HERA Collider physics - introduction

Outline

Next talk: E. Gallo about searches and electroweak physics at HERA

- Introduction
- The HERA collider and collider experiments
- HERA kinematics
- Selected physics results in perturbative QCD
- Inclusive cross sections, structure functions, PDFs
- Heavy flavor production

Disclaimer:
this talk is on HERA result, but reflects my personal opinions only.

There is a slight preference in showing results from H 1 rather than ZEUS, simply because I know the H1 results better. Please apologize for that.

The HERA collider

- Lepton beam polarisation up to 40-60\% (SokolovTernov effect, rise-time ~ 30 minutes)

CFNS workshop, May 2020

S.Schmitt, HERA introduction

HERA compared to other colliders

- HERA at construction time: energy frontier ($\mathrm{E}_{\mathrm{p}} \sim$ Tevatron, $\mathrm{E}_{\mathrm{e}} \sim 1 / 2$ LEP)

Detectors were designed for discoveries, not so much for precision

- EIC compared to HERA:
- Reduced center-of-mass energy $\times 0.3$
- Much higher luminosity $\times 100$
- Better lepton polarisation
- Target polarisation
- Heavy targets
- Much improved detectors: tracking, acceptance, particle identification, forward detectors, ...

The HERA publication harvest

Status: Feb 2020

H1+ZEUS combined	8 publication
H1	223 publications
ZEUS	250 publications

- Both collaborations are still active and open for new members
- Data are available for analysis at DESY, including computing infrastructure (batch system)
- Top-ten cited (excluding detector papers) JHEP 1001 (2010) 109 H1+ZEUS 1000+ Data combination, PDF Eur.Phys.J. C21 (2001) 33 H1 700+ Low-x, PDF, alpha s Nucl.Phys. B470 (1996) 3 H1 500+ Low-x, PDF Eur.Phys.J. C21 (2001) 443 ZEUS Phys.Lett. B315 (1993) 481 ZEUS Nucl.Phys. B407 (1993) 515 H1 Eur.Phys.J. C75 (2015) 580 H1+ZEUS Phys.Lett. B316 (1993) 412 ZEUS 400+ Rise of F2 at low-x Z.Phys. C74 (1997) 207 ZEUS 400+ High Q² DIS
- 500+ citations: proton at low-x and PDFs
- 250+ citations: total cross-section, diffractive PDF, diffractive vector mesons, pentaquark
- 200+ citations: charm, jets, DVCS

HERA data are used mainly to study:
PDFs and perturbative QCD, low-x and diffraction, transition from soft to hard QCD

The HERA detectors H 1 and ZEUS

HERA boost visualized

Laboratory system

Processes studied at the HERA collider

- Neutral Current DIS (Deep Inelastic Scattering)
- electron in main detector
- Charged current DIS in a jet

Side view
Large electron scattering angle (rare event)

- Photoproduction
- Electron scattered at very low angle (dedicated low-angle detector or not detected)

Small electron scattering angle (frequent event)

Processes studied at the HERA collider

- Neutral Current DIS
- electron in main detector
- Charged current DIS

See next talk E. Gallo Hadrons collimated in a jet

Scattered ∇ electron

Neutral current (NC) event
Charged current (CC) event

Imbalance in transverse plane \rightarrow neutrino

Processes studied at the HERA collider

- neutrino with high transverse momentum (escapes detection)

Neutral current (NC) event

- Photoproduction

Photoproduction (most frequent type of event)

- Electron scattered at very low angle (not detected or scattered into dedicated low-angle tagger) Electron beam

Photoproduction and DIS

- Main kinematic variable: negative four-momentum squared $Q^{2}=-\left(e-e^{\prime}\right)^{2}$
- Q^{2} provides a natural hard scale for perturbative calculations
- Deep-inelastic scattering (DIS): $Q^{2} \gg 0$
- Perturbative QCD applicable

Neutral current (NC) event
Photoproduction (most frequent type of event)

- Photoproduction: $Q^{2} \sim 0$
- Perturbative QCD works only if there is another hard scale (jet, Electron beam heavy quark, etc)

HELMHOLTZ

Neutral current DIS kinematics at HERA

- Kinematic variables: $Q^{2}, x, y, Q^{2}=s x y$
- Determine from 4-vectors of beam particles e, p, scattered electron e^{\prime} and hadronic final state X

$$
\begin{aligned}
& \quad \mathrm{Q}^{2} \sim 30 \mathrm{GeV}^{2} \\
& \begin{array}{l}
\text { Typical low } \mathrm{Q}^{2}, \\
\text { low-x event }
\end{array} \\
& \quad \therefore \text { electron }=1-\frac{\left(e^{\prime} p\right)}{(e p)}, y_{h}=\frac{(X p)}{(e p)} \\
& Q^{2}=\frac{p_{T}^{2}}{1-y}, x=\frac{Q^{2}}{s y}
\end{aligned}
$$

