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Abstract

Tracking detectors in high energy physics experiments require an accurate determination of a large number of alignment parameters in order to allow a precise

reconstruction of tracks and vertices. In addition to the initial optical survey and corrections for electronics and mechanical effects the use of tracks in a special

software alignment is essential. Several different methods are in use, ranging from simple residual-based procedures to complex fitting systems with many thousands

of parameters. The methods are reviewed with respect to their mathematical basis and accuracy, and to aspects of the practical realization.
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1. Alignment and calibration

What is alignment and calibration? . . . a web search

Alignment:
1. an adjustment to a line; arrangement in a straight
line.
2. the line or lines so formed.
3. the proper adjustment of the components of an elec-
tronic circuit, machine, etc., for coordinated function-
ing: The front wheels of the car are out of alignment.
4. a state of agreement or cooperation among persons,
groups, nations, etc., with a common cause or view-
point.
5. a ground plan of a railroad or highway.
6. (Archaeol.) a line or an arrangement of parallel or
converging lines of upright stones or menhirs. Alignement at Kermario (Bretagne)

Purpose of instrument calibration: Instrument calibration is intended to eliminate or reduce bias
in an instrument’s readings over a range for all continuous values. For this purpose, reference standards
with known values for selected points covering the range of interest are measured with the instrument
in question. Then a functional relationship is established between the values of the standards and the
corresponding measurements [. . . from NIST].
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Alignment/calibration

Calibration seems to be the more general term, while alignment is related to geometrical calibration.

Methods in HEP: many papers and collaboration reports on the Web, with a lot of HEP folklore
(residuals, pulls, fit errors, inversion of a rectangular matrix, . . . with the usual gradient method,
MINUIT, typically O(10µm), chi-square minimization, constraints, convergence recognized by small
change/iteration, < 20 iterations, . . . our method is successful).

Sometimes it is difficult to understand what is really done: “The detector parameters are found via a
χ2 minimization of the residuals.”

Aim of alignment/calibration with tracks, after an initial optical survey and corrections for elec-
tronics and mechanical effects:

• eliminate or reduce bias in detector data;

• increase precision of reconstructed tracks and vertices;

• improve track and vertex recognition, reduce χ2 of the fits;

• essential for accurate vertex detectors with potential precision of a few µm for e.g. heavy quark
physics.

Alignment/calibration requires to understand the detector (functional relationship) and to optimize
thousands of parameters – not a simple task. Residuals play a central role.
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2. Alignment of a toy detector

Test of alignment method with a MC toy track de-
tector model:

• 10 planes of tracking chambers, 1 m high, 10
cm distance, no magnetic field;

• accuracy σ ≈ 200µm, with efficiency ε =
90%;

• plane 7 sick: accuracy σ ≈ 400µm, with effi-
ciency ε = 10%;

• 10 000 tracks with 82 000 hits available for
alignment;

• Misalignment: the vertical position of the
chambers are displaced by ≈ 0.1cm (normal
distributed).
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First attempt based on residuals

The first alignment attempt is based on the distribution of hit residuals:

• A straight line is fitted to the track data.

• The residuals (= measured vertical coordinate minus fitted coordinate) are histogrammed, sepa-
rately for each plane.
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• The mean value of the residuals is taken as correction to the vertical plane position.

This is the standard method used in many experiments.
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Alignment using iterative track fitting

Properties of the method:

• simple, only basic operations +−×/ used, no matrices, n-tuples can be used;

• “simple, intuitive, quick”, “method very robust” (i.e. small changes expected from residuals);

• but based on biased straight line fit!

• Is the method convergent, if applied iteratively, and if convergent, what is the order (linear of
quadratic) of convergence?
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Result from the first attempt

After 30 iterations . . .

ID true shift determined mean residual

1 0.1391 0.0727 0 ± 150
2 0.1345 0.0786 0 ± 189
3 0.0000 −0.0453 0 ± 234
4 −0.0756 −0.1102 0 ± 244
5 −0.1177 −0.1422 0 ± 205
6 0.0610 0.0475 0 ± 150
7 0.0130 0.0114 0 ± 464
8 0.0886 0.0968 0 ± 255
9 0.0000 0.0186 0 ± 149

10 −0.0467 −0.0176 0 ± 143

red circle = true shift (displacement)

blue disc = displacement, determined from residuum
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Shifts from residuals - iteration 30

Large changes in first iteration, small changes in second iteration, almost no progress afterwards.

