acceptance, particle identification, forward detectors, ...

The HERA publication harvest

Status: Feb 2020

H1+ZEUS combined	8 publication
H1	223 publications
ZEUS	250 publications

- Both collaborations are still active and open for new members
- Data are available for analysis at DESY, including computing infrastructure (batch system)

- Top-ten cited (excluding detector papers) JHEP 1001 (2010) 109 H1+ZEUS 1000+ Data combination, PDF Eur.Phys.J. C21 (2001) 33 700+ Low-x, PDF, alpha s H1 Nucl.Phys. B470 (1996) 3 H1 500+ Low-x, PDF Eur.Phys.J. C21 (2001) 443 ZEUS 500+ Low-x, PDF Phys.Lett. B315 (1993) 481 ZEUS 500+ Observation of diffraction Nucl.Phys. B407 (1993) 515 H1 400+ Rise of F2 at low-x Eur.Phys.J. C75 (2015) 580 H1+ZEUS 400+ Data combination, Low-x, PDF Phys.Lett. B316 (1993) 412 ZEUS 400+ Rise of F2 at low-x Z.Phys. C76 (1997) 613 400+ Difffractive PDF H1 Z.Phys. C74 (1997) 207 ZEUS 400+ High Q² DIS
- 500+ citations: proton at low-x and PDFs
- 250+ citations: total cross-section, diffractive PDF, diffractive vector mesons, pentaquark
- 200+ citations: charm, jets, DVCS

HERA data are used mainly to study: PDFs and perturbative QCD, low-x and diffraction, transition from soft to hard QCD

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNG

The HERA detectors H1 and ZEUS

HERA boost visualized

HELMHOLTZ

CFNS workshop, May 2020

Processes studied at the HERA collider

- Neutral Current DIS (Deep Inelastic Scattering)
 - electron in main detector
- Charged current DIS
 - neutrino with high transverse momentum (escapes detection)
- Photoproduction
 - Electron scattered at very low angle (dedicated low-angle detector or not detected)

Small electron scattering angle (frequent event) Hadrons are spread all over Electron beam

S.Schmitt, HERA introduction.

CFNS workshop, May 2020

8

Processes studied at the HERA collider

- Neutral Current DIS
 - electron in main detector
- Charged current DIS
 - neutrino with high transverse momentum (escapes detection)
- Photoproduction
 - Electron scattered at very low angle (dedicated low-angle detector or not detected)

Neutral current (NC) event

10

Processes studied at the HERA collider

- Neutral Current DIS
 - electron in main detector
- Charged current DIS
 - neutrino with high transverse momentum (escapes detection)
- Photoproduction
 - Electron scattered at very low angle (not detected or scattered into dedicated low-angle tagger) Election

S.Schmitt, HERA introduction

Photoproduction (most frequent type of event)

Photoproduction and DIS

- Main kinematic variable: negative four-momentum squared Q²= -(e-e')²
- Q² provides a natural hard scale for perturbative calculations
- Deep-inelastic scattering (**DIS**): $Q^2 \gg 0$
 - Perturbative QCD applicable
- Photoproduction: $Q^2 \sim 0$
 - Perturbative QCD works only if there is another hard scale (jet, E heavy quark, etc)

Neutral current (NC) event

S.Schmitt, HERA introduction

Neutral current DIS kinematics at HERA

- Kinematic variables: Q², x, y, Q²=sxy
- Determine from 4-vectors of beam particles e, p, scattered electron e' and hadronic final state X

- "Electron" method: $y=y_e$ and $p_T=p_{T,e}$
- At low y, the electron method is limited by energy resolution, initial and final state radiation
 → use y=y_h (sigma method)
- Other methods also in use: double-angle, etc

Neutral current DIS kinematics at HERA

 10^{5}

10⁴

10³

 10^{2}

10

-1 10

S.Schmitt, HERA introduction

10⁻⁷

BCDMS

E665

SLAC

M = 10 GeV

- "Electron" method: $y=y_e$ and $p_T=p_{T,e}$
- At low y, use $y=y_h$ (sigma method) \rightarrow hadrons • contributing to y_h have to be within detector acceptance \rightarrow low y / high x is not accessible