- "Electron" method: $y=y_{e}$ and $p_{T}=p_{T, e}$
- At low y , the electron method is limited by energy resolution, initial and final state radiation
\rightarrow use $y=y_{h}$ (sigma method)
- Other methods also in use: double-angle, etc

Neutral current DIS kinematics at HERA

- Kinematic variables: $\mathrm{Q}^{2}, \mathrm{x}, \mathrm{y}, \mathrm{Q}^{2}=\mathrm{sxy}$
- Determine from 4-vectors of beam particles e, p, scattered electron e^{\prime} and hadronic final state X
$\mathrm{Q}^{2} \sim 30 \mathrm{GeV}^{2}$
$\mathrm{x} \sim 0.001$
$y_{e}=1-\frac{\left(e^{\prime} p\right)}{(e p)}, y_{h}=\frac{(X p)}{(e p)}$
$Q^{2}=\frac{p_{T}^{2}}{1-y}, x=\frac{Q^{2}}{s y}$
- "Electron" method: $y=y_{e}$ and $p_{T}=p_{T, e}$
- At low y, use $y=y_{h}$ (sigma method) \rightarrow hadrons contributing to y_{h} have to be within detector acceptance \rightarrow low $y /$ high x is not accessible HERA is "low- x " because of acceptance limitations in the forward (proton) direction

Radiative effects

Kinematics of radiative photons

- Radiation from electron line
- Initial state (ISR) effectively reduces beam energy
- Final state (FSR) reduces measured electron momentum \rightarrow use calorimeter
- QED Compton corresponds to very low "true" Q^{2} at proton vertex

Radiative effects: HERA methods

Kinematics of radiative photons

Radiation from electron line has three poles: ISR, FSR, QED Compton

Radiation has two effects

- For a given event, the kinematic reconstruction is distorted
\rightarrow apply cuts, use "robust" kinematic reconstruction (Sigma method or similar)
- For a given class of events, the predicted cross section changes wrt. the Born level
\rightarrow radiative corrections, ratio of prediction with and without radiation, model-dependent

HERA physics topics

Electron

- Color-neutral probe, source of virtual or quasi-real photons

Proton

- Source of quarks and gluons

Searches \& electroweak

HERA physics topics

Electron

- Color-neutral probe, source of virtual or quasi-real photons

Proton

- Source of quarks and gluons

Inclusive cross sections, PDFs

H1+ZEUS Data combination Inclusive cross sections, PDF fit
Longitudinal structure function

Deep-inelastic scattering at HERA

H1 and ZEUS

- Measure Cross section as a function of Q^{2}
- High $\mathrm{Q}^{2} \sim 10^{4} \mathrm{GeV}^{2}$ probes smallest distances
- Combination of H1 and ZEUS data (41 datasets)
- Neutral Current (NC):
- photon, Z-boson exchange
- Cross section shape similar to $1 / Q^{4}$
- Charged Current (CC):
- W-boson exchange $M_{w}=80.4 \mathrm{GeV}$
- Cross section shape $\sim 1 /\left(Q^{2}+M_{w}{ }^{2}\right)^{2}$

High Q^{2} : rare events \rightarrow Talk by E. Gallo

Proton structure measurement at HERA

- Momentum transfer Q 2
- Second variable: Bjorken-x
- Cross sections depend on Q^{2} and Bjorken-x

$Q^{2}=-\left(e-e^{\prime}\right)^{2}$ and $x=\frac{Q^{2}}{2 \mathrm{p}\left(e-e^{\prime}\right)}$
e : beam electron 4-momentum
$p:$ beam proton 4-momentum
$e^{\prime}:$ scattered electron 4-momentum
- Interpretation in the quark-parton model: x is the momentum fraction of the struck quark
- Scaling violations: for fixed x , the cross section does change with Q^{2}

Structure functions and parton densities

H1 and ZEUS

- Cross section differential in $\mathrm{Q}^{2}, \mathrm{x}$ is related to structure functions

$$
\begin{aligned}
& \frac{d^{2} \sigma_{N C}^{ \pm}}{d x d Q^{2}} \frac{Q^{4} x}{2 \pi \alpha_{+}^{2 Y}}=\sigma_{r, N C}^{ \pm}=\widetilde{F}_{2} \mp \frac{Y_{-}}{Y_{+}} x \widetilde{F}_{3}\left(-\frac{y^{2}}{Y_{+}} \widetilde{F}_{L}\right) \\
& \text { inelasticity } y=Q^{2} /(s x) \\
& \text { helicity factors: } Y_{ \pm}=1 \pm(1-y)^{2} \quad \text { Suppressed by } \mathrm{y}^{2} \mathrm{~B} 1
\end{aligned}
$$

