
Alignment Algorithms

V. Blobel
Institut für Experimentalphysik, Hamburg, Germany

Abstract
Tracking detectors in high energy physics experiments require an accurate
alignment in order to allow a precise reconstruction of tracks and vertices,
according to the physics goals. Due to the large number of alignment param-
eters in a track-based alignment and in order to avoid potential distortions,
advanced mathematical methods have to be used. The properties of several
different methods used in HEP are discussed.

1 Introduction

The alignment and calibration of a track detector requires tounderstandthe measurement process in
detail. Ten thousands of parameters have perhaps to be optimized for the LHC track detectors. A good
alignment is essential for important aspects of physics analysis with large accurate vertex detectors with
a potential precision of a fewµm. A nominal alignment is defined from design data and an initial
optical survey, with corrections for electronics and mechanical effects. Aim of a track based alignment,
supplemented by survey data and perhaps by Laser alignment data, is to improve the nominal alignment
and to reduce theχ2 of the track fits, in order to improve track and vertex recognition, to increase the
precision of reconstructed tracks and vertices, and to improve the mass and vertex resolution, eliminating
or reducing bias in detector data.

Calibration of instruments is usually done by measuringreference standardscovering the range of
interest. In a track based alignment however noreference standards with known valuesexist and certain
degrees of freedom are only weakly defined or even undefined.

1.1 Classification of algorithms

Track-based alignment requires to minimize the sum of squared track residuals for a large number of
tracks. A least squares objective functionF (∆p, q) to be minimized is defined, which depends on the
alignment corrections∆p, and the track parametersq of all tracks:

F (∆p, q) =
∑

data sets

(∑
events

(∑
tracks

(∑
hits

∆2
i /σ2

i

)))
+ G (∆p) . (1)

The residual∆i is the difference between the fitted and the measured track position of thei-th measured
value, and it is divided by the standard deviationσi of the measurement. The expression (1) is valid
for uncorrelated measurements, and this assumption is usually made. In track data there are of course
effects like multiple scattering, which introduce correlations between track points and require a corre-
sponding track fit. Low-momentum tracks suffer from multiple scattering and those tracks are of little
use for alignment. As indicated in equation (1) byG (∆p), additional information like survey data may
contribute significantly to the objective function.

A general overview on software alignment algorithms for tracking detectors is given in refer-
ence [1], and several details are not repeated here. Most alignment algorithms are based on the objective
function (1), but they differ in the methods of minimization, as dicussed in section 2. However there
are two rather different and interesting algorithms reported at this workshop, the ”Track-based alignment
using a Kalman Filter technique” [2], which is an extension of the Kalman Filter track fit technique, to

the alignment, and updates the alignment parameters sequentially during track processing, and the align-
ment method used for the SLD detector [3], where fits are made of functional forms to various residual
types, and the alignment parameters are extracted from the fitted functional forms.

For several reasons the minimization of the objective function (1) is difficult. The number of
alignment parameters is high because of the fine segmentation; for the LHC track detectors the number
of parameters is of the order of104 or even105. The alignment precision depends on the amount of data
used in the alignment and it may be necessary to use millions of tracks. The amount of dataand the
number of parameters, with weakly defined or undefined degrees of freedom, represents a problem even
for todays computers.

The standard minimization method to obtain corrections∆p to alignment parametersp according
to function (1) is based on derivatives and requires the solution of a system of linear equations:

C ∆p = b , (2)

or of a sequence of such systems of linear equations in case of non-linearities; the symmetricn-by-
n matrix C is an approximation of the second derivative matrix and the right-hand-side vectorb the
(negative) first derivative∇F of the function (1). While mathematicians do not recommend matrix
inversion for the solution of a matrix equation, most (not all) physicists think, that a a matrix inversion
is unavoidable. Physicists also think that the inversion of a large matrix is impossible (from a talk: ”The
solution of 4200 equations in 4200 unknowns is computationally infeasible. Even worse, non-linear fit
won‘t converge.”). The possibility of an accurate solution of (2) depends on the condition numberκ of
the matrix (κ = ratio of largest to smallest eigenvalue) and a very high condition number, caused by
large correlations between parameters, indicates an almost singular matrix. Large correlations between
parameters and undefined degrees of freedom are of course a problem. If the origin of these problems
is identified, one can try to improve the condition. Matrix inversion has the advantage of providing the
covariance matrix and can be used forn ≈ 1 000, but is problematic for larger value ofn. Already
for n = 16 000 the matrix requires a Gbyte of memory and a direct solution of equation (2) by matrix
inversion (requiring a computing time∝ n3) would take more than a day on a standard PC. There are
several modern methods [4, 5] which are less demanding with respect to memore space and execution
time. An overview is given in section 3. Iterative methods for the solution of the matrix equation (2) may
be fast, and they can be applied to sparse or approximate matrices with a reduced space consumption.
There are further efficient methods for large scale minimization without the need to store a matrix.

