Unfolding: the Collider experience

PHYSTAT-nu 2019

Stefan Schmitt, DESY

This talk is reflecting my personal opinions only.

Examples taken from experiments at LHC and elsewhere are based on published results. The
selection is following my personal biases and certainly is far from being complete and accurate.

The “big” LHC experiments all have their own experts on statistics, hopefully some of these are here
to comment and to correct mistakes.




Outline

 Introduction, definition of “unfolding” for this talk
« Unfolding methods used frequently in Collider experiments
« Comparison
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Cross section measurements

» Collider experiment, measurement of a Toy example B ructed
cross section (in some fiducial volume) 400 = 3 el
. ) ) (2 . £ 9300_ ‘ - reconstructed £ IS rioution
o=nl/L [event count / integrated luminosity] 5% I " [Dewerons |2 differs from
Z 200k 8| z200f, ¢ s| truth
* Repeat this in several regions of phase P j0of o,
. . g A -, - Statistical
space (bin number j=1..N) " O SR B ouatistical
o.=n.lL P,/ GeV P (rec) / GeV
/ / <= Migrations
« Difficulties: between bins

- Statistical fluctuations: number of events n fluctuates around Poisson parameter p.

- Migrations: an event belonging to truth bin | may be reconstructed in reco bin i#
- Inefficiency: an event belonging to truth bin j is not reconstructed as signal
- Background: non-signal processes may also produce a signal-like event

* In this talk, the main discussion is on migrations and statistical fluctuations.
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Unfolding of cross sections

« Statistical model » Unfolding: estimator of the “truth”

- Poisson expectation values are parameters

given by a folding equation, x|, : estimator of the x;
which describes migrations,
inefficiencies and background

truth

 Example: maximum-likelihood
X Ay estimator  ,_ LE™)_,

i 0X;
AU probablhty to ﬁnd truth bin j as reco bin i
€ ]:Zi A, : efficiency to reconstruct truth bin

Special case: dim(x)=dim(y)

b, : expected number of background events — A is a square matrix, invert it
- Observed numbgr of events is F =3 (A7), (y==b)
drawn from a Poisson distribution ’
e
Mj"

P(y;eco’. MJ-):eXp[—pLj] (yreco)/

J
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Matrix inversion example

&

migration probabilities

> i ¢
] [
£ G 300F 5 -*-reconstructed | £
é E 5 ' I:l background é
& %200, ¢ 5
5 .
100F %
.
I - o
— E -~ =
40 0 20 40

P (rec) / GeV

Result shows “oscillating” structures.
Large (anti-)correlations between bins.

P,/ GeV

Qualitative explaination:

Overflow bin

Finite detector resolution o washes out

January 2019

P.(gen) / GeV

the missing information by statistical “noise”
— statistical fluctuations are amplified
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differences between bins. Unfolding “replaces”

Truth

— truth
-& inversion result
test wrt truth:
2/16=0.8 prob=0.701

Overflow bin

P;(gen) / GeV




Constructing the matrix A

« In particle physics, the matrix A is  The event counts are normalized to
reconstructed in most cases using Monte match the data luminosity

Carlo event generators o .
* The unfolding ingredients from

* For each event, determine the reco bin i simulation are

and the truth bin j

. truth sim,truth

« Count number of events Simulated truth: x;=N;""
.. 1 1 : . = sim,reco

~In truth bin | Simulated observation: u,=N

- Inreco bin | Probability matrix: 4=

sim,truth

. . J
- Intruth bin j and reco bin i Background from "fakes": b= N5 3" N,
l / L

i

Often, a “reweighting” is applied to improve the simulation: a weighting function w=f(x) is chosen
such that the predicted (N*™"*) agree better with the data (y.) — improved unfolding input.

