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χ2 minimisation

Confusion in terminology: A popular method for parameter estimation is χ2 minimisation χ2 = ∆T V −1∆ –
is this identical to least squares?
The minimum value of the objective function in Least Squares follows often (not always) a χ2 distribution.

In contrast to the well-defined standard methods
• in χ2 minimisation a variety of different non-standard concepts is used,
• often apparently motivated by serious problems to handle the experimental data in a consistent way;
• especially for the error estimation there are non-standard concepts and methods.

From publications:

To determine these parameters one must minimize a χ2 which compares the measured values . . . to
the calculated ones . . .

Our analysis is based on an effective global chi-squared function that measures the quality of the
fit between theory and experiment . . .

Two examples are given, which demonstrate that χ2 minimisation can give biased results:

• Calorimeter calibration

• Averaging data with common normalisation error
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Calorimeter calibration 1. example

Calorimeters for energy measurements in a particle detector require a calibration, usually based on test beam
data (measured cell energies yik) with known energy E. A common method [?, ?, ?, ?, ?, ?, ?, ?] based on
the χ2 minimisation of

χ2 =
1
N

N∑
k=1

(a1y1,k + a2y2,k + . . . + anyn,k − E)2

for the determination of the aj can produce biased results, as pointed out by D. Lincoln et al. [?].

If there would be one cell only, one would have data yk with standard deviation σ, with a mean value of
y =

∑
k yk/N , and the intended result is simply a = E/y.

A one-cell version of the above χ2 definition is

χ2 =
1
N

N∑
k=1

(a · yk − E)2

and minimizing this χ2 has the biased result

a =
E · y(∑
k y2

k

)
/N

=
E · y

y2 + σ2
6= E/y
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. . . contnd.

The bias mimics a non-linear response of the calorimeter.

A known bias in fitted parameters is easily corrected for.

Example: for a hadronic calorimeter one may have

Energy resolution
σ

E
=

0.7√
E

which have a result biased by a ratio =
E

E + 0.72

(at E = 10 GeV the resolution is 22 % and the bias is 5 %).

There would be no bias, if the inverse constant ainv would have been determined from

χ2 =
1
N

N∑
k=1

(yk − ainvE)2

General principle: In a χ2 expression the measured values yk should not be modified; instead the expectation
has to take into account all known effects.
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Common normalisation errors 2. example

There are N data xk with different standard deviations σk and a common relative normalisation error
of ε. Apparently the mean value y can not be affected by the normalisation error, but its standard deviation
is.
One method is to use the full covariance matrix for the correlated data, e.g. in the case N = 2:

V a =
(

σ2
1 0
0 σ2

2

)
+ ε2 ·

(
y2
1 y1y2

y1y2 y2
2

)
=

(
σ2

1 + ε2y2
1 ε2y1y2

ε2y1y2 σ2
2 + ε2y2

2

)
and minimising

χ2 = ∆T V −1∆ with ∆ =
(

y1 − y
y2 − y

)
Example (from [?]): Data are
y1 = 8.0± 2% and y2 = 8.5± 2%, with a common (relative) normalisation error of ε = 10%.
The mean value resulting from χ2 minimisation is:

7.87± 0.81 i.e. < y1 and < y2

- this is apparently wrong.

. . . that including normalisation errors in the correlation matrix will produce a fit which is biased
towards smaller values . . . [?]

. . . the effect is a direct consequence of the hypothesis to estimate the empirical covariance matrix,
namely the linearisation on which the usual error propagation relies. [?, ?]
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Origin of the apparent problem . . . the used covariance matrix!

The contribution to V from the normalisation error was calculated from the measured values, which were
different; the result is a covariance ellipse with axis different from 45◦ and this produces a biased mean value.

Distinguish measured and fitted values.

The correct model is: y1 and y2 have the same true value, then the normalisation errors ε ·value are identical,
with

V b =
(

σ2
1 0
0 σ2

2

)
+ ε2 ·

(
y2 y2

y2 y2

)
=

(
σ2

1 + ε2y2 ε2y2

ε2y σ2
2 + ε2y2

)
i.e. the covariance matrix depends on the resulting parameter.
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Ellipses

Covariance ellipse for V a
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Axis of ellipse is tilted w.r.t. the diagonal and ellipse
touches the diagonal at a biased point.

Covariance ellipse for V b

6 8 10
6

8

10

Axis of the ellipse is ≈ 45◦ and ellipse touches the
diagonal at the correct point.

The result may depend critically on certain details of the model implementation.
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The method with one additional parameter . . .

Another method often used is to define

χ2
a =

∑
k

(f · yk − y)2

σ2
k

+
(f − 1)2

ε2
,

which includes a normalization factor f and which will also produce a biased result.

