

Exclusive Photoproduction of p,p' at HERA

6 Charles of the Dision for Physical Society

Stefan Schmitt, DESY, for the H1 collaboration

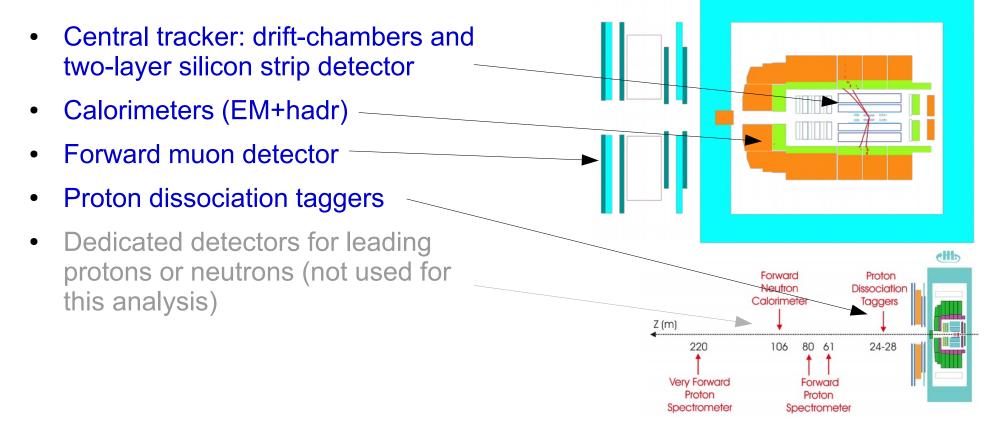
- HERA and the H1 experiment
- Photoproduction of exclusive final states at HERA
- Analysis of $\rho(770) \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- High mass region and $2\pi^+2\pi^-$ final states

Preliminary result H1prelim-18-011 and H1prelim-18-012 http://www-h1.desy.de/publications/H1preliminary.short_list.html

QCD and Diffraction, Nov 2018

S.Schmitt, ρ , ρ' photoproduction

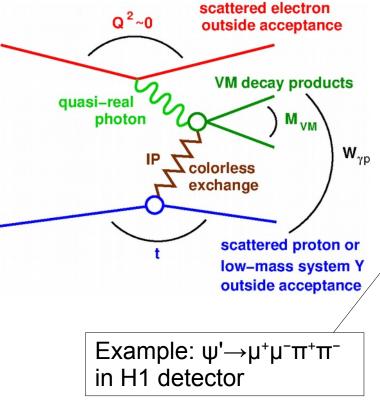
The HERA collider

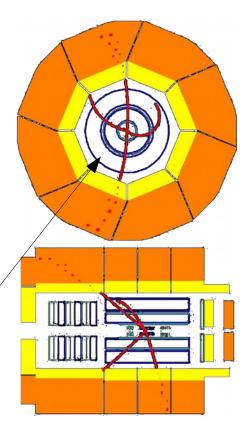

- World's only ep collider 1992-2007
- E_p=920 GeV, E_e=27.6 GeV; √s=320 GeV
- Small datasets with reduced beam energy 460 x 27.6 : √s=225 GeV 575 x 27.6 : √s=252 GeV
- Integrated Luminosity:
 ~0.5 fb⁻¹ per experiment
 ~10 pb⁻¹ per exp. at √s=225 GeV
- e⁺p and e⁻p data

Two collider experiments: H1 and ZEUS

> Multi-purpose detectors Angular coverage with EM+had calorimeters to low angles Tracking in the central region