Possible problem: the data are used twice (to determine f(x) and for the unfolding. This may give
incorrect uncertainties if the unfolding method chosen produces a notable bias to NJ.S"“'truth
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Regularisation %

« Example of matrix inversion: unfolding results Examples
shows oscillation patterns and large « Bin-by-bin
(anti-)correlations : : . :
- Simple estimator with zero correlation
o Truth - correlation coefficients coefficients but potentially large bias
) [ —truth o . . .
== ’fiﬁ.%mimsun gl © * Tikhonov regularisation
e test wrt truth: = i
£ i 2/16=0.8 prob=0.701 2 = .
%500_| LI - Add prior knowledge as extra
Ny “measurements”, with tunable weight

parameter 1
- Zero T — unbiased result

- Large 1 — bias
lterative methods with given start value
- Ensures that result is positive

L : .. - Small number of iterations: strong bias to
- Cross section is strictly positive start value

- Result is expected to be “smooth” , , .
- Prefer estimators with small correlation - Many iterations — reduced bias

coefficients
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P,/ GeV P;(gen) / GeV
« Regularisation:

Put in prior knowledge, for example:




Unfolding methods overview

 Methods used frequently in Collider experiments
- Square matrices: N =dim(x)=dim(y)=N

« Bin-by-bin
- More general case: N_ . =dim(x) < dim(y)=N

reco

reco

* Non-regularized maximume-likelihood fit (RooFit)
» Least-square with Tikhonov regularisation (TUnfold, TSVDunfold)
 EM iterations with early stopping, “D’Agostini”

Note1: certain implementations of SVD and EM iterations only work with square matrices
Note2: RooUnfold provides a common interface to many unfolding algorithms but also has
comes with certain limitations

January 2019 S.Schmitt, PHYSTAT-nu 2019, Unfolding: collider experience 8




Bin-by-bin corrections

* Main assumption: matrix of probabilities » Approximate formula to estimate the bias
A is approximately diagonal of this method:
« Observed data are “corrected” using the _ A, Njmeen - pimeenneco
: : Purity: P,= ‘ = .
S | m u |at|0 n 1 Nslm,reco §1m,reco
im,gen ! J '
data N BBB expectation: (X, )~(1—P,)x] ™" +P,x\""

ABBB o
X, _f iYVi ’ Where‘ f i Nsim,reco

1

WARNING: Can be quite problematic for
« This estimator by definition is testing models

(statistically) uncorrelated between bins Imagine: simulation was NLO at the

time of publication, purity was 50%

* However, it introduces a bias to the _. unfolded cross section is half-way

simulgtion, depending on the bin “pgrity” between truth and NLO
(fraction of reconstructed events which — goodness of NNLO theory can not
originate from that truth bin) be tested with these datal

Important message: when using BBB despite of purities not close to unity, always
publish both the purities and the (truth) prediction used for unfolding
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Example of a bin-by-bin analysis

kot

» Bin-by-bin analyses have been used
frequently by past experiments

* Nowadays, bin-by-bin corrections often
are still used when measuring kinematic
distributions of resonance decays

 Reason: tracker gives precision
measurement of these kinematic
variables

— matrix A is almost diagonal,
corrections for migrations are very small

 Example: central exclusive production of
J/psi @13 TeV, LHCb [arXiv:1806.04079]

- Signals are extracted in fits to the

1T~ mass distribution

- Migrations between analysis bins are

not corrected for

= 10t
o

uuuuuuu i
= 107} Nowesonmt backgromd |

= E
5 f
z 10

£ o L

é l(l;— “ Wf t
- i

Example fit of i o

J/psi resonance ARERDENIMEN

pp— plyp [nb]

do
dy
D e B W oA N~ 00D
e e e —

4
JAy rapidity

Fit is repeated in

rapidity bins, which are
reconstructed precisely

A bin migration uncertainty has been estimated using simulation to relate the recon-
structed and true rapidity bin. The difference is smaller than 0.06% in all bins and so is
considered negligible.
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Template fits

« Template: shape of a reconstructed « The distinction between “tempate fit” and
distribution predicted by simulation or “unfolding” is made in particle physics
a data control sample approximately along these lines:

« Template fit: determine normalisation UTSIer:SPILaC;‘IeS:ItOSn E/kpeilci:ﬁg)(; g‘geaggne
factors of all templates without regularisation. They often
YR~ AR, include “control” distributions to
A, : template ;j distribution discriminate signal and background

X, : template j normalisation, fit parameter - Unfolding usually involves

regularisation and is often based on
a least-square fits. In many case,
only in the distribution of interest is
probed, whereas background is
subtracted and not included in the fit.

