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Why smoothing?

A standard task of data analysis is fitting a model, the form of which is determined by a small number of
parameters, to data. Fitting involves the estimation of the small number of parameters from the data an
requires two steps:

• identification of a suitable model,

• checking to see if the fitted model adequately fits the data,

Parametric models can be flexible, but they will not adequately fit all data sets.

Alternative: models not be written explicitly in terms of parameters; flexible for a wide range of situations.

• produce smoothed plots to aid understanding;

• identifying a suitable parametric model from the shape of the smoothed data;

• eliminate complex effects that are not of direct interest so that attention is focused on the effects of
interest;

• deliver more precise interpolated data for subsequent computation.
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. . . contnd.

A smoother fits a smooth curve through data, the fit is called the smooth (the signal), the residuals the
rough:

Data = Smooth + Rough

• The Signal is assumed to vary smoothly most of the time, perhaps with a few abrupt shifts.

The Rough can be considered as the sum of

• additive noise from a symmetric distribution with mean zero and a certain variance, and

• impulsive, spiky noise: outliers.

Examples for smoothing methods:

• Moving averages; they are popular, but they are hightly vulnerable to outliers.

• Tukey suggested running medians for removing outliers, preserving level shifts, but standard medians
have other deficiencies.

J. W. Tukey: Exploratory Data Analysis, Addison-Wesley, 1977
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Running median smoother

Data from a set {x1, x2, . . . xn} are assumed to be equidistant, e.g. from a time series.

In a single smooth operation values smoothed values yi are calculated from a window of the set {x1, x2, . . . xn};
then the yi replace the xi in the set.

In a median smooth with window size 2 · k + 1, the smoothed value yi at location i in the set {x1, x2, . . . xn}
is the middle value of xi−k, xi−k+1, . . . , xi+k−1, xi+k:

yi = median [xi−k, xi−k+1, . . . , xi+k−1, xi+k]

Especially the window size 3 is important. It can be realized by the statement

y(i) = min(max(x(i-1),x(i)) , max(x(i),x(i+1)) , max(x(i+1),x(i-1)) )

For median with window size three, there is a special prescription to modify (smooth) the endpoints, using
Tukey’s extrapolation method:

y1 = median[y2, y3, 3y2 − 2y3] yn = median[yn, yn−1, 3yn−1 − 2yn]

A large window size requires a sorting routine.

Running medians are efficiently in removing outliers.
Running medians are supplemented by other single operations like averaging. Several single operations are
combined to a complete smooth.
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Single operations

The following single operations are defined:

[2,3,4,5,. . . ] Perform median smooth with the given window size. For median with window size three,
smooth the two end values using Tukey’s extrapolation method

y1 = median[y2, y3, 3y2 − 2y3] yn = median[yn, yn−1, 3yn−1 − 2yn]

[3’ ] Perform median smooth with the window size 3, but do not smooth the end-values.

R following a median smooth: continue to apply the median smooth until no more changes occur.

H Hanning: convolution with a symmetrical kernel with weights (1/4, 1/2, 1/4), (end values are not
changed)

smoothed value yi =
1
4
xi−1 +

1
2
xi +

1
4
xi+1

G Conditional hanning (only non-monotone sequences of length 3)

S Split: dissect the sequence into shorter subsequences at all places where two successive values are identical,
apply a 3R smooth to each sequence, reessemble and polish with a 3 smooth.

> Skip mean: convolution with a symmetrical kernel with weights (1/2, 0, 1/2),

smoothed value yi =
1
2
xi−1 +

1
2
xi+1

Q quadratic interpolation of flat 3-areas.
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Combined operations

Single operations are combined to the complete smoothing operation like 353H.

The operation twice means doubling the sequence:

• After the first pass the residuals are computed (called reroughing);

• the same smoothing sequence is applied to the residuals in a second pass, adding the result to the smooth
of the first pass.

[4253H,twice ] Running median of 4, then 2, then 5, then 3 followed by hanning. The result is then roughed
by computing residuals, applying the same smoother to them and adding the result to the smooth of
the first pass.
This smoother is recommended.