V. Blobel – University of Hamburg Alignment for tracking detectors page 7



First attempt – Discussion

The result is not (yet) encouraging!

The reason for non-convergence is simple:

Two degrees of freedom are undefined: a simultaneous shift and a rotation of all planes!

(This simple fact is not always mentioned in reports on the method!)

Improvement for second residual attempt:

Fix the displacement (i.e. displacement = 0) of two planes, which are assumed to be
carefully aligned externally (e.g. planes 3 and 9).

Other possibilities are:

• Use only fixed planes (planes 3 and 9) in the fit, and determine the residuals of other planes;

• for the determination of the displacement of a certain plane use all other planes in the fit.

These possibilities are in fact used by several collaborations!
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Results from the second attempt

After 30 iterations with planes 3 and 9 fixed (displacement = 0) . . .

ID true shift determined mean residual

1 0.1391 0.1391 -1 ± 150
2 0.1345 0.1344 0 ± 189
3 0.0000 0 2 ± 234
4 −0.0756 −0.0758 0 ± 244
5 −0.1177 −0.1183 0 ± 205
6 0.0610 0.0607 0 ± 150
7 0.0130 0.0140 0 ± 464
8 0.0886 0.0888 0 ± 255
9 0.0000 0 0 ± 149

10 −0.0467 −0.0469 0 ± 143

red circle = true shift (displacement)

blue disc = displacement, determined from residuum
0 5 10

-0.2

0

0.2 Shifts from residuals - iteration 30

Large changes in first iteration, then many smaller and smaller changes: convergence is linear and
slow, because the determination of displacements is based on biased fits.
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Use of higher mathematics?

Residual-based methods work with biased results. Can the bias be avoided by an improved fit?

Yes: include the alignment parameters in the parameters fitted in track fits – requires a simultaneous
fits of many tracks, with determination of (global) alignment parameters and (local) track parameters.

model: yi
∼= alocal

1 + alocal
2 · xi +aglobal

j aglobal
j = shift for plane, where yi is measured

1 tracks 2 + 10 = 12 parameters 9 equations
2 tracks 4 + 10 = 14 parameters 18 equations

. . . . . . . . .
10 000 tracks 20 010 parameters 82 000 equations

. . . a linear least squares problem of m = 82 000 equations (measurements) and n = 20 010 parameters
with n � m, which requires the solution of a matrix equation with 20010-by-20010 matrix.

. . . a nice problem!
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Results from a simultaneous fit

After one step (with planes 3 and 9 fixed at displacement = 0) . . .

ID true shift determined ρ mean residual

1 0.1391 0.1393± 0.004 0.68 0 ± 150
2 0.1345 0.1346± 0.003 0.66 0 ± 189
3 0.0000 0 ± 234
4 −0.0756 −0.0756± 0.003 0.58 0 ± 244
5 −0.1177 −0.1182± 0.003 0.53 0 ± 205
6 0.0610 0.0608± 0.003 0.50 0 ± 150
7 0.0130 0.0141± 0.007 0.20 0 ± 464
8 0.0886 0.0888± 0.003 0.53 0 ± 255
9 0.0000 0 ± 149

10 −0.0467 −0.0469± 0.003 0.57 0 ± 143

(ρ = global correlation coefficient)

red circle = true shift (displacement)

blue disc = displacement, determined in fit
0 5 10

-0.2

0

0.2 Shifts from fit - iteration 1

One step is sufficient: 1. step ∆χ2 = 1.277× 106 2. step ∆χ2 = 1.159× 10−5

But how can this problem be solved in less than a second?
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Determination of drift velocities . . . 10 additional parameters

Improvement: include, in addition, corrections to the drift velocities for each plane: ∆vdrift/vdrift

yi
∼= alocal

1 + alocal
2 · xi +aglobal

j + `drift,i ·
(

∆vdrift

vdrift

)
j

aglobal
j = shift for plane(

∆vdrift

vdrift

)
j

= relative vdrift difference

reduction of residual σ by 30 - 40 %
ID true shift determined ρ ∆vdrift/vdrift determined ρ mean residual