- Structure functions are related to quark and gluon count in the proton
$\widetilde{F}_{2} \sim \sum(x q+x)$ valence plus sea quarks \rightarrow dominant $\begin{aligned} x \widetilde{F}_{3} \sim \frac{Q^{2}}{Q^{2}+m_{Z}^{2}} \sum(x q-x) \text { valence quarks } & \rightarrow \text { contributes } \\ & \text { only at high } \mathrm{Q}^{2}\end{aligned}$ $\widetilde{F}_{L} \sim x g$ gluons talk by E. Gallo

DGLAP and PDF fit: from HERA to LHC

- QCD fit: extract PDF (i.e. quark and gluon densities) from structure functions
- Based on DGLAP equations Dokshitzer, Gribow, Lipatow, Altarelli, Parisi
- Given the PDF as a function of x at one scale μ_{0}, DGLAP predicts the PDF at another scale μ_{1}
- Factorisation: PDFs are universal: ep, pp,...
$\sigma_{e p}=\operatorname{PDF}(\mu, x) \otimes|M|^{2}+$ higher twist
$\sigma_{p p}=\operatorname{PDF}\left(\mu, x_{1}\right) \otimes \operatorname{PDF}\left(\mu, x_{2}\right) \otimes|M|^{2}+$ higher twist
- Measure at HERA \rightarrow predict LHC cross section
- Within HERA: measurements at different $\mu^{2}=Q^{2}$ are fitted to the same PDF using DGLAP

HERA and EIC kinematic reach

- HERA kinematic reach
- For low $Q^{2}<100 \mathrm{GeV}^{2}$:

$$
\text { low-x: } 3 \times 10^{-5}<x<3 \times 10^{-2}
$$

- High-x is probed only for or high Q^{2} (but is statistically limited)
- Nevertheless, HERA data is the fundament of all modern PDF determinations
- The EIC is going to improve substantially the precision at high x

HERAPDF NNLO QCD fit

H1 and ZEUS

- Proton PDFs at a scale $\mu^{2}=10 \mathrm{GeV}^{2}$, from NNLO QCD fit of HERA data (14 parameter fit)
- The experimental uncertainties are small
- At low $x<10^{-3}$, model and parametrization uncertainties dominate
- The high-x region is not measured well, only constrained by sum-rules and choice of parametrization
\rightarrow EIC data are needed to improve on this

Data at low-x and DGLAP fit

- Zoom in at low-x, low Q ${ }^{2}$
- Theoretically and experimentally challenging
- Experiment: low-y \rightarrow low electron energy, background
- Theory: higher orders, resummation, ...

Fit quality deteriorates as more data at lower Q^{2} are included

H1 and ZEUS

Measurement of F

H1/ZEUS compatible at 1-2 σ

HERA measurements of F_{L} : large range in Q^{2} but Q^{2} / x is fixed.

EPJC 74 (2014) 2814
PRD 90 (2014) 072002

- Reasonable agreement of F_{L} and predictions
- HERA: small energy range $\sqrt{ }$ s $=225-320 \mathrm{GeV}$, so only limited range of F_{L} is accessible
- HERA+EIC: possible measurement of F_{L} over a much large range \rightarrow powerful test of QCD

Hard probes: heavy flavour

H1+ZEUS charm and beauty data combination Charm and beauty masses

Heavy flavor and jet production

- Charm and beauty quarks or extra partons are emitted in higher order QCD processes
- Sensitive to fundamental QCD parameters: couplings and quark masses
- Measurement presented here
- Charm and beauty structure functions

Example

 contribution to charm and beauty production
Example

 contribution to jet production
Charm and beauty data combination

- Combination of 13 datasets on charm and beauty in DIS from H 1 and ZEUS
- Experimental methods
- Fully reconstructed D or D* decays
- High P_{T} leptons from heavy flavor decays
- Secondary decay vertices
- Accuracy of the combined data:
$\sim 5-9 \%$ for charm, $\sim 15-25 \%$ for beauty

Structure functions with charm, beauty

- Heavy quarks are produced mainly in boson-gluon fusion
- Theory is challenging: multiple hard scales, massive particles, etc

Q^{2} is changing between subpanels Each subpanel showns the x dependence

CFNS workshop, May 2020

Structure functions with charm, beauty

- Probability to produce heavy quark depends on its mass
\rightarrow can extract quark masses m_{c} and m_{b} from HERA data alone:

$$
\begin{aligned}
& m_{c}\left(m_{c}\right)=1.290_{-0.053}^{+0.077} \\
& m_{b}\left(m_{b}\right)=4.049_{-0.118}^{+0.138}
\end{aligned}
$$

Particle data group:

$$
\begin{aligned}
& m_{c}=1.28 \pm 0.025 \mathrm{GeV} \\
& \mathrm{~m}_{\mathrm{b}}=4.18 \pm 0.03 \mathrm{GeV}
\end{aligned}
$$

Data are statistically limited \rightarrow looking forward to have precision data from EIC.