HERA is "low-x" because of acceptance limitations in the forward (proton) direction

Radiative effects

Radiation from electron line

electron momentum \rightarrow use calorimeter corresponds to very low "true" Q² at proton vertex

Radiative effects: HERA methods

Kinematics of radiative photons

Radiation from electron line has three poles: ISR, FSR, QED Compton

Radiation has two effects

- For a given event, the kinematic reconstruction is distorted
 - \rightarrow apply cuts, use "robust" kinematic reconstruction (Sigma method or similar)
- For a given class of events, the predicted cross section changes wrt. the Born level

 \rightarrow radiative corrections, ratio of prediction with and without radiation, model-dependent

HERA physics topics

HELMHOLTZ

Electron

 Color-neutral probe, source of virtual or quasi-real photons

Proton

 Source of quarks and gluons

HERA physics topics

Electron

 Color-neutral probe, source of virtual or quasi-real photons

Proton

 Source of quarks and gluons

Inclusive cross sections, PDFs

H1+ZEUS Data combination Inclusive cross sections, PDF fit Longitudinal structure function

Deep-inelastic scattering at HERA

- High Q² ~ 10⁴ GeV² probes smallest distances
- Combination of H1 and ZEUS data (41 datasets)
- Neutral Current (NC):
 - photon, Z-boson exchange
 - Cross section shape similar to 1/Q⁴
- Charged Current (CC):
 - W-boson exchange M_w=80.4 GeV
 - Cross section shape $\sim 1/(Q^2+M_W^2)^2$

High Q²: rare events \rightarrow Talk by E. Gallo

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Proton structure measurement at HERA

- momentum fraction of the struck quark
- Scaling violations: for fixed x, the cross section does change with Q²

CFNS workshop, May 2020

S.Schmitt, HERA introduction

10

 O^2/GeV^2

10

10

EPJ C75 (2015) 85

Structure functions and parton densities

у²в 1

$$\frac{d^{2}\sigma_{NC}^{\pm}}{dx dQ^{2}} \frac{Q^{4}x}{2 \pi \alpha_{+}^{2Y}} = \sigma_{r, NC}^{\pm} = \widetilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \widetilde{F}_{3} \left(-\frac{y^{2}}{Y_{+}} \widetilde{F}_{L}\right)$$

inelasticity $y = Q^{2}/(sx)$
belicity factors: $Y_{\pm} = 1 \pm (1-y)^{2}$
Suppressed by

• Structure functions are related to quark and gluon count in the proton

$$\widetilde{F}_{2} \sim \sum (xq + x q) \text{ valence plus sea quarks } \rightarrow \text{dominant}$$

$$x \widetilde{F}_{3} \sim \frac{Q^{2}}{Q^{2} + m_{Z}^{2}} \sum (xq - x q) \text{ valence quarks } \rightarrow \text{contributes}$$

$$\widetilde{F}_{L} \sim xg \text{ gluons} \rightarrow \text{contributes}$$

$$\widetilde{F}_{L} \sim xg \text{ gluons}$$

CFNS workshop, May 2020

CFNS workshop, May 2020

- Dokshitzer, Gribow, **Based on DGLAP equations** Lipatow, Altarelli, Parisi
 - Given the PDF as a function of x at one scale μ_0 , DGLAP predicts the PDF at another scale μ_1
- Factorisation: PDFs are universal: ep, pp, ... $\sigma_{ep} = \text{PDF}(\mu, x) \otimes |M|^2 + \text{higher twist}$ $\sigma_{nn} = \text{PDF}(\mu, x_1) \otimes \text{PDF}(\mu, x_2) \otimes |M|^2 + \text{higher twist}$
- Measure at HERA \rightarrow predict LHC cross section
- Within HERA: measurements at different $\mu^2 = Q^2$ are fitted to the same PDF using DGLAP

HERA and EIC kinematic reach

- HERA kinematic reach
 - For low Q²<100 GeV²:
 - low-x: 3×10⁻⁵<x<3×10⁻²
 - High-x is probed only for or high Q² (but is statistically limited)
- Nevertheless, HERA data is the fundament of all modern PDF determinations
- The EIC is going to improve substantially the precision at high x