1 0.1391 0.1393± 0.004 0.68 0.0020 0.0019± 0.0002 0.016 0 ± 119
2 0.1345 0.1346± 0.003 0.66 -0.0153 −0.0150± 0.0002 0.020 0 ± 128
3 0.0000 0.0193 0.0194± 0.0002 0.017 0 ± 137
4 −0.0756 −0.0756± 0.003 0.58 0.0200 0.0197± 0.0002 0.013 0 ± 139
5 −0.1177 −0.1182± 0.003 0.53 -0.0138 −0.0136± 0.0002 0.013 0 ± 141
6 0.0610 0.0608± 0.003 0.50 0.0003 0.0004± 0.0002 0.019 0 ± 139
7 0.0130 0.0141± 0.007 0.20 -0.0306 −0.0303± 0.0006 0.038 0 ± 348
8 0.0886 0.0888± 0.003 0.53 0.0237 0.0238± 0.0002 0.018 0 ± 134
9 0.0000 -0.0044 −0.0044± 0.0002 0.008 0 ± 127

10 −0.0467 −0.0469± 0.003 0.57 0.0021 0.0019± 0.0002 0.013 0 ± 117

. . . this would be rather difficult with a pure residual-based method.

The next improvement would be the introduction of wire T0’s – additional 10× 25 = 250 parameters.
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3. Linear least squares and matrix equations

Gauss, Laplace and Lagrange

Johann Carl Friedrich Gauss Pierre-Simon Laplace Joseph-Louis Lagrange
(1777 – 1855) (1749 – 1827) (1736 – 1813)
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The standard linear least squares method I

Measurement: data yi, i = 1, 2, . . . m, measured independently and without bias at coordinate xi,
with standard deviation σi.

Mathematical model: data y are described by the mathematical model

y = f(x; a)

with a function f(x; a), depending on the coordinate x and parameters aj, j = 1, 2, . . . n.

The function f(x; a) is linear or can be linearized. The method of linear least squares can be used to
perform one step in improving the parameter estimate a` by a correction vector ∆a:

yi
∼= f(xi; a`) +

n∑
j=1

dj ∆aj with dj =
∂f(x)

∂aj

∣∣∣∣
x=xi

The principle of least squares requires to minimize the residuals

ri = yi − f(xi; a`) ∼= dT
i ∆a

taking into account the measurement accuracy σi.
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The standard linear least squares method II

The least squares requirement minimize S =
m∑

i=1

wir
2
i with weight wi =

1

σ2
i

requires to solve the system of m linear equations (normal equations) or matrix equation

C ∆a = b

with the symmetric n-by-n matrix C and the n-vector b:

C =
m∑

i=1

wi di d
T
i b =

m∑
i=1

wi ri di

This completes one step of the iteration

a`+1 := a` + ∆a = a` + C−1b and ` := ` + 1

No iteration is necessary for a function, which is linear in the parameters. After convergence a ≡ a`

is an unbiased estimate of the parameter vector, with covariance matrix given by the inverse matrix
C−1 (error propagation).

residual ri = yi − f(xi; a) pull pi =
yi − f(xi; a)√

σ2
i − σ2

i,fit

with σ2
i,fit = dT

i C−1di

Qualitative investigations using histograms of the residuals and quantitative tests by checking pull
distributions: pi ∼ N(0, 1) expected.
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4. The Millepede algorithm

Simultaneous least squares fit of all global and all local parameters (i.e. all tracks).

k’th track: yi
∼= f(xi; a

global, alocal) +
(
dglobal

i

)T

∆aglobal +
(
dlocal

i

)T
∆alocal

k

The complete matrix equation for global and local parameters includes sums over track index k and
contains many matrices: n-by-n matrices C for n global parameters and m-by-m matrices C local

k and
n-by-m matrices Hglobal-local

k

∑
k Cglobal

k · · · Hk · · ·

...
. . . 0 0

HT
k 0 C local

k 0

... 0 0
. . .



×



∆aglobal

...

∆alocal
k

...



=



∑
k bglobal

k

...

blocal
k

...


If the Hglobal-local

k are neglected, the complete equation decays into 1+K independent matrix equations.