[3RSSH,twice ] Running median of 3, two splitting operations to improve the smooth sequence, each of
which is followed by a running median of 3, and finally hanning. Reroughing as described before.
Computations are simple and can be calculated by hand.

[353QH ] older recipe, used in SPLFT.
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Tracking trends

Standard running medians have deficiencies in trend periods.

Suggested improved strategy: fit at each location i a local linear trend within a window of size 2 k + 1:

yi+j = yi + j βi j = −k, . . . + k

with slope βi to the data {xi−k, . . . xi+k} by robust regression.

Example: Siegel’s repeated median removes the data slope before the calculation of the median:

yi = median [xi−k + k βi, . . . , xi+k − k βi]

βi = medianj=−k,...+k

[
median`6=j

xi+j − xi+`

j − `

]
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Orthogonal polynomials

Given data yi with standard deviation σi, i = 1, 2, . . . n.

If data interpolation required, but no parametrization known: fit of normal general p-th polynomial to the
data

f(xi) ∼= yi with f(x) =
p∑

j=0

aj xj

Generalization of least squares straight-line fit to general p-th order polynomial straightforward:
matrix AT WA contains sum of all powers of xi up to

∑
x2p

i .

Disadvantage:

• fit numerically unstable (bad condition number of matrix);

• statistical determination of optimal order p difficult;

• value of coefficients aj depend on highest exponent p.

Better: fit of orthogonal polynomial

f(x) =
p∑

j=0

ajpj(x)

with pj(x) constructed from the data.
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Straight line fit

Parametrization
f(x) = a0 + a1x replaced by f(x) = a0 · p0(x) + a1 · p1(x)

x mean value 〈x〉 =
∑

wixi∑
wi

with weight wi = 1/σ2
i

The orthogonal polynomials p0(x) and p1(x) are defined by

p0(x) = b00

p1(x) = b10 + b11x = b11 (x− 〈x〉) .

with coefficients b00 and b11

b00 =

(
n∑

i=1

wi

)−1/2

b11 =

(
n∑

i=1

wi (xi − 〈x〉)2
)−1/2

with the coefficient b10 = −〈x〉 b11.

AT WA =
( ∑

wip
2
0(xi)

∑
wip0(xi)p1(xi)∑

wip0(xi)p1(xi)
∑

wip
2
1(xi)

)
=
(

1 0
0 1

)
AT Wy =

( ∑
wip0(xi)yi∑
wip1(xi)yi

)
=
(

a0

a1

)
i.e. covariance matrix is unit matrix and parameters a are calculated by sums (no matrix inversion). Intercept
a0 and slope a1 are uncorrelated.
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General orthogonal polynomial

f(x) =
p∑

j=0

ajpj(x) with AT WA = unit matrix

. . .means construction of orthogonal polynomial from (for) the data!

Construction of higher order polynomial pj(x) by recurrence relation:

γpj(x) = (xi − α) pj−1(x)− βpj−2(x)

from the two previous functions pj−1(x) and pj−2(x) with parameters α and β defined by

α =
n∑

i=1

wi xi p
2
j−1(xi) β =

n∑
i=1

wi xi pj−1(xi) pj−2(xi)

with normalization factor γ given by

γ2 =
n∑

i=1

wi [(xi − α) pj−1 (xi)− βpj−2 (xi)]
2

Parameters âj are determined from data by

âj =
n∑

i=1

wipj(xi) · yi
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Third order polynomial fit Example

Interpolated function value and error : f =
p∑

j=0

ajpj(xi) σf =

 p∑
j=0

p2
j (xi)

1/2

0 10 20
-5

0

5

Data points and 3. order polynomial fit
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Determination of optimal order Spectrum of coefficients

• Fit sufficiently high order p and test value of each coefficient aj , which are independent and have a
standard deviation of 1;

• remove of all higher, insignificant coefficients, which are compatible with zero.