 “Template fit” and “unfolding” are
both dealing with the same problem:
to decompose an observed
distribution into its sources
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Template fit example

 Template fits often are done in  Example: H—yy differential cross
background-dominated analyses sections [CMS, arXiv:1807.03825]

. In many cases RooFit is used as tool — o ;:I\:s_’W 35.9 fb™ (13 TeV) 2 CI\:I'S_) ~ 359 fb’ (13 TeV)
designed to work with many distributions and B ELIAm I preaonin | 2 e |
many bins (signal and control regions) o e 8o o & WiproRemias  ERwisiemo

H‘E 10 e Gy (H ) from CYRMAT-002 =] i ; Gyt 1) from CYRM-17-002
: . . ] o =

* RooFit also can handle non-linear nuisance . 13;;3 Y =i T ESE et
parameters besides the signal and 0 — e
background normalisation factors ] ™0 50040500 80 400 450 00 i gl W s

] ] ] = Bogh e P L YA O
Likelihood function from paper ; SER ST D E S E
et

all the analysis categories. The complete likelihood is given in Eq. : “Oscillating” behavior is typical

L(data| AFH, fipyg, 05, 0p) =

for non-regularized unfolding,

Near My My (50 Aghid KE{@S)SE(meﬂ@)L + ”gOASgOA(m{;«'Héé) + ”gkg B"J"(mfnlﬂg
EE IIJ] n’ + n
] sig bkg
Pois(1gy | + nyy, )Pdf(6s)Pdf (),
January 2019

together with negative /
- )) ey correlation coefficients
(1) z

[Plot of correlation coefficients
taken from ICHEP2018 talk by
V. Tavolaro, backup slides]

S.Schmitt, PHYSTAT-nu 2019, Unfolding: collider experience 12




Least-square & Tikhonov regularisation

« Least-square fit: normal-distributed data, ¢ For zero T: standard least-square fit

approximate for event counts (in analogy to Poisson log-likelihood
e Minimize x?>=-log(L) with regularisation on previous slides)
term added « For non-zero 1: penalty for large

differences between x and x,

= (s e+ (Lo (L)) Do S cilations

V', : covariance of y, 4 : matrix of probabilities « Equations can be solved easily,
y : observations, x : unfolding parameters question is on the choice of T

- TUnfold: test unfolding for many T, select
distinct point for final result (L-curve kink,
minimum correlation, ...)

- TSVDUnfold and related methods: 1 is the
result of an analysis of eigenvalues (of
the matrix ATV-'A or the matrix V?A or
similar)

Xz : bias (simulation truth)
L : regularisation pattern (unity matrix or curvature matrix)
T : regularisation strength
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Two Examples using TUnfold

« Differential ttbar (single {) cross .
sections [CMS, arXiv:1803.03991]

35.9fb ' (13 TeV)
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Parameter 1
is chosen to
minimize the
statistical
correlations

trix, based on a least-squares fit with Tikhonov regularization, implemented in the TUNFOLD
software framework [53]. Regularization dampens nonphysical fluctuations in the unfolded tt
yields, and the regularization parameter is chosen by minimizing the average global statistical
correlation between the bins of each variable. The typical regularization parameters are found
to be of order 10~* — 1073, and significantly lower for the |5‘| variable.
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Jet cross sections in ep collisions
[H1, arXiv:1611.03421 & 1406.4709]