But the solution ∆aglobal can be calculated without approximation with a great simplification: ⇒
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Inversion by Partitioning

A square n-by-n matrix C and its inverse, C−1 ≡ B can be partitioned into submatrices

C =

 C11 C12

C21 C22

 B =

 B11 B12

B21 B22

 ,

Submatrices C11 and B11 are p-by-p square matrices and submatrices C22 and B22 are q-by-q square
matrices, with p+ q = n. A complete set of equations for the submatrices of the inverse matrix B can
be derived from the matrix product C B = 1n:

C11 B11 + C12 B21 = 1p B11 = (C11 −C12C
−1
22 C21 )−1

C11 B12 + C12 B22 = 0 B12 = −B11C12C
−1
22

C21 B11 + C22 B21 = 0 B21 = −C−1
22 C21B11

C21 B12 + C22 B22 = 1q B22 = C−1
22 + C−1

22 C21B11C12C
−1
22

Only the inversion of a p-by-p and of a q-by-q matrix (C22) is required.

The special structure of a matrix to be inverted may allow a significant reduction of the computational
effort of the inversion by the method of partitioning (e.g. C22 diagonal). Further simplification for
symmetric matrices.
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Partitioning the solution vector matrix C symmetric: C21 = CT
12

Partitioning of the whole matrix equation including the vectors ∆a and b: C11 C12

C21 C22


 ∆a1

∆a2

 =

 b1

b2


 ∆a1

∆a2

 =

 B11 B12

B21 B22


 b1

b2



Special case C12 = 0:

independent solutions ∆ã1 =
(
C−1

11

)
b1 ∆ã2 =

(
C−1

22

)
b2 .

General case C12 6= 0: solution ∆a1 can be expressed by ∆ã2

∆a1 = B11b1 + B12b2 = B11b1 + B11C12

(
C−1

22 b2

)
= B11 (b1 −C12∆ã2)

=
(
C11−C12C

−1
22 CT

12

)−1
(b1−C12∆ã2)

i.e. the full solution ∆a1 can be obtained by “corrections” to C11 and b1 (without calculating ∆a2).

This equation can be applied repeatedly with a problem – opens the possibility to solve problems with
a huge number of parameters, if the interest is in a sub-vector of the parameters
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The Millepede formalism . . . assuming track fits

For each track in a loop, on all tracks:

1. Track- or other fit: perform fit by finding the best local parameter values for the actual track
until convergence with determination of the covariance matrix V of the local parameters

2. Derivatives: calculate for all hits (index i) the vectors of derivatives dlocal
i and dglobal

i for all local
and the relevant global parameters, and update matrices:

C := C+
∑

i

wid
global
i

(
dglobal

i

)T

b := b+
∑

i

wirid
global
i H =

∑
i

wid
global
i

(
dlocal

i

)T

and finally for the track C := C −HV HT

The two ‘blue’ equations transfer the ‘local’ information to the global parameters.

After the loop on all tracks the complete information is collected; now the matrix equation for the
global parameters has to be solved:

∆aglobal = C−1b

Note: matrices C and vectors b from several processors can be simply added to get combined result.
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Constraints in Millepede

Undefined degrees of freedom can be avoided by adding parameter constraint equations of type

g(a) = 0

e.g. “zero average displacement”, or “zero rotation of the whole detector”.

There are two possibilities:

• fix certain parameters
simply set rows/columns of the fixed parameter to zero – the matrix inversion program will take
care of that.

• add equality constraint equation
append linearized Lagrange multiplier equation λ

(
g(a) + gT ·∆a = 0

)
with g = ∂g(a)/∂a: Cglobal g

gT 0


 ∆aglobal

λ

 =

 bglobal

−g(a)


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Millepede . . . eliminates the bias problem

V. Blobel: Experience with Online Calibration Methods, Contribution to CHEP’97, Berlin 1997 (in-
cluding the Millepede method), not accepted.

Used/tested in H1(1997), CDF(2001), Hera-B(?), ZEUS(?), Atlas(?) . . .

O. Behnke: Directions in Tracking (talk), H1 Collaboration meeting at Zürich, 1999

V. Blobel, Linear Least Squares Fits with a Large Number of Parameters, (2000), and 1. Update
(2000) http://www.desy.de/~blobel including Fortran code.
C++ interface for Millepede by Jesko Merkel: http://www.desy.de/~jmerkel/cmillepede.html

V. Blobel and C. Kleinwort: A New Method for the High-Precision Alignment of Track Detectors,
Proc. of the Conference on: Advanced Statistical Techniques in Particle Physics, Durham,
March 18th - 22nd, 2002. arXiv-hep-ex/0208021

The algorithm is general and can be applied to other problems with large number of (global) parameters
and a huge number of measurements with local parameters.