0 5 10
0

5

10

15

Coefficients of orthogonal polynomials

index of coefficient j

co
ef

fi
ci

en
t a

Note: each coefficient is determined by all data points. True alues aj with larger index j approach zero rapidly
for a smooth dependence (similar to Fourier analysis and synthesis). A narrow structure requires many terms.
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Least squares smoothing

From publications:

In least squares smoothing each point along the smoothed curve is obtained from a polynomial regression
with the closest points more heavily weighted.

Eventually outlier removal by running medians should precede the least squares fits.

A method called loess includes “locally weigthed regression.”
Orthogonal polynomials allow to determine the necessary maximum degree for each window.

In the histogram smoother SPLFT least squares smoothing using orthogonal polynomials is used to estimate
the higher derivatives of the smooth signal from the data.
These derivative are then used to determine an optimal knot sequence for a subsequent B-spline fit of the
data, which gives the final smooth result.
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Transformations

Smoothing works better if the true signal shape is rather smooth. Transformations can improve the result
of a smoothing operation by smoothing the shape of the distribution and/or to stabilize the variance to the
data.
Taking the logarithm is an efficient smoother for exponential shapes.

Stabilization of the variance:

• Poisson data x (counts) with variance V = x are transformed by

y =
√

x σy = 1/2

or better y =
√

x +
√

x + 1− 1 σy = 1

to data with constant variance. The last transformation has a variance of one plus or minus 6 %. In
addition the shape of the distribution becomes smoother.

• Data x from a binomial distribution (n trials) have a variance which is function of its expected value
and of the sample size n. A proposed transformation (Tukey) is

y = arcsin
√

x/(n + 1) + arcsin
√

(x + 1)/(n + 1)

with a variance of y within 6 % of 1/(n + 1/2) for almost all p and n (where np > 1).

• For calorimeter data E with relative standard deviation σ(E)/E = h/
√

E are transformed to constant
variance by

y =
√

E σy =
1
2
h
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Spline functions

A frequent task in scientific data analysis is the interpolation of tabulated data in order to allow the accurate
determination of intermediate data. If the tabulated data originate from a measurement, the values may
include measurement errors, and a smoothing interpolation is required.

The figure shows n = 10 data points at equidistant ab-
scissa value xi, with function values yi, i = 1, 2, . . . 10.
A polynomial P (x) of order n − 1 can be constructed
with P (xi) = yi (exactly), as is shown in the figure
(dashed curve). As interpolating function one would
expect a function without strong variations of the cur-
vature. The figure shows that high degree polynomials
tend to oscillations, which make the polynomial unac-
ceptable for the interpolation task. The full curve is an
interpolating cubic spline function.

0 2 4 6 8 10
0

2

4

6

8

10

r r r
r

r r r r
r r
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Cubic splines

Splines are usually constructed from cubic polynomials, although other orders are possible. Cubic splines
f(x) interpolating a set of data (xi, yi), i = 1, 2, . . . , n with a ≡ x1 < x2 < . . . < xn−1 < xn ≡ b are defined
in [a, b] piecewise by cubic polynomials of the form

si(x) = ai + bi (x− xi) + ci (x− xi)
2 + di (x− xi)

3 xi ≤ x ≤ xi+1

for each of the (n− 1) intervals [xi, xi+1] (in total 4(n− 1) = 4n− 4 parameters). There are n interpolation
conditions f(xi) = yi. For the (n− 2) inner points 2 ≤ i ≤ (n− 1) there are the continuity conditions

si−1(xi) = si(xi) s
′
i−1(xi) = s

′
i(xi) s

′′
i−1(xi) = s

′′
i (xi) .

The third derivative has a discontinuity at the inner points.

Two additional conditions are necessary to define the spline function f(x). One possibility is to fix the values
of the first or second derivative at the first and the last point. The co-called natural condition requires

f ′′(a) = 0 f ′′(b) = 0 natural spline condition

i.e. zero curvature at the first point a ≡ x1 and the last point b ≡ xn. This condition minimizes the total
curvature of the spline function: ∫ b

a
|f ′′ (x) |2 dx = minimum .