The H1 experiment




QCD and Diffraction, Nov 2018

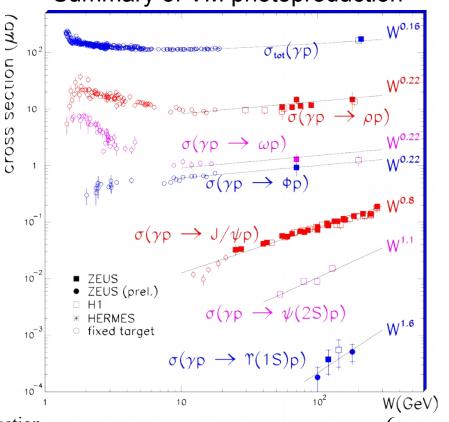
S.Schmitt, ρ , ρ' photoproduction

Diffractive vector meson production at HERA

- Photo-production: electron outside detector acceptance
 Q²<2 GeV²
- Diffractive scattering: proton stays intact or dissociates to low-mass system (M_Y<1.6 GeV)
- Vector-meson (VM= $\rho, \omega, \phi, J/\psi, \Upsilon,...$) quantum numbers identical to photon \rightarrow VM dominance
- Variables: $W_{\gamma p}$, t, $M_{4\pi}$

S.Schmitt, ρ , ρ' photoproduction

Data at W>20 on this figure all are from HERA (LHC data not yet in)


- HERA VM production data are well described by Regge-type power law $\sigma \sim W^{2\epsilon}$
- For soft elastic reactions, exponent is expected to be related to soft pomeron intercept

 $\epsilon \sim 2(\alpha_{IP}(t) - 1) = 2 \times (0.08 + \alpha' \cdot t)$

- Low-mass vector mesons are not measured that well \rightarrow new high-statistics HERA analyses

H1 elastic $\rho(770)$ photoproduction paper: 1996 (~2000 events) ZEUS elastic $\rho(770)$ photoproduction paper: 1997 (~80000 events)

Vector meson photoproduction wrt W

New analysis of the $\rho(770)$

S.Schmitt, ρ,ρ' photoproduction

Events / (0.05 GeV)

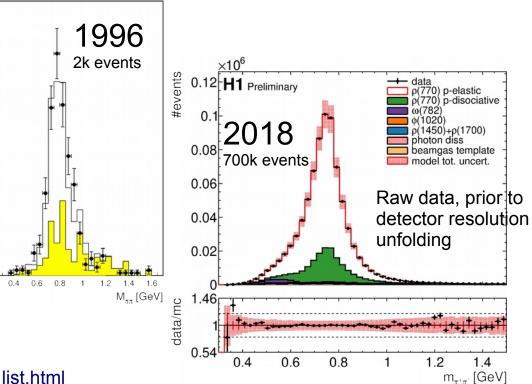
90

80

70

60

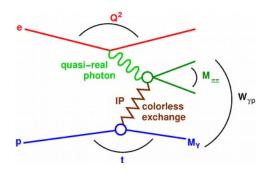
- New analysis: use high-• statistics sample collected in 2006/2007: ~700000 events
- Opens possibility to correct data for detector resolution prior to mass fit