Non-linearities of the alignment parameterization and the track fit corrections are expected to be
not large, at least not for routine alignment; they may require to go back to the original reconstruction
program and that will take a lot of cpu time. Depending on the method the solution of equation (2) may
be time consuming. For an iterative algorithm that converges onlylinearly to the solutionx∗ with a
sequence{xk} the inequality

linear convergence
||xk+1 − x∗||
||xk − x∗||

≤ r r ∈ (0, 1)

is valid for allk sufficiently large. The speed of convergence depends on the eigenvalue spectrum and is
slow for small eigenvalues. Iteration numbers of 100 or 1000 not uncommon, and an algorithm withr
close to 1, i.e.,(1 − r) � 1 is in practice considered asnot converging at all. For a quadratic function
the constant is given byr = (κ− 1)/(κ + 1). Convergence-recognition may be difficult; because of

||xk+1 − xk|| ≈ (1− r)||xk − x∗|| with (1− r) � 1

a small value of||xk+1 − xk|| does not yet mean small distance to the solution. In addition the outlier
rejection, if necessary, will introduce non-linear effects and require iterations for the minimization of
function (1).

2

1.2 Alignment parameters

Already before the alignment procedure a certain quality of the parameter value is required, which has
to be sufficient to recognize tracks with a good efficiency. Initial parameter valuesp are based on nom-
inal and design values, perhaps improved by survey data. The track-based alignment procedure should
produce corrections∆p to the nominal values.

For planar sensors (silicon pixel or strip detectors) the local (sensor) coordinates(u, v, w) and
global detector coordinatesr = (x, y, z) are related by the equation(u, v, w) = R (r − r0), where
R is the nominal rotation matrix andr0 is the nominal position. Up to six corrections are required
for each individual detector element or larger detector component, to improve the position and orienta-
tion, a translation(∆u, ∆v, ∆w) with three values and three (small) angles(α, β, γ), which define a
correction matrix, usually written in the form

∆R ≈

 1 γ −β
−γ 1 α
β −α 1

 ,

where the approximation has sufficient accuracy for small angles. The precision of the six parameters is
of course very different and one could reduce the total number of parameters by fixing e.g., three of the
six parameters. For drift chambers there are additional parameters like Lorentz-angle,T0, drift velocity
vdrift , global values and values per plane and/or per layer, and e.g., parameters for corrections dependent
on the angle between track and drift direction. In general the definition and parametrization related to
the alignment corrections requires a detailed knowledge of the detector. Finally also external parameters
like vertex position and beam direction can be included in the alignment procedure.

Methods with equality constraints can be used to reduce the number of parameters significantly. A
certain part of the track detector can be considered as one unit, consisting of many sensors. One set of six
parameters (translation, rotation) is assigned to the unit, and individual parameters sets are assigned to
individual sensors. The transformation of a single sensor is thus determined by the individual parameters
and the parameter set of the unit. Using constraint equations the overall translation and rotation of the
sensors in the unit from the individual parameter sets is forced to be zero.

1.3 Undefined or weakly defined degrees of freedom

If the alignment of a track detector is basedonly on the minimization of residuals, then several degrees
of freedom and certain parameters or linear combinations of parameters are undefined or only weakly
defined and as a consequence the matrix of equation (2) is singular or almost singular.