However this condition is of course not optimal for all applications. A more general condition is the so-called
not-a-knot condition; this condition requires continuity also for the third derivative at the first and the last
inner points, i.e. at x2 and xn−1.
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B-splines

B-splines allow a different representation of spline functions, which is useful for many applications, especially
for least squares fits of spline funtions to data. A single B-spline of order k is a piecewise defined polynomial
of order (k − 1), which is continuous up to the (k − 2)-th derivative at the transitions. A single B-spline is
non-zero only in a limited x-region, and the complete function f(x) is the sum of several B − splines, which
are non-zero on different x-regions, weighted with coefficients ai:

f(x) =
∑

i

aiBi,k (x)

0 2 4 6 8 10
0

2

4

6

8

t t t
t

t t t t
t t The figure illustrates the decomposi-

tion of the spline function f(x) from
the previous figure into B-splines. The
individual B-spline functions are shown
as dashed curves; their sum is equal to
the interpolating spline function.
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. . . contnd.

B-splines are defined with respect to an ordered set of knots

t1 < t2 < t3 < . . . < tm−1 < tm

(knots may also coincide – multiple knots). The knots are also written as a knot vector T

T = (t1, t2, t3, . . . , tm−1, tm) knot vector .

B-splines of order 1 are defined by

Bi,1(x) =

{
1 for ti ≤ x ≤ ti+1

0 else
.

Higher order B-splines can be defined through the recurrence relation

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x)

In general B-splines have the following properties:

Bi,k(x) > 0 for ti ≤ x ≤ ti+k

Bi,k(x) = 0 else .

The B-splines Bi,k(x) is continuous at the knots ti for the function value and the derivative up to the (k−2)-th
derivative. It is nonzero (positive) only for ti ≤ x ≤ ti+k, i.e. for k intervals.
Furthermore B-splines in the definition above add up to 1:∑

i

Bi,k(x) = 1 for x ∈ [tk, tn−k+1] .
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B-splines with equidistant knots

For equidistant knots, i.e. ti = i, uniform B-splines are defined and the recurrence relation is simplified to

Bi,k(x) =
x− i

k − 1
Bi,k−1(x) +

i + k − x

k − 1
Bi+1,k−1(x)

A single B-spline is shown below together with the derivatives up to the third derivative in the region of four
knot intervals.

A cubic B-spline (order k = 4) and the
derivatives for an equidistant knot dis-
tance of one. The B-spline and the
derivatives consist out of four pieces.
The third derivative shows discontinu-
ities at the knots.
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Least squares fits of B-splines

In the B-spline representation fits of spline functions to data are rather simple, because the function depends
linearly on the parameters ai (coefficients) to be determined by the fit.
The data are assumed to be of the form xj , yj , wj for i = j, 2, . . . , n. The values xj are the abscissa values
for the measured value yj with weight wj . The weight wj is defined as 1/(∆yj)2, where ∆yj is one standard
deviation of the measurement yj . The least squares principle requires to minimize the expression

S (a) =
n∑

j=1

wi

(
yj −

∑
i

aiBi(xj)

)2

For simplicity the B-splines are written without the k, i.e. Bi(x) ≡ Bi,k. The number of parameters is m− k,
the parameters are combined in a m− k-vector a.
The parameter vector a is determined by the solution of the system of linear equations

Aa = b ,

where the elements of the vector b and the square matrix A are formed by the following sums:

bi =
n∑

j=1

wj Bi(xj) yj Aii =
n∑

j=1

wj B2
i (xj)

Aik =
n∑

j=1

wj Bi(xj) ·Bk(xj)

The matrix A is a symmetric band matrix, with a band width of k, i.e. Aik = 0 for all i and k with |i− k| >
spline order.
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The SPLFT algorithm

The SPLFT program smoothes histogram data and has the following steps:

• determination of first and last non-zero bin and transformation of data to stable variance, assuming
Poisson distributed data;

• 3G53QH smoothing and piecewise fits of orthogonal polynomials (5, 7, 9, 11, 13 points) in overlapping
intervals of smoothed data, enlarging/reducing intervals depending on the χ2 value; result is weighted
mean of overlapping fits;

• fourth (numerical) derivative from result and definition of knot density ki as fourth root of abs of fourth
derivative with some smoothing;

• determine number ni of inner knots from integral of ki, perform spline fits on original data using ni− 1,
ni and ni + 1 knot positions, determined to contain the same ki-integral between knots, and repeat fit
with best number;

• inner original-zero regions of length > 2 are set to zero;

• backtransformation

• search for peaks in smoothed data; and fits of gaussian to peaks in original data, with improvement of
knot density;

• repeat spline fits using improved knot positions;

• backtransformation and normalization.
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A new track-fit algorithm

A track-fit algorithm, based on a new principle, has been developed, which has no explicit parametrization
and allows to take into account the influence of multiple scattering (“random walk”).