 \rightarrow accurate sampling of the $m(\pi\pi)$ line shape

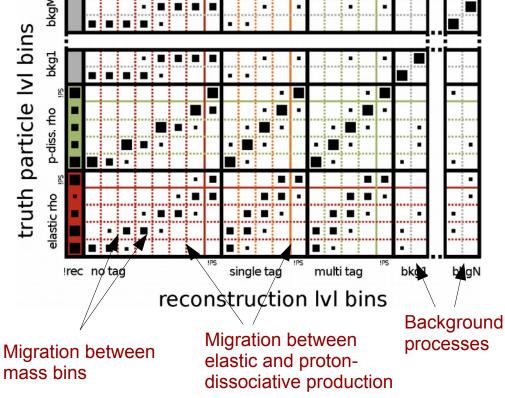
Analysis details: H1prelim-18-012

QCD and Diffraction, Nov 2018

https://www-h1.desy.de/publications/H1preliminary.short list.html


Selection criteria

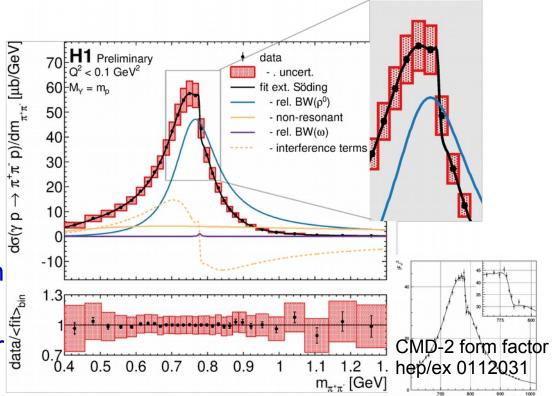
- Integrated luminosity: 1.3 pb⁻¹
- Trigger condition: two tracks in central drift chamber + diffractive vetoes
- No electron in main detector
- Use forward detectors to separate elastic and protondissociatiove production


Fiducial cross se	ection definition
γp energy	20 <w<sub>yp<80 GeV</w<sub>
proton momentum transfer	t <1.5 GeV²
electron momentum transfer	Q ² <0.1 GeV ²
Pion-pion mass	0.4 <m<sub>ππ<1.2 GeV</m<sub>

Proton elastic Proton dissociative $M_{\gamma}=m_{p}$ $m_{p}<M_{\gamma}<10 \text{ GeV}$

Unfolding of detector effects

- Detector effects: mass resolution causes migration between $m_{\pi\pi}$ bins
- Proton-dissociative and elastic production is separated on a statistical basis, using signals in forward detectors
- Illustration of migration effects considered in the unfolding is given to the right



10

• Fine binning in resonance region

- Very good statistical precision
- Systematics dominated by normalisation (p-dissociation)
- Fit $|\rho(770)+\omega+continuum|^2$
- Masses, widths agree with PDG
- Clear evidence for ωp interference in photoproduction off protons
- photoproduction off protons
 Similar in shape to 2-pion form factor in e⁺e⁻→ π⁺π⁻

Unfolded elastic $m_{\pi\pi}$ lineshape

11

dissociative dα(γ p · -10 data/<fit>bin 1.3 Simultaneous fit of both m_m spectra with dati 0.6 0.5 0.8 1.2 0.5 0.6 0.7 0.8 0.9 1.1 09 $\rho+\omega+continuum$ m_++_+ [GeV m_{π*π'} [GeV] When looking in the full W-range, the relative sizes of the three contributions $(\rho,\omega,continuum)$ are similar for elastic and p-dissociative production

Both elastic and protondissociative production $(M_{\sim} < 10 \text{ GeV})$ are extracted

 $\sigma_{\pi^+\pi^-}$ (elastic)=(11.36±0.05±1.03)µb $\sigma_{\pi^{+}\pi^{-}}$ (p-dissociative) = $(6.22 \pm 0.06 \pm 1.16) \mu b$

QCD and Diffraction, Nov 2018

 $\pi^{+}\pi^{-}p)/dm_{\pi^{+}\pi^{-}}[\mu b/GeV]$ 70 H1 Preliminary $Q^2 < 0.1 \text{ GeV}^2$ H1 Preliminary 35 $Q^2 < 0.1 \text{ GeV}^2$ data - . uncert. /qm/ $30^{Em_{p} < M_{Y} \le 10 \text{ GeV}}$ $60 M_{y} = m_{o}$ ext. Södina rel. BW(p0) 50

40Ē

30

20

Overall, p-dissociation is about 1/2 of the elastic production

Lineshape in p-dissociative production

non-resonant

- interference terms

elastic

rel. BW(w)