There are some trivial undefined degrees of freedom. A generallinear transformation of the whole
detector with a translation and a3 × 3 matrix R is determined by3 + 9 parameters and will not affect
the χ2 of the track fits. Those degrees of freedom can be defined by fixing detector planes. A more
general method is the introduction of equality constraints1 with Lagrange multipliers (see Section 3.1),
for example to force the overall translation to zero. Additional (non-linear) distortions can be caused
by coherently added corrections in the radiusR, azimutal angleΦ and in the longitudinal coordinatez,
leading to e.g., radial orz expansion and to effects called telescope, curl and bowing. These distortions
are connected with large correlations between parameters. The use of external information like survey
data or laser alignment data and a mixture of different track data will remove or reduce these effects.
For example overlaps between adjacent wafers in the same layer and cosmic rays in the detector without
magnetic field (straight tracks) are helpful to connect different areas of the detector and to avoid curvature
distortions. Equality constraints can be applied in addition to control potential distortion; these methods
are studied in a PhD thesis [6].

1The termconstraintis often used to describe the effect of a certain measurement; here it is used for exactequalitycon-
straints.

3

2 Alignment algorithms

2.1 Biased algorithms

Almost all alignment methods tried in HEP experiments consider the dependence of the objective func-
tion on the alignment parameters only, and ignore the dependence on the track parametersq, i.e., an
objective functionF (∆p) instead ofF (∆p, q) is considered. Optimal track parameters are deter-
mined independently in a track fit and the residuals of the measured points w.r.t. the optimal fit are
calculated. In some methods calledrobustthe mean values of the residuals are determined and used to
improve the alignment. Otherwise the derivatives of the residuals w.r.t. the global parameter corrections
are determined. For a single point measured on a track the linearization

a single track point: y = f(x;pglobal) +
(

∂f(x)
∂p

)T

∆p
global
k + ε

is used, wherey is the measured coordinate,f(x;pglobal) the track parametrization andε is the measure-
ment error, with a standard deviationσ. Each measured point contributes in the method of least squares
to the matrix and vector of the normal equations; in detail the term∂f/∂pi · ∂f/∂pj /σ2 is added to the
elementCij of the matrix. Only elementsCij , where both parameterspi andpj appearin a single mea-
sured point, get a contribution. The result is a big matrix, where only6-by-6 submatrices are non-zero, if
six parameters are used to describe the alignment position and orientation of a measured point. The solu-
tion for the corrections∆p is simple and fast: instead of having to solve a large matrix equation one has
to solve a large number of independent matrix equations of dimension six. The introduction of equality
constraints between alignment parameters seems to be impossible in this method (but see section 3.3.4).

Because the track fit parameters are determinedbeforethe alignment step, the residuals are biased
and the resulting alignment parameter corrections, determined either directly from the means of residuals
or by the least squares fit are biased. In order to reduce or remove the bias in the result, iterations of the
procedure are necessary, where the track fits are repeated with the improved alignment hoping, that the
procedure converges. It is difficult to relate the procedure to any iterative method found in mathematical
textbooks. If the convergence is linear, then the convergence rate depends on the eigenvalue spectrum
of the complete system, and one could expect a good progress for the initial iterations and a slower and
slower progress with increasing iteration number. Reported are iteration numbers until convergence in
the range from 20 to 100.

2.2 Unbiased algorithms

The alternative to the fits of the previous section is the attempt to perform a simultaneous least squares
fit of all global and all local (track) parameters in a single step with an objective functionF (∆p, q).
The total number of unknowns is of course large; in addition to the perhaps ten thousand alignment
parameters there a perhaps five track parameters for each of one million tracks. However the aim of the
fit is to get the alignment parameters and there are mathematical methods to reduce the size the system
of equations, without any approximation, to the alignment parameters. This method, as explained below,
has been used in the general Millepede program [7]. An equivalent algorithm has been developed for the
ATLAS experiment [8].

Now the linearization for a single point measured on a track with indexk includes the derivatives
of the track residual with respect to the (local) track parameters:

a single track point: y = f(xi;pglobal, qlocal) +
(

∂f(x)
∂p

)T

∆pglobal +
(

∂f(x)
∂qk

)T

∆q
global
k + ε

It is assumed that a track fit has been done before and only small track parameter corrections∆qk,
caused by a change in the alignment parameters, have to be fitted. The complete matrix equation for
global and local parameters includes sums over track indexk and contains many single-track-related

4

sub-matrices: then-by-n matrix C for n global parameters andm-by-m matricesC local
k andn-by-m

matricesHglobal-local
k , if m track parameters are assumed:

∑
k C

global
k · · · H

global-local
k · · ·

...
... 0 0

(
H

global-local
k

)T
0 C local

k 0

... 0 0
...