HERAPDF NNLO QCD fit

- The experimental uncertainties are small
- At low x<10⁻³, model and parametrization uncertainties dominate
- The high-x region is not measured well, only constrained by sum-rules and choice of parametrization
 - \rightarrow EIC data are needed to improve on this

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Data at low-x and DGLAP fit

- Zoom in at low-x, low Q²
- Theoretically and experimentally challenging
- Experiment: low-y → low electron energy, background
- Theory: higher orders, resummation, ...

H1 and ZEUS

S.Schmitt, HERA introduction

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Measurement of F_{L}

 $\sigma_{r,NC} \simeq F_2 - \frac{y^2}{Y_+} F_L \qquad y = Q^2 / (sx)$ $F_L \sim \alpha_s xg(x) \text{ direct probe of gluon density}$

- Reasonable agreement of F_{L} and predictions
- HERA: small energy range √s=225-320 GeV, so only limited range of F_L is accessible _____
- HERA+EIC: possible measurement of F_L _ over a much large range → powerful test of QCD

Hard probes: heavy flavour

H1+ZEUS charm and beauty data combination Charm and beauty masses

Heavy flavor and jet production

- Charm and beauty quarks or extra partons are emitted in higher order QCD processes
- Sensitive to fundamental QCD parameters: couplings and quark masses
- Measurement presented here
 - Charm and beauty structure functions

Example contribution to charm and beauty production

Example contribution to jet production

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGI

Charm and beauty data combination

- Combination of 13 datasets on charm and beauty in DIS from H1 and ZEUS
- Experimental methods
 - Fully reconstructed D or D* decays
 - High P_T leptons from heavy flavor decays
 - Secondary decay vertices
- Accuracy of the combined data:

~5-9% for charm, ~15-25% for beauty

CFNS workshop, May 2020

Structure functions with charm, beauty

CFNS workshop, May 2020

Structure functions with charm, beauty

 \rightarrow can extract quark masses m_c and m_b from HERA data alone:

 $m_c(m_c) = 1.290^{+0.077}_{-0.053}$ $m_h(m_h) = 4.049^{+0.138}_{-0.118}$

Particle data group: m_a =1.28±0.025 GeV $m_{h} = 4.18 \pm 0.03 \text{ GeV}$

NLO HERAPDF2.0 FF3A

HERA

Data are statistically limited \rightarrow looking forward to have precision data from EIC.

CFNS workshop, May 2020

Summary

- HERA: operated 1993-2007, still with active analyses
- New members are welcome in H1 or ZEUS, to contribute some of the studies we missed in the past
- Kinematic reconstruction: forward (proton) acceptance and photon radiation from electron line together limit the accessible range in (Q²,x)

 \rightarrow improvement at EIC expected from 3× lower centre-of-mass energy (at same Q² access ~10× higher x) and from better detector acceptance

• Some highlights from HERA combined data: inclusive cross sections, PDF fits, charm and beauty production in DIS

Backup slides

Accelerators for particle physics at DESY

- DESY was founded in 1959
- German national laboratory for particle physics, accelerators, synchrotron sources
- Accelerators for particle physics
 - DESY 1964-1978 [6 GeV] Since 1978: used as pre-accelerator only
 - DORIS 1974-1992 [e⁺e⁻ √s=12 GeV] 1992-2012: used as synchrotron source
 - PETRA 1978-1986 [e⁺e⁻ √s=45 GeV] 1990-2007: pre-accelerator, since 2009 synchrotron source
 - HERA 1992-2007 [e⁺p √s=320 GeV]
- DESY accelerators in 2020
 - \rightarrow photon science

CFNS workshop, May 2020

S.Schmitt, HERA introduction

~5 miles to city center

The Sigma method

Kinematic reconstruction using four-٠ vectors (neglecting p and e masses):

$$y_e = 1 - \frac{(e'p)}{(ep)}, y_h = \frac{(Xp)}{(ep)}$$
$$Q^2 = \frac{p_T^2}{1-y}, x = \frac{Q^2}{sy}$$