25

20

15

10

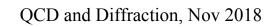
Y)/dm

π⁺π

d

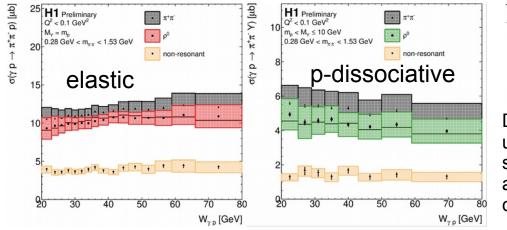
data

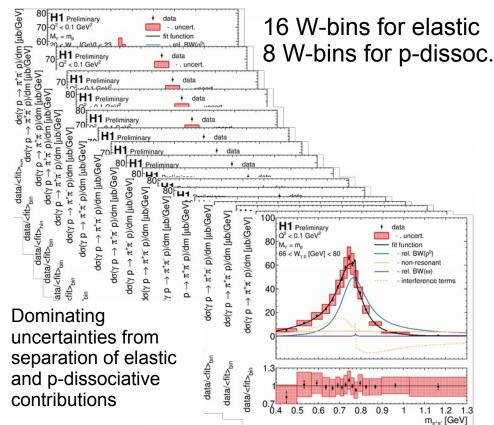
uncert.


it ext. Söding

rel. BW(o⁰)

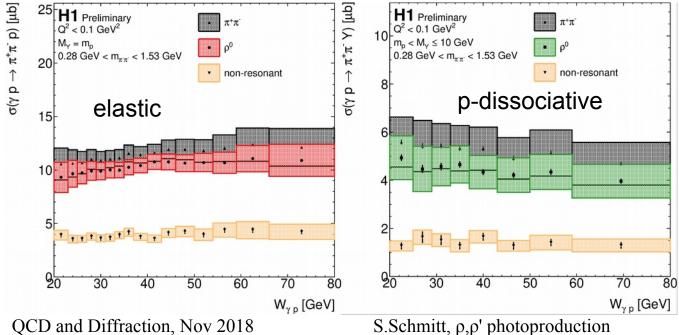
rel. BW(w)


non-resonant


- interference terms

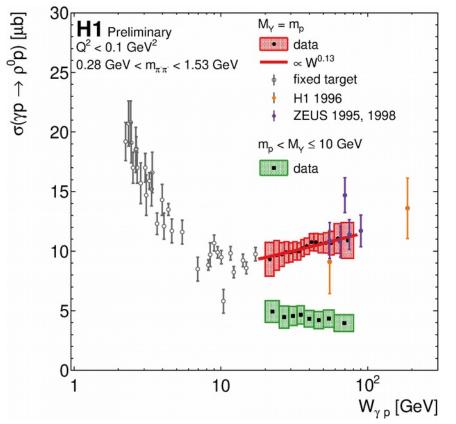
Energy dependence determination

- Measure and unfold doubledifferentially in W and m_{ππ}
- Lineshape analysis is repeated in each unfolded W bin to determine ρ(770) contribution as a function of W



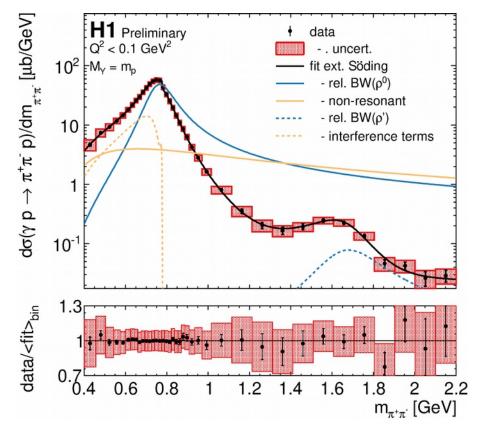
- Measure and unfold double-differentially in W and $m_{\pi\pi}$
- Lineshape analysis is repeated in each unfolded W bin to determine $\rho(770)$ contribution as a function of W

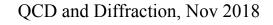
- Elastic cross section rises with W
- Proton-dissociation is about constant


 $\rightarrow possibly caused by M_{\gamma} {<} 10$ GeV condition

As W grows, M_{γ} <10 GeV is a more restrictive condition

Comparison to world data


- W dependence of p(770) photoproduction off protons is measured in the range 20<W<80 GeV
- Very high statistical precision
- Dominating systematic uncertaintes: normalisation due to elastic/p-dissoc separation
- Described by power-law W^{0.13}
- Data fill the gap between low-energy experiments and older HERA experiments at high W