Principle of reducing matrix size (perhaps) used earlier:
Schreiber, O. (1877): Rechnungsvorschriften für die trigonometrische Abteilung der Landesaufnahme, Ausgleichung und
Berechnung der Triangulation zweiter Ordnung. Handwritten notes. Mentioned in W. Jordan (1910): Handbuch der
Vermessungskunde, Sechste erw. Auflage, Band I, Paragraph III: 429-433. J.B.Metzler, Stuttgart.
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The Millepede program

The matrix-equations require about 100 lines of code (including optimization for sparse matrices); in
addition the routine for the solution of the matrix equation has also about 100 statements [subroutine
MMPEDE – Mini Millepede].

The more complete program Millepede on the Web
has ≈ 1700 lines of code and includes iterations.
Outliers are present and have to be removed by cuts –
but initial cuts have to be wide in order to accept badly
misaligned hits.

Unfortunately this requires iterations e.g. in Mille-
pede with

• 10σ cut in the first iteration,

• decreasing cut value in further iterations, and

• 3σ cut in the last iteration.

Z-residuals (units are 10 µm) versus φ in de-
grees for a LEP vertex detector – before and
after Millepede alignment.

The region around φ = 180◦ with initially very
large deviations (deviation ≈ 10σ) is moved to
small values.
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5. Drift chamber calibration

M. J. Fero et al., Performance of the SLD central drift chamber, Nucl. Instr. methods A 367 (1995)
111-114

Drift velocity calibration vdrift : first estimate of relation between vdrift and E-field based on electrostatic
model; relation iteratively corrected by minimizing the fit residuals as a function of drift distance.

Note: vdrift ∝ 1/pressure. Tracks are used to measure changes in vdrift, which is allowed to be one of
the variables in the track fit, and averaging of values from individual tracks.

Claus Kleinwort et al., Detailed calibration of H1 drift chamber using Millepede with about 1400
parameters.

Examples:

• common alignment of the drift chamber and the silicon detector;

• for both CJC1 and CJC2 14 global parameters representing an overall shift or tilt are introduced;

• local variations of the drift velocity vdrift for cells halfs and layers halfs are observed, which are
parametrized by 180 + 112 corrections, which change with the HV configuration;

• for each wire group (8 wires) corrections to T0 are introduced (330 corrections).
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H1 Determination of 1400 parameters . . . from 50 000 tracks

row. number parameter σ unit

1 2 ∆x 1 µm
2 2 ∆x/∆zr 2 µm
3 2 ∆y 1 µm
4 2 ∆y/∆zr 2 µm
5 2 ∆ϕ 10 µrad
6 2 ∆ϕ/∆zr 10 µrad
7 2 ∆αLor 100 µrad
8 2 ∆vdrift−/vdrift 10−5

9 2 ∆vdrift+/vdrift 10−5

10 2 ∆T0 × vdrift < 1 µm

11 2 wire staggering in wire plane few µm
12 2 wire staggering perp wire plane few µm
13 2 sagging in wire plane few µm
14 2 sagging perp. wire plane few µm
15 180 ∆vdrift/vdrift per cell half few 10−4

16 112 ∆vdrift/vdrift per layer half few 10−4

17 330 ∆T0 × vdrift per group 10 µm
18 56 wire position in driftdir. per layer 10 µm
19 56 ∆T0 × vdrift per layer 10 µm
20 56 wire pos. perp. driftdir. per layer few 10 µm
21 112 ∆vdrift/vdrift for Ie/50 mA few 10−4

22 90 ∆vdrift/vdrift per layer few 10−4

23 90 ∆yW per layer few 10 µm
24 90 ∆yW per layer2 few 10 µm

25 64 ∆ in ladder few µm
26 64 ∆ perp. ladder few µm
27 64 rel. ∆ in ladder (zr) few µm
28 64 rel. ∆ perp. ladder (zr) 10 µm
29 64 rel. ∆ perp. ladder (ϕ) few µm

Alignment parameters determined in the Millepede fit. The Millepede accuray is given by a standard deviation σ.
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H1 Drift chamber alignment and calibration

RMS(residuals) vs drift

2000/11/28   17.38

Reduction of residual RMS by Millepede (left)
and improvement of track data dca, φ and 1/pt (ver-
sus log(1/pt) right).