The fit is an attempt to reconstruct the true particle trajectory by a least squares fit of n (position) parameters,
if n data points are measured.

There are three variations of the least squares fit:

• a track fit with n (position) parameters, assuming a straight line (no mean curvature);

• + determination of a curvature κ, i.e. n + 1 parameters;

• + determination of a curvature κ and a time zero T0 (for drift chamber data), i.e. n + 2 parameters.

The result is obtained in a single step (no iterations).

A band matrix equation (band width 3) is solved for the straight line fit, with CPU time ∝ n.

More complicated matrix equations have to be solved in the other cases, but the CPU time is still ∝ n (and
only slightly larger then in the straight line fit).

The fit can be applied to determine the residual curvature, after e.g. a simple fixed-radius track fit.
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Multiple scattering

In the Gaussian approximation of multiple scattering the width parameter θ0 is proportional to the square
root of x/X0 and to the inverse of the momentum, where X0 is the radiation length of the medium:

θ0 =
13.6 MeV

βpc

√
x

X0

[
1 + 0.038 ln

x

X0

]
.

In case of a mixture of many different materials with different layers one has to find the total length x and
the radiation length X0 for the combined scatterer. The radiation length of a mixture of different materials
is approximated by

1
X0

=
∑

j

wj

X0,j
,

where wj is the fraction of the material j by weight and X0,j is the radiation length in the material.
The effect of multiple scattering after traversal of a medium of
thickness x can be described by two parameters, e.g. the deflection
angle θplane, or short θ, and the displacement yplane, or short ∆y,
which are correlated. The covariance matrix of the two variables
θ and ∆y is given by

V θ,∆y =
(

θ2
0 xθ2

0/2
xθ2

0/2 x2θ2
0/3

)
The correlation coefficient between θ and ∆y is ρθ,∆y =

√
3/2 =

0.87.

A charged particle incident from
the left in the plane of the figure
traverses a medium of thickness x
(from PDG).
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Reconstruction of the trajectory

The true trajectory coordinate at the plane with xi is denoted by ui. The difference between the measured
and the true coordinate, yi − ui, has a Gaussian distribution with mean zero and variance σ2

i , or

yi − ui ∼ N(0, σ2
i )

An approximation of the true trajectory is given by a polyline, connecting the points (xi, ui). The angle of
the line segments to the x-axis is denoted by α. The tanαi and tanαi+1 values of the line segments between
xi−1 and xi, and between xi and xi+1 are given by

tanαi =
ui − ui−1

xi − xi−1
tanαi+1 =

ui+1 − ui

xi+1 − xi

and the angle βi between these two line segments is given by

tanβi = tan (αi+1 − αi) =
tanαi+1 − tanαi

1 + tanαi · tanαi+1

The difference between the tanα-values and hence the angle βi will be small, for small angles tanβ is well
approximated by the angle tan β itself and thus

βi ≈ fi · (tanαi+1 − tanαi) with factor fi =
1

1 + tanαi · tanαi+1

is a good approximation.
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. . . contnd.

The angle βi between the two straight lines connecting the points at ui−1, ui and ui+1 can be expressed by

βi =
∆yi+1

∆xi+1
− ∆yi

∆xi
+ θi

and error propagation using the covariance matrix can be used to calculate the variance of βi.

The mean value of the random angle βi is zero and the distribution can be assumed to be a Gaussian with
variance θ2

β,i, given by

θ2
β,i =

(θ2
0,i−1 + θ2

0,i)
3

.