Summary

- HERA: operated 1993-2007, still with active analyses
- New members are welcome in H1 or ZEUS, to contribute some of the studies we missed in the past
- Kinematic reconstruction: forward (proton) acceptance and photon radiation from electron line together limit the accessible range in $\left(\mathrm{Q}^{2}, \mathrm{x}\right)$
\rightarrow improvement at EIC expected from $3 \times$ lower centre-of-mass energy (at same Q^{2} access $\sim 10 \times$ higher x) and from better detector acceptance
- Some highlights from HERA combined data: inclusive cross sections, PDF fits, charm and beauty production in DIS

Backup slides

Accelerators for particle physics at DESY

- DESY was founded in 1959
- German national laboratory for particle physics, accelerators, synchrotron sources
- Accelerators for particle physics
- DESY 1964-1978 [6 GeV] Since 1978: used as pre-accelerator only
- DORIS 1974-1992 [$\mathrm{e}^{+} \mathrm{e}^{-} \sqrt{ } \mathrm{s}=12 \mathrm{GeV}$] 1992-2012: used as synchrotron source
- PETRA 1978-1986 [$\left.\mathrm{e}^{+} \mathrm{e}^{-} \sqrt{ } \mathrm{s}=45 \mathrm{GeV}\right]$ 1990-2007: pre-accelerator, since 2009 synchrotron source
- HERA 1992-2007 [$\mathrm{e}^{ \pm} \mathrm{p} \sqrt{ } \mathrm{s}=320 \mathrm{GeV}$]
- DESY accelerators in 2020
\rightarrow photon science

The Sigma method

- Kinematic reconstruction using fourvectors (neglecting p and e masses):

$$
\begin{gathered}
y_{e}=1-\frac{\left(e^{\prime} p\right)}{(e p)}, y_{h}=\frac{(X p)}{(e p)} \\
Q^{2}=\frac{p_{T}^{2}}{1-y}, x=\frac{Q^{2}}{s y}
\end{gathered}
$$

- HERA frame: electron beam along -z axis \rightarrow ratios of 4 -vector products result in expressions involving ($\mathrm{E}-\mathrm{p}_{\mathrm{z}}$)

For electron: $\left(E-p_{z}\right)_{e}=E_{e}\left(1-\cos \theta_{e}\right)$
Low $Q^{2}:\left(E-p_{z}\right)_{e}$ is close to $2 E_{e}$

- Electron method:

$$
\begin{gathered}
y_{e}=\frac{2 E_{0}-E_{e}\left(1-\cos \theta_{e}\right)}{2 E_{0}} \\
Q_{e}^{2}=2 E_{0} E_{e}\left(1+\cos \theta_{e}\right)
\end{gathered}
$$

- ISR effectively changes beam energy E_{0}
\rightarrow very poor reconstruction of low y
- Sigma method: estimate effective E_{0} from data and get y from hadrons

$$
\begin{gathered}
\Sigma=\left(E-p_{z}\right)_{e}+\left(E-p_{z}\right)_{X} \\
y_{h} \rightarrow y_{\Sigma}=\frac{\left(E-p_{z}\right)_{X}}{\Sigma}
\end{gathered}
$$

Take Q^{2} from electron method
(e Σ) or use Σ also in the Q^{2} calculation

The HERA "discovery": rise of F_{2} at low x

H1 and ZEUS

- Discovery in the early HERA data: structure function F_{2} rises strongly at low x
- At the time: a surprise
- Impressive improvement in precision - it took >20 years to achieve this

Towards the best precision: data combination

- Measurements of inclusive processes have been published in a total of 41 H1 and ZEUS papers
- Data have been combined to a uniform HERA dataset: EPJ C75 (2015) 12, 85
- Measurements of NC and CC for both $e^{+} p$ and e^{-p} scattering at $\sqrt{ } s=318 \mathrm{GeV}$
- Measurements of $\mathrm{NC}^{+} \mathrm{p}$ scattering at $\sqrt{ } s=\{225,252,300,318\} \mathrm{GeV}$
- Precision better than 1.5% is reached for large parts of the data