RMS(dca) vs pt

  24.46    /     4
P1   248.5   2.299
P2   556.8   10.85

2000/11/28   16.56

RMS(Phi0) vs pt

  14.65    /     4
P1   1.089  0.1301E-01
P2   4.118  0.6672E-01

RMS(1/pt) vs pt

  5.583    /     4
P1  0.6025  0.6507E-02
P2   1.969  0.3438E-01
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6. Vertex detector alignment

Planar sensors (silicon pixel or strip detectors): local (sensor) coordinates q = (u, v, w) and global
detector coordinates r = (x, y, z) are transformed by

q = R (r − r0) R = nominal rotation, r0 = nominal position

After alignment the transformation becomes (with ∆q = (∆u, ∆v, ∆w))

qc = RαRβRγ R (r − r0)−∆q

Six parameters are required for each individual detector element, out of which three parameters (two
translations, one rotation) are very sensitive.

Detector nr of elements nr of parameters

SLD 96 96× 6 = 576
Aleph 144 144× 6 = 864
Delphi 24 72
CDF 352 352× 3 = 1056
Atlas
CMS ≈ 20000, ≥ 13000 ≈ 100000

Atlas plans/ideas: system of linear equations with 30000×30000 matrix; with hardware: 16 processors
(64 bits achitecture) with 900 Mb memory for each processor, ScaLAPACK.
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H1 calibration . . . using Millepede

. . . from O. Behnke, Directions in Tracking (Talk), Collaboration Meeting in Zürich 1999
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Internal alignment of the SLD vertex detector

D. J. Jackson, D. Su and F. J. Wickens, Internal alignment of the SLD vertex detector using a matrix
singular value decomposition technique. Nuclear Instr. Methods A 491 (2002) 351-365

Classification of types of tracking constraints →

Good quality tracks were constrained to pass
through two of the CCD hits with the correspond-
ing residual measued to the third, reference, CCD.

Residual types of the SLD pixel vertex detector
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. . . contnd.

For each type of residuals, n-tuples were accumulated containing the deviation. Data in the n-tuples
were fitted to the functional form given below to determine the coefficients and their covariance matrix
(using MINUIT).
CCD shape corrections were taken into account from the optical survey data of the CCD surfaces
(2108 → 5026 coefficients).

Functional forms for fitting the various residual types.

Examples for residual fits, here as a
function of tan λ in a layer before the
alignment.

In total there are 2108 coefficients from
700 residual fits (exercise in book-
keeping).
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. . . contnd.

Taking into account the covariance matrices of the
residual fits, 866 alignment corrections were deter-
mined from 5026 coefficients from the residual fits,
using SVD techniques for the least-squares fit min-
imization.

Note: nr of coefficients determined by parametriza-
tion types, not by nr of events.

Only a single iteration is required.

With the aligned geometry the design performance
is achieved →

Triplet residuals obtained with the original
survey geometry and after alignmnent.
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Mathematical aspects

From the paper published in 2002:

“. . . for the VXD3 alignment (inversion of sparse matrices of order 5000 × 1000 elements)
using double precision arithmetic in modest times on a standard workstation. Although
the size of matrices involved appears daunting only ≈ 1% or ≈ 35, 000 elements of the final
5026× 866 design matrix A were given non-zero values . . . ”

Today the size of the matrices should be no problem on a standard PC.

On SVD:

“. . . indeed the earliest text-book we found referring to the technique was published in
1983.”

G. H. Golub and W. Kahan: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer.
Anal Ser. B 2 (1965) 205-224
G.H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math. 14
(1970) 403-420
J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computation, Vol. II. Springer (1971) (with
Algol code)
C. L. Lawson and R. J. Hanson: Solving Least Squares problems. Prentice-Hall (1974)

In the older psychometric literature, such decompositions were called Eckart-Young decompositions, after
C. Eckart and G. Young, The approximation of one matrix by another of lower rank. Psychometrika 1 (1936)
211-218.
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Alignment of the upgraded VDET at LEP2 (Aleph)

A. Bonissent et al., Alignment of the upgraded VDET at LEP2, ALEPH 97-116

A global χ2 involving all 864 = 144 × 6 degrees
of freedom is built, using single tracks and vertex
constraints. Selected information is used from the
outer tracking.