The χ2 definition for this problem

χ2
b =

∑
k

(yk − f · y)2

σ2
k

+
(f − 1)2

ε2

will give the correct result (data unchanged and fitted
value according to the model), as seen by blue curve.
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Standard methods

Standard statistical methods for parameter determination are
• Method of Least Squares S(a) • χ2 minimisation is equivalent: χ2 ≡ S(a)
• Maximum Likelihood method F (a)

. . . improves the parameter estimation if the detailed probability density is known.

Least squares and Maximum Likelihood can be combined, e.g

Ftotal(a) =
1
2
S(a) + Fspecial(a)

Doubts about justification of χ2 minimisation from publications:

The justification for using least squares lies in the assumption that the measurement errors are
Gaussian distributed. [?]

However it is doubtful that Gaussian errors are realistic.

A bad χ2 . . . Finally the data may very well not be Gaussian distributed.
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The standard linear least squares method

The model of Linear Least Squares: y = A a

y = measured data A = matrix (fixed) a = parameters V y = covariance matrix of y

Least Squares Principle: minimize the expression (W = V −1
y )

S(a) = (y −Aa)T W (y −Aa) or F (a) =
1
2
S(a)

with respect to a.

Derivatives of expression F (a):

g =
∂F

∂a
= −AT Wy +

(
AT WA

)
a

H =
∂2F

∂ajak
=

(
AT WA

)
= constant

Solution (from ∂F/∂a = 0) is linear transformation of the data vector y:

â =
[(

AT WA
)−1

AT W
]

y = B y

Covariance matrix of a by ”error” propagation

V [â] = B V [y]BT =
(
AT WA

)−1 = inverse of H
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Properties of the solution

Starting from Principles properties of the solution are derived, which are valid under certain conditions:

• Data are unbiased: E[y] = A ā (ā = true parameter vector)

• Covariance matrix V y of the data is known (and correct).

Distribution-free properties of least squares estimates in linear problems are:

• Estimated parameters are unbiased:

E[â] =
(
AT WA

)−1
AT W E[y] = ā

• In the class of unbiased estimates, which are linear in the data, the Least Squares estimates â have the
smallest variance (Gauß-Markoff theorem).

• The expectation of the sum of squares of the residuals is Ŝ = (n− p).

Special case of Gaussian distributed measurement errors:

Ŝ/σ2 distributed according to the χ2
n−p distribution

to be used for goodness-of-fit test. Properties are not valid, if conditions violated.
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Test of non-Gaussian data

MC test of least squares fit of 20 data points to straight line (two parameters), generated with data errors
from different distributions, but always mean = 0 and same standard deviation σ = 0.5.

uniform errors

-1 0 1
0
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Uniform errors
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E 03 Gaussian errors
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Results for slope parameters 25000 entries

uniform errors

0.95 1 1.05 1.1
0

500

1000

slope

Uniform errors

m = 0.9998 +- 0.12E-03

s = 0.01935 +- 0.09E-03

σ = 0.0194

Gaussian errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.13E-03

s = 0.01949 +- 0.09E-03

Gaussian errors

σ = 0.0195

double exponential errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.12E-03

s = 19.004E-03 +- 0.09E-03

Double exponential errors

σ = 0.0190

• All parameter distributions are Gaussian, and of the width, expected from the standard error calculation.
• This is valid for both fitted parameters.
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χ2 and χ2-probability 25000 entries

• Mean χ2-values are all equal to ndf = 20− 2 = 18, as expected, but
• χ2-probabilities have different distributions, as expected.

uniform errors
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0 0.5 1
0
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200

300
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Gaussian errors

double exponential errors

0 0.5 1
0

500

1000

1500

chi square probability

Double exponential errors

Conclusion: Least squares works fine and as expected, also for non-Gaussian data,
if . . . and only if

• data are unbiased and covariance matrix is complete and correct.
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Contaminated normal distribution Outliers

Everyone believes in the normal law of errors, the experimenters because they think it is a math-
ematical theorem, the mathematicians because they think it is an experimental fact. [Poincaré]

Outliers – single unusual large or small values among a sample – are dangerous and will usually introduce a
bias in the result.

Modifications of the standard least squares procedure with

• recognition and

• special treatment of outliers

may be useful to reduce the unwanted bias in fitted parameters.
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Recipe for robust least square fit

Assume estimate for the standard error of yi (or of ri) to be si.
Do least square fit on observations yi, yielding fitted values ŷi, and residuals ri = yi − ŷi.

• ”Clean” the data by pulling outliers towards their fitted values: winsorize the observations yi and replace
them by pseudo-observations y∗i :

y∗i = yi , if |ri| ≤ c si ,

= ŷi − c si , if ri < −c si ,

= ŷi + c si , if ri > +c si .

The factor c regulates the amount of robustness, a goid choice is c = 1.5.