×

∆pglobal

...

∆qlocal
k

...

=

∑
k b

global
k

...

blocal
k

...

.

In order to explain the mathematical method, the matrix equationCa = b with a symmetric
matrix is partitioned (C11 andC22 are symmetric matrices): C11 C12

CT
12 C22

 a1

a2

 =

 b1

b2

 .

In the case of a zero rectangular matrixC12 the result for the vectora2 would beC22 a∗2 = b2, which
is solved bya∗2 = C−1

22 b2; this is called a local solution and corresponds to an improved least squares
track fit. In the non-zero case forC12 the complete solution for the two vectorsa1 anda2 can be written
in the form a1

a2

 =

 B −BC12C
−1
22

−C−1
22 CT

12B C−1
22 −C−1

22 CT
12BC12C

−1
22

 b1

b2

 ,

where the submatrixB is the inverse of the expression
(
C11 −C12C

−1
22 CT

12

)
, called Schurs comple-

ment. The solution for vectora1 can be obtained from the solution of the reduced matrix equation(
C11 −C12C

−1
22 CT

12

)
a1 = (b1 −C12a

∗
2) .

This method can be applied for each track. The local track fit is performed, and the related matrices
V k = C−1

k andHk are calculated. Finally for each track the term−HkV kH
T
k is added to the global

matrix C and the term−Hk (V kbk) is added to the vectorb. These additional terms transfer thelocal
information to the matrix equation of the global parameters. All elementsCij , where the parameters
pi andpj appear in the fit of the track, get a contribution and (compare the case of the biased fit in
section 2.1) the whole matrix will become a good approximation of the true second derivative matrix of
function (1). After the loop on all tracks the complete information is collected and the matrix equation
(2) for the global parameters has to be solved. MatricesC and vectorsb from several data sets can be
simply added to get the combined result. This method has been used in the general Millepede program.
First development of the Millepede principle with the reduction of matrix and matrix inversion for the
solution of the matrix equation was done in 1996, the code was used routinely for the vertex detector and
the drift chamber in the H1 collaboration since 1997 [7]; with an increasing number of parameters the

5

drift chamber resolution has now been improved by a factor two [9]. The code and a manual was made
available in 2000 on the web pagehttp://www.desy.de/~blobel. Being an experiment-independent
program it has been used since then by many experiments for alignment problems with up to 5 00
parameters. Several times it has been converted from Fortran to C++ (unpublished).

The development of a new version of Millepede, called Millepede II, started in May 2005 after
discussions with the Hamburg cms group. The aim was to allow the alignment with up to 100 000
parameters in a reasonable time on a standard PC, using the same principle as before, i.e., unbiased and
simultaneous fit of an arbitrary number of tracks and of alignment parameters. The plan was to use
different, direct and iterative, methods either for the solution of the large matrix equation or for the direct
minimization of function (1) using mathematical methods from the mathematical community e.g., [4],
no home-made iterative methods. The design included a strong separation of experiment-dependent code
and the experiment-independent Millepede alignment computation. A small C++ or Fortran routine is
called within the experiments event-processing program to write the alignment information (derivatives,
measured data, . . .) to a special file. One or several of such files are then input to a general stand-
alone Millepede program to produce the alignment parameters, with automatic recognition of existing
alignment parameters, allowing to fix parameters with too few data. Equality constraints and in addition
measured data from different sources (for example survey data) can be included. Preliminary versions
of Millepede II have been used since summer 2005 by a PhD student for the cms experiment. At present
almost all solution methods described in section 3 are included and working.

3 Mathematical methods

The introduction of overall equality constraints seems to be necessary for track-based alignment and
requires the solution of large systems of equations. Several different methods with different memory-
consumption and cpu-time requirements exist and are discussed in this section.