Precise faces measurement are used to reduce the
degrees of freedom, while allowing for parametrized
distortions.

The method is shown to provide accurate results,
even with a limited number of events.

Local alignment of the VDET in the rφ view.
The dashed lines show the nominal position.
The end wafers are drawn with solid lines, the
other with dashed lines. Displacements are am-
plified by a factor of 100.

V. Blobel – University of Hamburg Alignment for tracking detectors page 32



Delphi: final alignment of the Barrel Silicon Tracker

P. Brückmann de Renstrom: The Final Alignment of the Barrel Silicon Tracker at LEP2, Delphi
2004-047 TRACK 098

Fitting the alignment parameters to the track-hit
residual distributions (with reference layers).

Individual parametrizations of hit residuals fitted
using MINUIT, including flat background from
miss-associated hits.

Iterative sequence of applying geometry correc-
tions.

A fit to the di-muon residual distribution.

δz = C + D × cot θ + e× r × cot θ2

⊕ flat background

Final average single-layer resolution in Rφ direction better than 8 µm.
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Alignment using Kalman filter

CMS: About 20 000 silicon sensors, with resolution 10 µm to 40 µm. Expected precision from mechan-
ical mounting and Laser beam alignment worse than intrincic resolution – alignment using tracks is
necessary.

Extension of the Kalman filter method of track fitting, with updating the current alignment parameters
after each track.

R. Frühwirth, T. Todorov and M. Winkler, Estimation of Alignment Parameters, using the Kalman
Filter with annealing, CMS Note 2002-008

R. Frühwirth, T. Todorov and M. Winkler, Estimation of Alignment Parameters using the Kalman
Filter with annealing, Journal of Physics G: Nuclear and Particle Physics 29 (2003) 561–574

Update formulae for global parameters a and their covariance matrix E:

a1 := a0 + E0D
TW [m− f(p0, a0] with W =

[
V + HC0H

T + DE0D
T
]−1

E1 := E0 −E0D
TWDE0

. . . requires some matrix operations.

Convergence to local minima not excluded: introduction of “annealing” = gradually stepping up the
weights of the observations in the course of the estimation process (not “simulated annealing”).

Simulated annealing is a method, where, depending on a temperature T and some Boltzmann factor, a step can result
in an increase of an energy function.
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Further references

Danny Hindson, A Robust Procedure for Alignment of the ATLAS Inner Detector Using Tracks, Thesis,
Oxford (2004)

R. Harr et al., Tracking Detector Alignment Using Constrained Vertex Fits, IEEE Transactions on
Nuclear Science, Vol 41 (1994) 796

K. Abe et al., Design and performance of the SLD detector, a 307 Mpixel tracking system, Nucl. Instr.
and Methods A 400 (1997) 287–343

R. McNulty, T. Shears and A. Skiba, A Procedure for the Software Alignment of the CDF Silicon
System, CDF/DOC/TRACKING/GROUP/5700

B. Mours et al., The design, construction and performance of the ALEPH silicon vertex detector. Nucl.
Instr. and Methods A 379 (1996) 101–115

V. Karimäki, A. Heikkinen, T. Lampén and T. Lindén, Sensor alignment by tracks, CMS Conference
Report, CHEP03, La Jolla, California, March 24-28, 2003
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7. Conclusions and summary

Different types of alignment algorithms are in use in HEP experiments:

• Simple residual methods (which are simple, but may require many iterations).

“The handle on alignment comes from the residual distributions.” [Atlas report]

• Sequential and iterative (“classical”) methods: hierarchy of parametrizations of residual dis-
tributions (residuals between the track extrapolation and the recorded cluster) and overall fit,
iteratively.

• Simultaneous fits to (global) alignment parameters and (local) track parameters (Millepede).

Some recommendations:

• integration of alignment into reconstruction code;

• simultaneous use of all relevant detectors, but not too many parameters (orthogonality!);

• simultaneous use of several (all) types of events and data – physics data: single tracks, vertices,
invariant-mass constraints, and cosmics, overlaps . . .
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Summary

Present and future detectors are very large and very accurate –
the requirements for good alignment and calibration are increasing.

Sometimes an observer has the impression that the alignment
of certain objects can be improved with appropriate methods.