The correlation between adjacent β-values is not zero; the covariance matrix between βi and βi+1 is given by

V =

(θ2
0,i + θ2

0,i+1

)
/3 θ2

0,i+1/6

θ2
0,i+1/6

(
θ2
0,i+1 + θ2

0,i+2

)
/3


The correlation coefficeint βi and βi+1 is ρ = 1/4 in the case θ0,i = θ0,i+1 = θ0,i+2 and becomes ρ = 1/2 for
the extreme case θ0,i+1 � θ0,i and θ0,i+1 � θ0,i+2.

The fact, that the correlation coefficient is non-zero and positive corresponds to the fact that a large scatter
in a layer influence both adjacent β-values.
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The track fit

In the following the correlation between adjacent layers is neglected. The angles βi can be considered as
(n− 2) measurements in addition to the n measurements yi, and these total (2n− 2) measurements allow to
determine estimates of the n true points ui in a least squares fit by minimizing the function S

S =
n∑

i=1

(yi − ui)
2

σ2
i

+
n−1∑
i=2

β2
i

θ2
β,i

with respect to the values ui. The angles βi are linear functions of the values ui

βi = fi ·
[
ui−1

1
xi − xi−1

− ui
xi+1 − xi−1

(xi+1 − xi) (xi − xi−1)
+ ui+1

1
xi+1 − xi

]
,

if the factors fi are assumed to be constants, and thus the problem is a linear least square problem, which is
solved without iterations. The vector u that minimizes the sum-expression S is given by the solution of the
normal equations of least squares

C11 C12 C13

C21 C22 C23 C24

C31 C32 C33 C34 C35

C42 C43 C44 C45 C46

C53 C54 C55 C57 C68

. . .





u1

u2

u3

u4

u5
...


=



r1

r2

r3

r4

r5
...


The matrix C is a symmetric band matrix.
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The solution

The solution of a matrix equation
Cu = r

with a band matrix C is considered. In a full matrix inversion band matrices loose their band structure and
thus the calculation of the inverse would require a work ∝ n3. An alternative solution is the decomposition
of the matrix C according to

C = LDLT

where the matrix L is a left triangular matrix and D is a diagonal matrix; the band structure is kept in this
decomposition. The decomposition allows to rewrite the matrix equation in the form

L
(
DLTu

)
= Lr = b with v = DLTu

and now the matrix equation can be solved in two steps:

solve Lv = r for v by forward substitution, and

solve LTu = D−1v for u by backward substitution.

Thus making use of the band structure reduces the calculation of the solution to a work ∝ n instead of ∝ n3.
It is noted that the inverse matrix can be decomposed in the same way:

C−1 =
(
L−1

)T
D−1L−1

The inverse matrix L−1 is again a left triangular matrix.
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Fit of straight multiple-scattering tracks

A simulated 50 cm long track with 50 data points of 200 µm measurement error (no magnetic field), fitted
without curvature (vertical scale expanded by a factor ≈ 50):

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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. . . contnd.

A simulated 50 cm long track with 50 data points of 200 µm measurement error (no magnetic field), fitted
without curvature:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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. . . contnd.

A simulated 50 cm long track with 50 data points of 200 µm measurement error (no magnetic field), fitted
without curvature:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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Curved tracks

The ideal trajectory of a charged particle with momentum p (in GeV/c) and charge e in a constant magnetic
field B is a helix, with radius of curvature R and pitch angle λ. The radius of curvature R and the momentum
component perpendicular to the direction of the magnetic field are related by

p cos λ = 0.3BR

where B is in Tesla and R is in meters. In the plane perpendicular to the direction of the magnetic field the
ideal trajectory is part of a circle with radius R. Aim of the track measurement is to determine the curvature
κ ≡ 1/R.

The formalism has now to be modified to describe the superposition of the deflection by the magnetic field
and the random walk, caused by the multiple scattering.