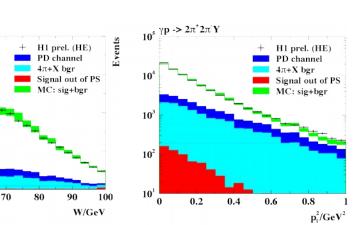
The high-mass region

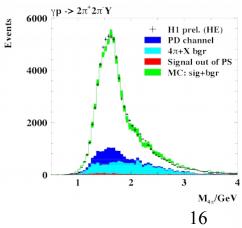
- Investigate high $m_{\pi\pi}$ region
- PDG lists ρ(1450) and ρ(1700)
- Decay to two pions: no evidence for $\rho(1400)$. $\rho(1700)$ is required for a good fit
 - \rightarrow Look into 4π final states

S.Schmitt, ρ , ρ' photoproduction

Selection of exclusive $2\pi^+2\pi^-$ events

- Two data samples High energy √s=319 GeV, _=7.6 pb⁻¹ Low energy √s=225 GeV, _=1.7 pb⁻¹
- Events with four tracks (net charge zero)
- Veto electrons and other energy deposits not associated with tracks
- Veto on signals in the forward muon and proton dissociation tagger


Phase-space definition: $Q^2 < 2 \text{ GeV}^2$ $|t| < 1 \text{ GeV}^2$, $M_Y < 1.6 \text{ GeV}$ High energy: 45 < W/GeV < 100Low energy: 35 < W/GeV < 75 Control plots for high-energy sample: W, p_{T} , $M_{4\pi}$


4000

2000

Background of order 15%. Contribution from p-dissociative events with M_{γ} <1.6 GeV: ~10%

60

Cross section

- For calculating cross section, correct for acceptance
- Acceptance is approximately uniform in t and W but varies with $M_{_{4\pi}}$
- Result for W=75 GeV:

$$\sigma_{\gamma p \to (2\pi^+ 2\pi^-)Y} = (1.07 \pm 0.01_{\text{stat}} \pm 0.14_{\text{sys}}) \mu b$$

Phase-space definition: $Q^2 < 2 \text{ GeV}^2$ (corrected to $Q^2=0$) $W > 1 \text{ GeV}^2$, $M_Y < 1.6 \text{ GeV}$ High energy: 45 < W/GeV < 100Low energy: 35 < W/GeV < 75

Compare to photoproduction of $\pi^+\pi^-$ (previous slides) and $\rho(770)$ [1996,1997]

H1: Nucl.Phys.B463 (1996) 3 [hep-ex/9601004] and ZEUS: Eur.Phys.J. C2 (1998) 247 [hep-ex/9712020]

H1 prel. 2018: $\sigma_{\gamma p \to \pi^+ \pi^- p} = (11.36 \pm 0.05 \pm 1.03) \mu \text{ b for } 20 < W < 80 \text{ GeV}$

H1 1996:
$$\sigma_{\gamma p \to \rho^{0}(770)p} = (9.1 \pm 0.9_{\text{stat}} \pm 2.5_{\text{sys}}) \mu \text{ b at W} = 55 \text{ GeV}$$

ZEUS 1997: $\sigma_{\gamma p \to \rho^{0}(770)p} = (11.2 \pm 0.1_{\text{stat}} + 1.1_{-1.2}) \mu \text{ b at W} = 71.7 \text{ GeV}$

Production rate of $2\pi^+2\pi^-$ is about 1/10 of $\rho(770) \rightarrow \pi^+\pi^-$