HERA frame: electron beam along -z • axis \rightarrow ratios of 4-vector products result in expressions involving (E-p₋)

For electron: $(E-p_{z}) = E_{z}(1-\cos \theta_{z})$

Low Q²: (E-p₂)₂ is close to 2E₂

Electron method: $y_e = \frac{2E_0 - E_e(1 - \cos\theta_e)}{2E_o}$

ISR effectively changes beam energy
$$E_0$$

 $Q^2 = 2 E_0 E \left(1 + \cos \theta\right)$

 \rightarrow very poor reconstruction of low y

Sigma method: estimate effective E₀ from data and get y from hadrons

$$\Sigma = (E - p_z)_e + (E - p_z)_X$$
$$y_h \rightarrow y_{\Sigma} = \frac{(E - p_z)_X}{\Sigma}$$

Take Q² from electron method $(e\Sigma)$ or use Σ also in the Q² calculation

H1 and ZEUS

The HERA "discovery": rise of F_2 at low x

- At the time: a surprise
- Impressive improvement in precision – it took
 >20 years to achieve this

CFNS workshop, May 2020

Towards the best precision: data combination

DESY.

- Measurements of inclusive processes have been published in a total of 41 H1 and ZEUS papers
- Data have been combined to a uniform HERA dataset: EPJ C75 (2015) 12, 85
 - Measurements of NC and CC for both e⁺p and e⁻p scattering at √s=318 GeV
 - Measurements of NC e⁺p scattering at √s={225,252,300,318} GeV
- Precision better than 1.5% is reached for large parts of the data

Data Set		XBi (Grid	O ² [Ge	V ² 1 Grid	L	e ⁺ /e ⁻	\sqrt{s}	$x_{\rm Bi}, O^2$ from	Ref.
		from	to	from	to	pb ⁻¹		GeV	equations	
HERA I $E_p = 820 \text{GeV}$ and	$E_{n} = 920$	GeV data sets	5				-			
H1 syx-mb[2]	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301,319	13,17,18	[3]
H1 low $Q^{2}[2]$	96-00	0.0002	0.1	12	150	22	e ⁺ p	301, 319	13,17,18	[4]
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e ⁺ p	301	19	[5]
H1 CC	94-97	0.013	0.40	300	15000	35.6	e ⁺ p	301	14	[5]
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319	19	[6]
H1 CC	98-99	0.013	0.40	300	15000	16.4	e ⁻ p	319	14	[6]
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e p	319	13	[7]
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e ⁺ p	319	19	[7]
H1 CC	99-00	0.013	0.40	300	15000	65.2	e ⁺ p	319	14	[7]
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300	13	[III]
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e ⁺ p	300	13, 19	[12]
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e ⁺ p	300	13	[13]
ZEUS NC [2] high/low O2	96-97	0.00006	0.65	2.7	30000	30.0	e ⁺ p	300	21	[14]
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e ⁺ p	300	14	[15]
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e p	318	20	[16]
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318	14	[17]
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e ⁺ p	318	20	[18]
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e ⁺ p	318	14	[19]
HERA II $E_p = 920 \text{ GeV}$ da	ta sets						1 - 1			1
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e ⁺ p	319	13, 19	[8]1
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e ⁺ p	319	14	[8]1
H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	e p	319	13, 19	[8]1
H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	e n	319	14	[8]1
H1 NC med 02 *y.5	03-07	0.0000986	0.005	85	90	97.6	e ⁺ n	319	13	[10]
H1 NC low $Q^2 * y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e ⁺ n	319	13	[10]
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ n	318	13 14 20	[22]
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e ⁺ n	318	14	[23]
ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	e ⁻ n	318	20	[20]
ZEUS CC 1.5	04-06	0.015	0.65	280	30000	175	e n	318	14	[21]
ZEUS NC nominal *#	06-07	0.000092	0.008343	7	110	44 5	e ⁺ n	318	13	[24]
ZEUS NC satellite *#	06-07	0.000071	0.008343	5	110	44.5	e ⁺ n	318	13	[24]
HERA II $E_{-} = 575 \text{ GeV} \text{ da}$	ta sets	0.000071	0.000545		110	44.5	L C P	510	15	[24]
H1 NC high Q^2	07	0.00065	0.65	35	800	54	e ⁺ n	252	13 10	roj
H1 NC low Q^2	07	0.0000279	0.0148	15	00	5.9	e ⁺ n	252	13,19	[10]
ZEUS NC nominal	07	0.000147	0.013340	1.5	110	7.1	e p	252	13	[24]
ZEUS NC nominal	07	0.000125	0.013349	5	110	7.1	e p	251	13	[24]
HEPA II $F = 460 \text{ GeV} \text{ da}$	to cote	0.000125	0.015545	5	110	7.1	ep	2.01	15	[24]
H1 NC high O^2	07	0.00081	0.65	35	800	11.9	a ⁺ n	225	13 10	[0]
H1 NC log Q2	07	0.000348	0.05	15	000	12.2	e p	225	13, 19	[10]
ZEUS NC nominal	07	0.0000348	0.0146	1.5	90	12.2	e p	225	13	[10]
ZEUS NC nominal	07	0.000184	0.016686	-	110	13.9	e p	225	13	[24]
ZEUS NC satellite	0/	0.000143	0.010080	3	110	13.9	ep	225	15	[24]