The segments between the points (xi, ui) and (xi+1, ui+1), which were straight lines in the case on field B = 0,
are now curved, with curvature κ. The chord ai of the segment is given by

ai =
√

∆x2
i + ∆yi with ∆xi = xi+1 − xi ∆yi = yi+1 − yi

≈ ∆xi + 1/2
∆y2

i

∆xi

where the latter is a good approximation for ∆xi � ∆yi. The angle γi between the chord and the circle at
one end of the chord is given by

γi ≈ sin γi = aiκ/2

and thus in a very good approximation proportional to the curvature κ.
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Fit of curved multiple-scattering tracks

A simulated 50 cm long track with 50 data points of 200 µm measurement error in magnetic field, fitted with
curvature:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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. . . contnd.

A simulated 50 cm long track with 50 data points of 200 µm measurement error in magnetic field, fitted with
curvature:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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Fit of curved track with kink

A simulated 50 cm long track with 50 data points of 200 µm measurement error in magnetic field, with a
kink:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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. . . contnd.

A simulated 50 cm long track with 50 data points of 200 µm measurement error in magnetic field, with a
kink:

Fit of "random walk" curve

The thick blue line is the fitted line, the thin magenta line is the original particle trajectory.
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The new track fit used for outlier rejection . . . H1 CJC data

(1) Track fit with κ and T0 determination . . .Fit of "random walk" curve

(2) . . . down-weighting of first outlier . . .Fit of "random walk" curve

(3) . . . and down-weighting of next outlier . . .Fit of "random walk" curve

(4) . . . finally without outlier.Fit of "random walk" curve

Outliers are hits with > 3σ deviations to fitted line. One outlier is down-weighted at a time.
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The same track fit after T0 correction

Three outliers are removed (by down-weighting) and all hits are corrected for the T0, determined in the
previous fit: Fit of "random walk" curve

Volker Blobel – University of Hamburg Smoothing page 37



Smoothing

Why smoothing? 2

Running median smoother 4
Single operations . . . . . . . . . . . . . . . . . . . . . 5
Combined operations . . . . . . . . . . . . . . . . . . . 6
Tracking trends . . . . . . . . . . . . . . . . . . . . . . 7

Orthogonal polynomials 8
Straight line fit . . . . . . . . . . . . . . . . . . . . . . 9
General orthogonal polynomial . . . . . . . . . . . . . 10
Third order polynomial fit . . . . . . . . . . . . . . . . 11
Determination of optimal order . . . . . . . . . . . . . 12
Least squares smoothing . . . . . . . . . . . . . . . . . 13

Transformations 14

Spline functions 15
Cubic splines . . . . . . . . . . . . . . . . . . . . . . . 16
B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B-splines with equidistant knots . . . . . . . . . . . . 19
Least squares fits of B-splines . . . . . . . . . . . . . . 20

The SPLFT algorithm 21

A new track-fit algorithm 22
Multiple scattering . . . . . . . . . . . . . . . . . . . . 23
Reconstruction of the trajectory . . . . . . . . . . . . 24
The track fit . . . . . . . . . . . . . . . . . . . . . . . 26
The solution . . . . . . . . . . . . . . . . . . . . . . . 27
Fit of straight multiple-scattering tracks . . . . . . . . 28
Curved tracks . . . . . . . . . . . . . . . . . . . . . . . 31
Fit of curved multiple-scattering tracks . . . . . . . . 32
Fit of curved track with kink . . . . . . . . . . . . . . 34

The new track fit used for outlier rejection . . . . . . . 36
The same track fit after T0 correction . . . . . . . . . 37


	Why smoothing?
	Running median smoother
	Single operations
	Combined operations
	Tracking trends

	Orthogonal polynomials
	Straight line fit
	General orthogonal polynomial
	Third order polynomial fit
	Determination of optimal order
	Least squares smoothing

	Transformations
	Spline functions
	Cubic splines
	B-splines
	B-splines with equidistant knots
	Least squares fits of B-splines

	The SPLFT algorithm
	A new track-fit algorithm
	Multiple scattering
	Reconstruction of the trajectory
	The track fit
	The solution
	Fit of straight multiple-scattering tracks
	Curved tracks
	Fit of curved multiple-scattering tracks
	Fit of curved track with kink
	The new track fit used for outlier rejection
	The same track fit after T0 correction