QCD and Diffraction, Nov 2018

S.Schmitt, ρ , ρ' photoproduction

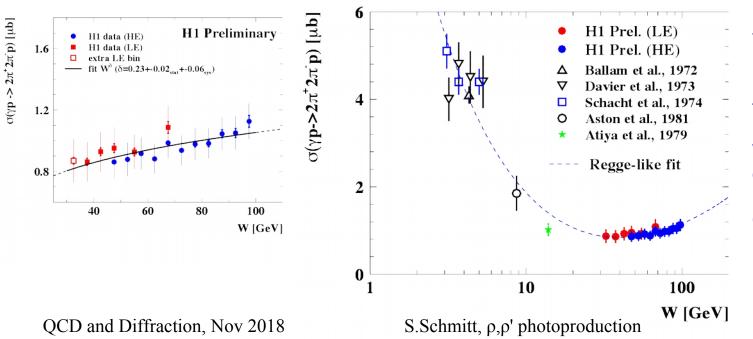
18

Low energy: 35 < W/GeV < 75H1 Prel. (LE) The H1 data are more H1 Prel. (HE) Ballam et al., 1972

 $Q^2 < 2 \text{ GeV}^2$

 $|t| < 1 \text{ GeV}^2$, $M_y = m_p$

precise than older measurements and explore the high energy regime

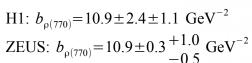

High energy: 45 < W/GeV < 100

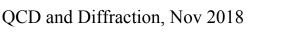
World data are well described by a Regge-like fit (Reggeon and soft Pomeron contributions)

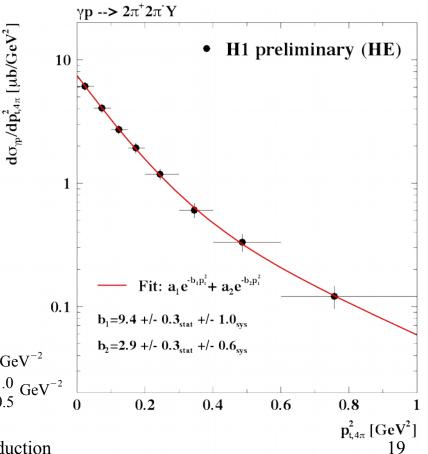
Cross section for $[\gamma p \rightarrow 2\pi^+ 2\pi^- p]$ as a function of energy

Proton-dissociative contributions are subtracted (to compare to data at low W)

Cross sections as a function of W

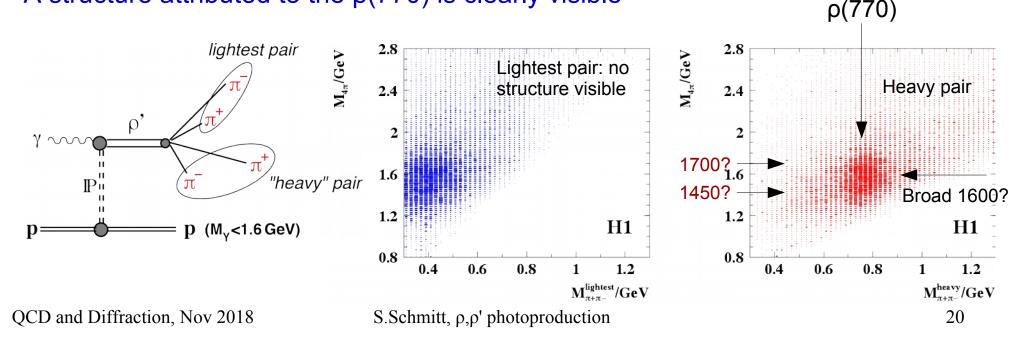



Cross section in t

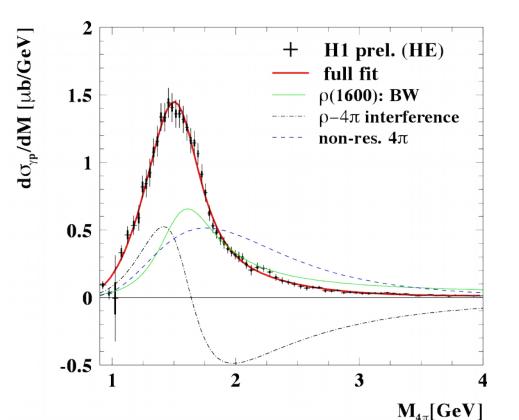


- Dependence on t: exponential drop-off, typical for VM production
- Described by sum of two exponentials
- Process has contributions from elastic and proton-dissociative processes (with different t-slope)
- Also: contributions from resonant and non-resonant reactions (with possibly different t-slope)