Statistical correlations

Migratio

n Matrix

E Lol ooy b

Recorsinucied

ane not genatated
as Trifet event

Trijet

(B, <prasy
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an not genarated

s Dijet evert

Dijet
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]
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Oy

In this rather complex example, the data
covariance includes non-diagonal

Hadron level

29 Tri';:.e-}:-_,.-"
25 ‘.
2 HA1 g
3 e
3 ’__.-"'{'

5| -

1 -
43 Dijet .
a7 A
31 /
25 PL
19 Pt
13| Pl 2

7 %
43}  Inclusive ]ir--__.-"
37| e
a1 S
)
L 0" Bin

17 131925313743 1 7 131925313743 15913 21 29

Bin inclusive jet Bin dijet Bin trijet

elements (jets emerging from the same
event are correlated). The matrix A has
dimension of order 12000x3300. Only
10% (~320) of the unfolded bins are used
for cross-sections, the other bins are

nuisance parameters for control regions.
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Example using SVD

« Measurement of the A —A pv differential e e
c g 025k @ N = LHCb g 05f (b) ] —+—  LHCb 4

decay rate [LHCDb arXiv:1709.01920] B ™ S T S b

« The decay rate is unfolded as a function wh e 4 a "
] . i : ] Wunfolded ]

of the invariant w oost IS :
w=vy (Ab) v(AC) , with velocity four-vector v=p/m T l-l“w T lj“w

Figure 3: The spectra (a) dNmeas/dw before unfolding and (b) dN,/dw after unfolding, for the
decay /IL' — ,-11'_”_9_,,. The latter spectrum is then corrected for acceptance and reconstruction

L W iS related to the momentu m tranSfer q2 efficiency and fitted to the IW function £g(w) with the procedure discussed in the text.

q2=m2Ab+m2A —2wm  The SVD algorithm used here depends on a
C C single parameter, which is the ordered
Eigenvector index. Choice: k=4

* 14 bins are reconstructed, 7 unfolded

corrected spectrum. The SVD method includes a regularization procedure that depends
upon a parameter k [al_il ranging between unity and the number of degrees of freedom, in
our case 14. Simulation studies demonstrate that k = 4 is optimal in our case. Variations
associated with different choices of k& have been studied and are included in the systematic
uncertainties. We have performed closure tests with different simulation models of the
A} — Afp v, dynamics, and verified that this unfolding procedure does not bias the
reconstructed distribution. The spectra before and after unfolding are shown in Fig.
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EM lterative method

» Basic idea: instead of maximizing the ¢ Typically one would apply such a method for a
likelihood using gradients (Minuit), very large number of bins and sparse
iteratively improve the maximum matrices, where exact inversion of A is not
(EM=Expectation / maximisation) practical (image processing: 10° pixels but

most of the 10" elements of A a zero)

 Few iterations — close to start value _
— the method was introduced for tomography

* Infinite iterations — exact solution image processing by Shepp & Vardi [IEEE

e |lteration prescription: trans.med.im. MI-1 (1982) 113]

A v

(N+1)__ _(N) i Vi

Xj =X /Ejzi 1:1 N
Zk ik Xk

 For HEP, the method was introduced by Multhei/Schorr [NIMA 257 (1987) 371]
* Reinvented as “lterative Bayesian unfolding” by D’Agostini [NIMA 362 (1995) 487]
Since then, used in many HEP analyses (because of its apparent simplicity?)
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Example analysis with iterative method .