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

The power of combining

- A total of 2927 H1 and ZEUS measurements are averaged to about 1307 combined reduced cross sections
- Up to six measurements contribute to a single point
- Systematic uncertainties and their cross-correlations are handled consistently
- Better than 1.5% precision is reached over a wide kinematic range
- Excellent data consistency: $\chi^2/N_{D.F.} = 1687/1620$

Transition to photoproduction

- At HERA, both deep-inelastic scattering (Q²>0) and photoproduction (Q²=0) can be measured
- Can map the transition region, where Q² is very small
- challenge for perturbative calculations

Perturbative QCD	Regge theory
High Q ² »1 GeV ²	High energy W»Q
Q ² evolution: DGLAP equations	W-dependence: Regge trajectories

 $W = \sqrt{(q+p)^2} = Q^2(1/x-1)$ photon-proton energy

CFNS workshop, May 2020

Fit of photoproduction and HERA DIS data

 P_0, P_1, f_{2R}

DIS cross section:

Compton scattering

forward virtual

amplitude

- Tensor-pomeron model (Ewerz, Maniatis, Nachtmann) Ann.Phys 342 (2014) 31
- Coherent description of photoproduction and low-x DIS data
- Fit three trajectories and Q² dependencies
 - **Reggeon** $\sim W^{2\epsilon_2}$ where $\epsilon_2 = 0.0485^{+0.0088}_{-0.0090}$
 - Hard Pomeron $\sim W^{2\epsilon_0}$ where $\epsilon_0 = 0.3008^{+0.0073}_{-0.0084}$
 - Soft pomeron $\sim W^{2\epsilon_1}$ where $\epsilon_1 = 0.0935^{+0.0076}_{-0.0064}$

Compatible with canonical DL intercept $\alpha_0 = 1 + \epsilon = 1.0808$ Good fit quality: $\chi^2/N_{DF} = 587.9 / 536$ (probability 6%)

S.Schmitt, HERA introduction

CFNS workshop, May 2020

Tensor pomeron fit at larger Q²

- Described well by the Tensor pomeron fit
- Soft pomeron contribution is significant even at Q²=10 GeV²
- Could be an indication of sizable nonperturbative contributions to the DIS data relevant for PDF fits

(e.g. HERAPDF fit includes data at Q²≥3.5 GeV²)

S.Schmitt, HERA introduction

Jet production in the Breit frame

- Hadrons are emitted in jets
- Interpretation: a parton is scattered off the proton and fragments
- Breit-frame: Lorentz-transformation to have proton remnant and current-jet well separated
- Measure the emission of further jets which have P_T>0 wrt expected current jet direction

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Jet cross section measurements

CFNS workshop, May 2020

Measurement of α_s