Compare to photoproduction of $\rho(770)$ H1: Nucl.Phys.B463 (1996) 3 [hep-ex/9601004] and ZEUS: Eur.Phys.J. C2 (1998) 247 [hep-ex/9712020]



- Investigate correlations of $M_{_{4\pi}}$ with invariant mass of oppositely charged pion pairs
- Caveat: these figures are not corrected for acceptance effects
- A structure attributed to the $\rho(770)$ is clearly visible



A simple resonance fit

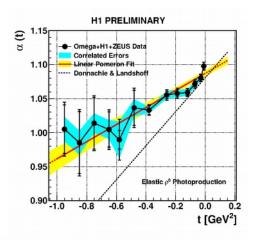
- Simple fit including non-resonant background, Breit-Wigner and complex phase
- Describes data reasonably well

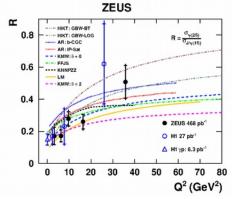
 → the p(1600) assumption from
 PDG before 1988 would work for
 the H1 data ...
- Fits with ρ(1450) and ρ(1700): ongoing work

 New analyses by H1 to measure exclusive photoproduction of two or four charged pions

using high statistics samples recorded in 2006/2007 with the H1 FastTrackTrigger

- Precision data on $\rho(770)$ lineshape from ~700000 $\pi^+\pi^-$ events
- Evidence for $\rho\omega$ interference in photoproduction off protons
- W-dependence measured for 20<W<80 GeV \rightarrow nicely complements existing world data
- High-mass region: region of $\rho(1450)$ and $\rho(1700)$ investigated in 2π and 4π final states. Extends previous measurements to high energy.





- Plan to use ρ(770) event sample to also measure the t-dependence
- Plan to unfold cross-sections in 3D: $m_{\pi\pi}$, W, t

 \rightarrow extract Pomeron trajectory [similar to H1prelim-09-016]

 For 4π final states: plan to extend measurement to DIS, measure production of excited states wrt Q² → probe wave-function [similar to J/psi, Nucl. Phys. B 909 (2016) 934]

Outlook

Backup

QCD and Diffraction, Nov 2018

S.Schmitt, ρ , ρ' photoproduction

The $\rho(1450)$ and $\rho(1700)$

Review article from PDG: one resonance $\rho(1600)$ before 1988, now two resonances $\rho(1450)$ and $\rho(1700)$

77. The $\rho(1450)$ and the $\rho(1700)$

Updated November 2015 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Frascati).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600-MeV region actually contains two ρ -like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. Donnachie [2], with a full analysis of data on the 2π and 4π final

This analysis: measure exclusive diffractive photoproduction of four charged pions (in the mass region corresponding to these resonances)

Mass, width, decay of $\rho(1450)$ and $\rho(1700)$

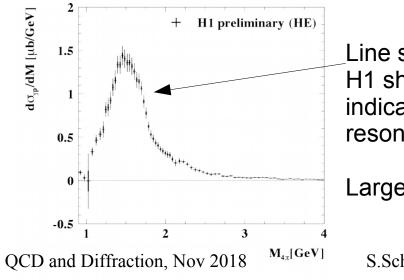
ρ(1450) [r]

 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

Mass $m = 1465 \pm 25$ MeV [/] Full width $\Gamma = 400 \pm 60 \text{ MeV}$ [/]