+  ATLAS ttbar+jet [arXiv:1082.06572]  hitpiatlas.web.com.chiAllasiGROUPS/

» Cross section is measured differential in transverse momenta

S F ATLAS o Daa 3
& 10 Fiducial phase-space PWGHPYE hy =y =
1000 . E (5=13TeV,320" AL AT TR
- A S LR = N E R R PWGHHT hyge1Sm_ 3
3 A‘I“:; e S = =|” ATLAS simulation 115081 2 T § - o L
— 4 s= ev,d. i = : F o 3 = e =
2 OF sjetexciusive = Single top 265 4-jet exclusive 1S 7 & & F Stat. unc. E
= o L 13 12 = - Stat.+Syst. unc.
7  Zijets O 2801 - S 107" y: |
2 Diboson e 1 20§ 13 - s © E
w -R‘}’u"m oo 13 7224918 - = 3
mm Multijets - ; - . ]
2 Stat.+Syst. unc. 2 .- 1 2 759022 2 - 10°E E
= 2 7254220 3 . E R I E
% 135 — 6 25M20 3 = _3_ eSU t _‘
o e 244620 2 i L 1 -
Reconstructe 5 sl 4 21 2 . N S : | | -
: 2 el - Zlg E i e = e e
— = E 5
: Qs : = 30 3o B —
10 3 i o E =
e Matrixof W @ 0 -\
o —2 1ﬂ23 b b'I't' i 10 %21“’E s o T P P P P s
8 : 26 7 | SR | S P =
L PRI 8 p|r|oa |a| |I I| I|e|S: il § |5=H E
% '0 A0 A0 400 500 606" ':-r.(')g' S $56 5300 0 15 30 45 60 75 90 105120 135 150 165 180 200 230 265 325 4501000 _ 0'50— . T 7T, To BR—T 500 500
(a]

P [GeV] p." [GeV] (detector level) Py [GeV]

For each observable, the unfolding procedure starts from the number of events at reconstruction level in Backg rou nd |S su btracted from data

bin j of the distribution (N....), after subtracting the background events estimated as described in Section 5

(N}-:“)‘ Next, the acceptance correction ﬁfw is defined as the ratio of the nu the elements of each row add up to unity (within rounding). The number of bins is optimised for maximum
information extraction under stable unfolding conditions. This is achieved by requiring that closure and
stress tests are satisfied without introducing any bias. The unfolding is performed using four iterations to

ChO|Ce Of nu mber Of |terat|onS: 4 balance the unfolding stability with respect to the previous iteration (below 0.1%) and the growth of the

statistical uncertainty. The effect of varying the number of iterations by one was found to be negligible.
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Choice of number of iterations

« Measurement shown on previous slide: 4 iterations. Example: probability matrix from
Motivated by: matrix inversion example

migration probabilities

“‘unfolding stability wrt previous iteration”

« Similar criteria are applied in many other HEP analyses
using iterative unfolding

P;(rec) / GeV

£
5
=
Ke]
2
o

In my opinion there is a problem with this criterion, because
it depends critically on the start value:

P.(gen) / GeV

_ i - - : Global correlations are similar for
Simulation out of the box « larger number of iterations Tihkonoy and EM with. N=20

- Simulation tuned to data < smaller number of iterations = =

S 08 . o
But the stat. uncertainties and correlations grow with the B o g i
number of iterations — if too small this may result in 04l . Morsinverson.
underestimated data statistical uncertainties 0'2 ,,
» Proposal: use a different objective to decide # iterations, o
selecting on properties of the covariance matrix (e.g. it -
correlations) 10 10° 10°

iteration
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Summary

« This talk: present four unfolding algorithms which are used frequently in HEP analyses.
Each has its own advantages and drawbacks

. . Technical .

Algorithm Main advantage difficulties Main disadvantage Root Tools

T : , Often deadling  not regularized — correlations ,
Likelihood fit unbiased with many bins  and oscillations between bins RooFit
Least-square small and well Choice of 1, Using least-square and not TUnfold
+Tikhonov controlled bias Binning Poisson — statistical bias TSVDUnfold
Bin-by-bin simple to use none Large bias to simulation RooUnfold
Truncated EM : Choose number . . ... :
terations simple to use of iterations Bias is difficult to quantify RooUnfold

e Some ideas:

- Tikhonov regularisation in Poisson Likelihood fits (RooFit with regularized unfolding?)

- Try to use similar objectives to choose the regularisation strength for Tikhonov and iterative
method, to enable direct comparisons. Example: minimum global correlstion coefficients.
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