3.1 Equality constraints

Equality constraints in the solution of the matrix equation are essential. Undefined degrees of freedom
can be fixed by addinglinear equality constraintequations of the type

aT∆p = c e.g. overall translation dx =
∑

i

∆xi = 0 ,

“zero average displacement”, or “zero rotation of the whole detector”. The standard method for equality
constraints is the method of Lagrange multipliers, where an additional parameter, the Lagrange mul-
tiplier, is introduced for each constraint. A single equality constraint is introduced by appending a
term λ

(
aT∆p− c

)
to the function (1). Many equality constraints are combined to the matrix equa-

tion A∆p = c, and the objective function is extended to the Lagrange function, leading to the matrix
equation Cglobal AT

A 0

 ∆pglobal

λ

 =

 bglobal

c

 .

The task is to find, with a solution of the equation, a stationary point of the Lagrange function. The
matrix is no longer positive definite, but will have positive and negative eigenvalues. Certain iterative
methods for the solution of matrix equations require a positive definite matrix and can thus not be used.

An alternative method is the elimination method (for linear constraints), where, according to the
constraint equations, certain parameters are expressed by linear combinations of other parameters and
thus eliminated. The problem is reduced to an unconstrained problem with a reduced number of param-
eters; the matrix is positive definite.

6

3.2 Outlier rejection

Outliers in the data have a large influence on the result and can deteriorate the alignment result. The
difficulty is the fact that wrong initial alignment parameters can fake outliers. One method is an iterative
solution with a large initial cut (for example 10 standard deviations), which is reduced to a final cut for
example of three standard deviations. This method has been used in Millepede I. The same procedure
is available in Millepede II, but in addition the local track fits are made robust against outliers by the
technique of M-estimates in iterations of the local fits after the first one. Technically the influence of
outliers on local fits is reduced by down-weighting. In least squares the objective function is the sum∑

z2
i /2 of squares of scaled residualszi = ∆i/σi. In M-estimates the squareρ(z) = z2/2 is replaced

by a dependence with reduced influence for larger residuals, for example the Huber functionρ(z), which
results in an additional weight factorωi for thei-th measurement:

ρ(z) =

{
z2/2 if |z| ≤ c = 1.345
c (|z| − c/2) if |z| > c = 1.345

weightω =

{
1
c/|z|

.

The influence of outliers on local fits is thus reduced by down-weighting. The asymptotic efficiency of
the fits for pure Gaussian data is still 95 % for the value of the constantc = 1.345.

3.3 Solution of large matrix equations

3.3.1 Solution by matrix inversion

The standard method for the solution of the matrix equationC∆p = b with a symmetric matrixC is the
stable Gauss algorithm with pivot selection on the diagonal. The computing time isT = constant× n3.
The constant for the subroutine used in Millepede is about20×10−9 sec on a standard PC, corresponding
to a solution time below one hour forn = several thousands.

A standard inversion routine will usually fail – at least a few parameters out of many thousands
will be badly defined; the matrix is almost singular and is destroyed during computation without result
for the correction vector∆p. Inversion will of course also fail, if undefined degrees of freedom remain
undefined without equality constraints. In the Millepede inversion the largest pivot is selected in each
step, but the inversion stops if no acceptable pivot is found, i.e., the largest possible submatrix is inverted
and zero corrections are returned for the remaining parameters.

All variances and covariances are available in the inverse matrix. Theglobal correlation coeffi-
cient, ρj is a measure of the total amount of correlation between thej-th parameter andall the other
variables. It is the largest correlation between thej-th parameter and every possible linear combination
of all the other variables, defined by

ρj =

√
1− 1

(V)jj · (C)jj

or (V)jj · (C)jj =
1

1− ρ2
j

with V = C−1 .

The range of global correlation coefficients is0 . . . 1. The matrix is ill-conditioned (almost singular), if
anyρj is close to 1, with a large condition numberκ of the matrix (iterative methods would be slow).
The values of the global correlation coefficients depend on the geometry and the type of data; additional
data (cosmics, vertex and mass-constrained tracks) can reduce the global correlations significantly and
improve the alignment.