Data, computing power and also methods should be available to reach the goal.
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Millepede: any of numerous herbivorous nonpoisonous arthropods having a cylindrical
body of 20 to 100 or more segments most with two pairs of legs.
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Appendix. Matrix inversion

Matrix inversion is an essential part of minimisation. Inversion is a n3 process and can be time
consuming for large matrix dimension. Complete matrix inversion fails for singular matrices and is
inaccurate for almost singular matrices.

From HEP publications:

“For experiments with many data points, the inversion of such large matrices may lead to
numerical instabilities, in addition to being time-consuming.”

“Minimizing χ2 . . . is impractical because it involves the inversion of the measurement
covariance matrix which, in global fits, tends to be very large.”

Matrices to be inverted in statistical computation are symmetric and represent covariance/Hessian
matrices:

∆a = C−1b C−1 = covariance matrix of the parameters

The result will reflect the statistical properties of data and model!

• The storage and the computation can make use of the symmetry (→ factor 1/2).

• Matrices with highly correlated parameters are almost singular.

• Highly correlated parameters should be avoided (and are not meaningful). A strategy to get
relevant results in difficult cases can be used.
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Matrix inversion – timing

Time for inversion of a n-by-n matrix is expected to be ≈ O(n3).

n = RINV SMINV HHLROT unit

10 13.5 7.4 29.4 µsec

100 7.7 2.6 11.6 msec

1000 12.4 3.3 16.4 sec

3162 17.9 2.4 28.7 min

words n2 1/2 n2 3/2 n2

Inversion with n = 25000 will take ≈ one day
(SMINV) and requires 1.25 GB.
Atlas benchmark on 16-proc cluster: 95 hours for n = 8000
in double precision.

time = constant× n3

1 10 100 1000
1E-9

1E-8

1E-7

n

co
ns

ta
nt

time = constant n**3

SMINV

diagonalization

RINV

SMINVX

2.6 MHz Pentium with 512 MB; single precison computation.
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Matrix inversion – accuracy Symmetric 1000-by-1000 matrix

Check of accuracy based on V ′ =
(
V −1

)−1
. Plots show log10 of difference versus sum of elements;

lines correspond to 10−2 10−4 10−6.
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Highest precision by RINV (Cern); lowest precision for inversion by diagonalisation.
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Matrix programs

RINV Cern-Library program for full matrices, using triangular factorization with row interchange
(special code for n ≤ 3). Returns flag for singularity, but singularity will often go undetected.

SMINVX Special Gauss-Jordan algorithm for symmetric matrices with pivot selection on diago-
nal, and singularity detection.

SMINV Same as SMINVX, but with index calculation avoiding integer multiply and up to a factor
of 3 faster.

Algorithm: use always largest pivot element (on diagonal), but avoid elements with
very large (V )jj ·

(
V −1

)
jj
. Stop inversion if no acceptable pivot can be found and

clear corresponding matrix elements, i.e. invert the largest possible submatrix,
and return zero correction for remaining parameters.

HHLROT Diagonalization (eigenvalues + eigenvectors) by Householder transformation followed by
diagonalization of tridiagonal matrices. Allows to recognize insignificant components of the
solution from eigenvalues.

The global correlation coefficient, ρj is a measure of the total amount of correlation between the
j-th parameter and all the other variables. It is the largest correlation between the j-th parameter
and every possible linear combination of all the other variables.

ρj =

√
1− 1

(V )jj ·
(
V −1

)
jj

and (V )jj ·
(
V −1

)
jj

=
1

1− ρ2
j
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Singular matrix and inversion Symmetric 1000 by 1000 matrix

Precision of result for matrix, made singular with rank defect of 1.
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RINV (Cern) fails without result. Other algorithms have still useful result for 999 by 999 submatrix,
with unchanged precision.
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Solution of very large least squares problems

What is the best method to solve a very large least squares problem?

Orthogonal decomposition by singular value decomposition (SVD)

Advantage: with single-precision arithmetic as accurate as other methods with double-precision.

Disadvantage: requires the full input matrix in memory.

Another method which allows “sequential” input of data:

Transformation by Householder triangularization to triangular form without requiring that the entire
matrix be in computer storage.
C. L. Lawson and R. J. Hanson: Solving Least Squares problems. Prentice-Hall (1974)
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