The power of combining

- A total of 2927 H 1 and ZEUS measurements are averaged to about 1307 combined reduced cross sections
- Up to six measurements contribute to a single point
- Systematic uncertainties and their cross-correlations are handled consistently
- Better than 1.5\% precision is reached over a wide kinematic range
- Excellent data consistency: $\chi^{2} / \mathrm{N}_{\text {D.F. }}=1687 / 1620$

Transition to photoproduction

- At HERA, both deep-inelastic scattering ($\mathrm{Q}^{2>}$) and photoproduction $\left(Q^{2}=0\right)$ can be measured
- Can map the transition region, where Q^{2} is very small
- challenge for perturbative calculations

Perturbative QCD
High $Q^{2} » 1 \mathrm{GeV}^{2}$
Q ${ }^{2}$ evolution: DGLAP equations

Regge theory
High energy W»Q
W-dependence:
Regge trajectories

$$
W=\sqrt{(q+p)^{2}}=Q^{2}(1 / x-1) \text { photon-proton energy }
$$

Fit of photoproduction and HERA DIS data

- Tensor-pomeron model (Ewerz, Maniatis, Nachtmann) Ann.Phys 342 (2014) 31

DIS cross section: forward virtual Compton scattering amplitude

- Fit three trajectories and Q^{2} dependencies
- Reggeon $\sim W^{2 \epsilon_{2}}$ where $\epsilon_{2}=0.0485_{-0.0090}^{+0.0088}$
- Hard Pomeron $\sim W^{2 \epsilon_{0}}$ where $\epsilon_{0}=0.3008_{-0.00044}^{+0.0073}$
- Soft pomeron $\sim W^{2 \epsilon_{I}}$ where $\epsilon_{1}=0.0935_{-0.0064}^{+0.0076}$

Compatible with canonical DL intercept $\alpha_{0}=1+\varepsilon=1.0808$ Good fit quality: $x^{2} / N_{\text {D.F. }}=587.9 / 536$ (probability 6\%) photoproduction and low-x DIS data

Subset of HERA DIS data at low Q^{2} wrt. W

PRD 100 (2019) 114007
HERA photoproduction data: W~200 GeV

EIC data can bridge the gap to fixed target in photoproduction

S.Schmitt, HERA introduction

Tensor pomeron fit at larger Q^{2}

- HERA data at $\sqrt{ } \mathrm{s}=318 \mathrm{GeV}, \mathrm{Q}^{2} \geq 1.5 \mathrm{GeV}^{2}$
- Described well by the Tensor pomeron fit
- Soft pomeron contribution is significant even at $Q^{2}=10 \mathrm{GeV}^{2}$
- Could be an indication of sizable nonperturbative contributions to the DIS data relevant for PDF fits
(e.g. HERAPDF fit includes data at $\mathrm{Q}^{2} \geq 3.5 \mathrm{GeV}^{2}$)

Jet production in the Breit frame

- Hadrons are emitted in jets
- Interpretation: a parton is scattered off the proton and fragments
- Breit-frame: Lorentz-transformation to have proton remnant and current-jet well separated

- Measure the emission of further jets which have $P_{T}>0$ wrt expected current jet direction

Jet cross section measurements

- Jet production measured as a function of Q^{2} and the jet transverse momentum P_{T}
 H1 Inclusive jets \dagger HI HERA-II
 Systemalic unoxatainy

NuO s hast. corr. Thinwlo enaxt. cart. - avNLo enad. cor

Accuracy: $1-2 \%$ plus 2.5% normalisation
Achieved with sophisticated unfolding technique

CFNS workshop, May 2020
S.Schmitt, HERA introduction

Measurement of α_{s}

- Fundamental parameter in QCD: coupling α_{s}
- Coupling is running with the scale $\mu^{2}=Q^{2}+P_{T}^{2}$

- Probe this running in a single experiment
- Extract the coupling at the conventional scale $\mu=m_{z}$

CFNS workshop, May 2020

S.Schmitt, HERA introduction
α_{s} determinations in NNLO
H1 and NNLOJET
ABM
ABMP
BBG
HERAPDF2.0Jets (nLo
JR
NNPDF
MMHT
Pre-average DIS [PDG16]
H1PDF2017
H1Jets ($\tilde{\mu}>2 m_{b}$)
H1Jets ($\tilde{\mu}>28 \mathrm{GeV}$)
H1Jets ($\tilde{\mu}>42 \mathrm{GeV}$)
World average [PDG16]

EPJC 77 (2017) 791