3.3.2 Solution by diagonalization

The diagonalization of the symmetric matrixC allows to recognize singularity of the matrix, or near
singularity, by the determination of eigenvalues and eigenvectors:

C = U D UT

7

with the diagonal matrixD of eigenvalues, and the square matrixU of eigenvectors (withU UT =
UT U = 1. Note:C−1 = U D−1 UT). The eigenvaluesλi in D are ordered with

D = [diag(λi)] : λ1 ≥ . . . ≥ λk ≥ λk+1 = . . . λn .

Algorithms for diagonalization are iterative, with a computing time≈ 10 times larger than inversion.
Zero and small positive eigenvalue correspond to undefined or weakly defined degrees of freedom amd
the corresponding linear combinations can be suppressed. The eigenvalues are used to write the solution
of C ∆p = b in the form

∆p = U

[
diag

(
1√
λi

)][
diag

(
1√
λi

)] (
UTb

)
︸ ︷︷ ︸
= q with V [q] = 1

with the replacement1/λi = 0 for λi = 0 or small. The solution can also be written in the form

∆p = U

[
diag

(
1√
λi

)]
q q =

[
diag

(
1√
λi

)] (
UTb

)
.

The covariance matrix of the transformed vector is the unit matrix,(V [q] = 1) and this allows a simple
significance test for the (independent) components of the vectorq. Singular value decomposition (SVD),
if applied to the square matrixC, is equivalent to diagonalization.

3.3.3 Generalized minimal residual method (GMRES) and sparse matrix storage

Large matrices are usuallysparse, with a small fraction, often a few percent only, of non-zero off-
diagonal elements. The inverse of a sparse matrix is a dense matrix, and the inversion method can not
make use of the sparse structure. There are iterative methods for the solution of large matrix equations,
which can work on a sparse matrix. Only products of the formCx are required, and the matrixC is
never modified. The method of conjugate gradients (Hestenes, Stiefel 1952) has been developed for the
solution with a positive definite matrix. The generalized minimal residual method (GMRES) has been
developed for the solution of a very large system of linear equations, with a symmetric matrix of logical
sizen × n, which may be indefinite, very large and sparse, by an optimized solution of a quadratic
minimization problem, in analogy to the method of conjugate gradients.

One example is the subroutine MINRES [10]. The matrix is accessedonly by means of a subrou-
tine call

call Aprod (n, x, y) to return y = Cx

for any given vectorx. In a test with 12 000 parameters the solution with MINRES took a cpu time of
32 sec, compared to a cpu-time 12 h, 46 min, 5 s for matrix inversion, with essentially the same result.
The computing time is sensitive to the eigenvalue spectrum of the matrix, which can be improved by
preconditioning. Preconditioning is an option in MINRES by means of a subroutine call

call Msolve(n, x, y) to solve My = x for y

without altering vectorx. The matrixM−1 should be an approximation toC−1, such thatM−1C ≈ 1
(see section 3.3.4).

Parameter errors or more general, the elements of the covariance matrixV , depend on the hits
statistics and the geometry. The inverse of matrixC is the covariance matrixV of the alignment param-
eters (withCV = 1). This is available with matrix inversion and diagonalization, but not with MINRES.
However some elements of the covariance matrixV can be calculated with MINRES. The column vector
of matrix V with index j is determined by the solution of the matrix equationCvj = ej , whereej is
thej-th column vector of the unit matrix.

8

The MINRES method can be used for a full or for a sparse matrixC. For a sparse matrix with a
fractionq of non-zero off-diagonal elements a sparse index storage scheme can be used, which requires

n + q · n(n− 1)/2 double precision (data) and integer (indices) words

and is optimized for the product (9 lines of code). The automatic generation of parameter-index relations
and the definition of the sparse storage as well as the numerical matrix generation by sums requires a
large number of comparisons. A fast method using a combination of hashing, sorting and binary search
is used in Millepede II.

3.3.4 Cholesky decomposition for band matrices

A symmetrically structured matrixC with zero elementsCij for |i− j| > m is called a band matrix with
semibandwidthm and bandwidth2m + 1. The Cholesky decomposition

C = LDLT , (3)

with a left unit triangular matrixL (values 1 on the diagonal) and a diagonal matrixD, can be done
in-place (preserving the band structure), with matricesD andL taking the space of the (symmetric)
matrixC. For a fixed bandwidth the computing time dependslinearly on the dimensionn of the matrix.
The decomposition allows to rewrite the matrix equation (2) in the formL

(
DLT∆p

)
= b and now the

matrix equation can be solved in two steps by a forward and a backward substitution. Substitutions are
straightforward becauseL is triangular.