• Refit iteratively: the pseudo-observations y∗i are used to calculate new parameters and new fitted values
ŷi.
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How to express the fit function? An Example

Assume a Gaussian density function with 3 parameters N , µ and σ

f(x) = N ·∆x · 1√
2πσ

· exp

{
−(x− µ)2

2σ2

}

is fitted to a histogram (bin size ∆x) using the Poisson maximum likelihood method. All three parameters
are (almost) uncorrelated. The result for N will be the true value with an error of

√
N because of the Poisson

model (and error propagation).

If however the density is expressed by

f(x) = N ·∆x · exp

{
−(x− µ)2

2σ2

}

then N is (negatively) correlated with σ and the relative error of N is enlarged due to the correlation.
After a proper full matrix error propagation AV AT of course the previous error expression is obtained.
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. . . contnd.

An example from parton density fits: the gluon parametrization is

xg(x,Q2
0) = . . . −A− (1− x)η− x−δ−

where A− ∼ 0.2, δ− ∼ 0.3 and η− fixed at ∼ 10. A change of δ− changes both shape and normalisation.

. . . very small changes in the value of δ− can be compensated almost exactly by a change in A−
and (to a lesser extent) in the other gluon parameters . . . [?]

. . . we notice that a certain amount of redundancy in parameters leads to potentially disastrous
departures . . . For example, in the negative term in the gluon parameterization very small changes
in the value of δ− can be compensated almost exactly by a change in A− and in the other gluon
parameters . . . [?]

We found our input parameterization was sufficiently flexible to accomodate data, and indeed
there is a certain redundancy evident. [?]

In that case the Hessian will be (almost) singular, inversion is impossible and the convergence of the fit is
doubtful.
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Fits in case of systematic errors

Data errors: Statistical and systematic uncertainties can only be correctly taken into account in a fit, if
there is a clear model describing all aspects of the uncertainties.

Statistical data errors: described either

• by (“uncorrelated”) errors – standard deviation σi for data point yi (origin is usually counts – Poisson
distribution),

• by a covariance matrix V y.

Two alternative models for systematic errors:

• multiplicative effects – normalisation errors

• additive effects – offset errors

that had to be accounted for in different ways in a fit.
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Normalisation errors Systematic errors

Data yi in Particle Physics are often (positive) cross sections, obtained from counts and several factors
(Luminosity, detector acceptance, efficiency).

In general there is a normalisation error, given by a relative error ε. If data from > 1 experiment are combined,
the normalisation error ε has to be taken into account.

Method: Introduce one additional factor α, which has been measured to be α = 1 ± ε, modify expectation
according to

fi = α · f(xi,a)

and make fit with

S(a) =
∑

i

(yi − α · f(xi,a))2

σ2
i

+ ∆Snorm with ∆Snorm =
(α− 1)2

ε2

One factor αk has to be introduced for each experiment, if data from more than one experiment are fitted.
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The log-normal distribution . . . and the normalisation error

The normalisation factor determined in an experiment is more the product than the sum of random variables.
According to the multiplicative central limit theorem the product of positive random variables follows the
log-normal distribution, i.e. the logarithm of the normalisation factor follows the normal distribution.

For a log-normal distribution of a ran-
dom variable α with E[α] = 1 and
standard deviation of ε the contribu-
tion to S(a, α) is

∆Snorm = lnα

(
3 +

lnα

ln (1 + ε2)

)
→ (α− 1)2

ε2
for small ε

0 1 2 3

0.2

0.4

0.6

0.8

1

1.2
Log-normal distribution with sigma = 0.5

The normal and the log-normal distribution, both with mean 1 and
standard deviation ε = 0.5.
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Additive errors Systematic errors II

Example: error of calorimeter constant – a change of the constant will change all data values yi – events are
moved between bins.

Determine shifts si of data values yi, for a one-standard deviation change of the calorimeter constant – the
shifts si will carry a relative sign.

1. Method: Modify covariance matrix to include contribution(s) due to systematic errors

V a = V stat + V syst with V syst = ssT (rank=1 matrix)

e.g. V stat
ij = sisj , and use modified matrix in fit with S(a) = ∆T V −1

a ∆

• Requires inversion (once) of the n× n matrix of the data.

• Otherwise no change of formalism necessary.

• Used e.g. by Lep Electroweak Heavy Flavour WG.[?]
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. . . contnd.

2. Method: Introduce one additional parameter β, which has been measured to be 0±1, for each systematic
error source, modify expectation according to

fi = f(xi,a) + β · si

and make fit with

S(a) =
∑

i

(yi − (f(xi,a) + βsi))
2

σ2
i

+ β2

Advantage of additional parameter β:

• Allows to test the pull = β̂/
√

1− Vββ due to the systematic error (should follow a N(0, 1) distribution).

• Allows to test the effect of the fit model on the systematic effect from the global correlation coefficient
ρglobal

β .

• Allows more insight into systematic effect by inspection of the correlation coefficients ρβ,aj
between β

and the other parameters.

• First derivative of expectation (for fits) is trivial: ∂fi/∂β = si.
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