ρ(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ππ	seen	720
4π	seen	669
e ⁺ e ⁻	seen	732
ηρ	seen	311
$a_2(1320)\pi$ $K\overline{K}$	not seen	54
KK	not seen	541
<i>KK</i> [∗] (892) + c.c.	possibly seen	229
200		620

][500]]	
ρ(1700) [^r]	


 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

Mass $m = 1720 \pm 20$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes) Full width $\Gamma = 250 \pm 100 \text{ MeV} [I]$ ($\eta \rho^0$ and $\pi^+ \pi^-$ modes)

ρ(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
ρππ	dominant	653
$\rho^{0}\pi^{+}\pi^{-}$	large	651
$\rho^{\pm}\pi^{\mp}\pi^{0}$	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
$\pi(1300)\pi$	seen	349

Mass distribution and known resonances

- Following the PDG, the mass distribution is expected to originate from two resonances ρ(1450) & ρ(1700)
- Before 1988, there was one broad $\rho(1600)$ in PDG
- Decay to 4π , possibly by intermediate $\rho(770)$ state

Line shape measured by H1 shows no clear indication of two distinct resonances.

Large width, interference, ...

S.Schmitt, ρ , ρ' photoproduction

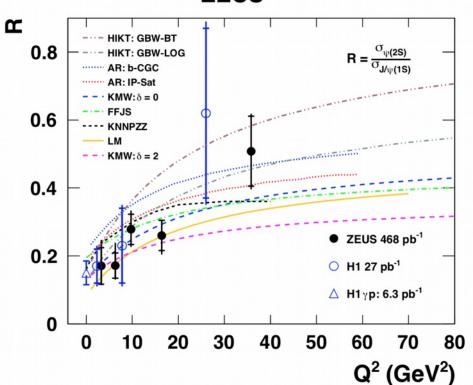
Mass $m = 1465 \pm 25$ MeV [/] Full width $\Gamma = 400 \pm 60 \text{ MeV}^{[l]}$ p(1450) DECAY MODES p (MeV/c)Fraction (Γ_i/Γ) 720 $\pi\pi$ seen 4π 669 e+ e-732 seen 311 seen $a_2(1320)\pi$ 54 KK 541 KK*(892) + c.c. 229 $I^{G}(J^{PC}) = 1^{+}(1^{-})$ ρ(1700) [r]

ρ(1450) [r]

 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

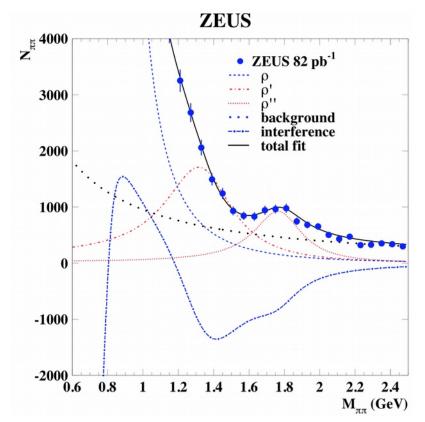
Mass $m = 1720 \pm 20$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes) Full width $\Gamma = 250 \pm 100$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes)

ρ(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
ρππ	dominant	653
$\rho^{0}\pi^{+}\pi^{-}$ $\rho^{\pm}\pi^{\mp}\pi^{0}$	large	651
$\rho^{\pm}\pi^{\mp}\pi^{0}$	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
$\pi(1300)\pi$	seen	349


Q² dependence

- Q² dependence is probing the VM wave function
- Example: measurement of ratio ψ'/ J/ψ wrt Q²
- Cross section rises with Q² similar effect could be present for ρ'

QCD and Diffraction, Nov 2018


ZEUS

ρ' in DIS to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

- ZEUS measurement of the lineshape in DIS (Q²>2 GeV²)
- Here, $\rho(1700)$ peak is clearly separate from $\rho(1450)$

EPJ C 72 (2012) 1869 [arXiv:1111.4905]

S.Schmitt, ρ , ρ' photoproduction