The matrixC of alignment problems is of course not a band matrix, but a band matrix with e.g.,
a semibandwidthm = 6 can be considered as an approximation of the parameter part of the matrixC
and one could try an iterative solution. The constraint part of the matrixC will in general have sig-
nificant elements inall positions, and a narrow band matrix would be an unacceptable approximation.
But for matrices with avariable band widththe decompostion with Gaussian elimination without inter-
changes preserves the band structure too; the decomposition of variable-band (also called skyline, and
profile) matrices can be donein-space. This allows to use the full Lagrange formalism for the equality
constraints, and a narrow-bandwidth approximation for the parameter part of the matrixC in iterative
solutions (compare section 2.1). Overall memory space consumption is low, on the cost of a perhaps
larger number of iterations. The method can also be used for the preconditioning of the generalized
minimal residual method of section 3.3.3; tests show a significant increase of the speed of that algorithm
by preconditioning.

3.4 Quasi-Newton methods and limited-memory BFGS

The iterative Quasi-Newton methods for function minimization require only the calculation of the gra-
dient∇F of the objective functionF (p) at each iteration. In each iterationk a new step∆p can be
calculated by

∆p = −Bk∇F , (4)

whereB is an approximation of the inverse of the second derivative matrix. The step is used in a line
search minimization of the functionΦ(α) = F (p + α ·∆p). Usually the valueα = 1 is acceptable; the
standard line-search method giving a sufficient improvement is the Wolfe line search [4]. Starting from
a simple assumption (e.g.B0 = scaled unit matrixγ ·1) the approximate inverse HessianB is improved
by updates, using the difference vectors

sk = pk+1 − pk yk = ∇Fk+1 −∇Fk .

Requiring the secant equationBk+1yk = sk, the most-popular update formula is

ρk = 1/yT
k sk Bk+1 =

(
1− ρksky

T
k

)
Bk

(
1− ρkyks

T
k

)
+ ρksks

T
k (BFGS)

9

Table 1: Overview over mathematical methods (for an explanation see text).

Method F (p) ∇F C C−1

Diagonalization − × × ×
Inversion − × × ×
Generalized residual minimization − × (×) (×)
Variable-band matrix × × (×) −
Limited memory BFGS × × − −

([4], used also e.g. in MINUIT/MIGRAD). The BFGS method hasO(n2) operations per iteration and
has a superlinear rate of convergence but requires of course to store the full (dense) matrixB and thus
cannot be used directly for alignment with a very large number of parameters.

However the matrixBk is required only in the productBk∇F of equation (4) and this product
can be also calculated from a set of difference vectorss andy, withoutforming the matrixBk explicitly.
The limited memory BFGS (short: L-BFGS) method [11, 12] uses update information only from recent
iterations. WithB0 = γ · 1 the productBk∇Fk is evaluated from the lastm difference vectorsyk, sk

only; good values form are in the range3 . . . 20. The storage requirement is, withn (2m + 4), linear
in n, and≈ 3/2 m2n operations are needed per iteration; the iterative method has a fast rate oflinear
convergence, and is considered as the optimal method for optimization problems withn � 100 000
parameters [5].

4 Summary

Track-based alignment with a large number of parameters requires advanced mathematical methods. The
quantities required for different mathematical methods are given in Table 1. The matrixC is required
for the method as a full matrix (symbol×) or as a sparse matrix with reduced memory consumption
(symbol (×)). In general the reduced memory consumption has to be compensated by a larger number
of iterations. All methods allow to apply equality constraints in order to avoid distortions by weakly
defined degrees of freedom and will reduce track residuals significantly. For the LHC track detectors a
quality of alignment corresponding to the quality of the hardware can be expected.

Acknowledgements

I would like to thank the organizers of the workshop for arranging a superb program.

References
[1] V. Blobel, Software alignment for tracking detectors, NIMA 566, (2006) 5 - 13.

[2] R. Frühwirth, Track-based alignment using a Kalman Filter technique, these proceedings.

[3] F. Wickens, Internal alignment of the SLD vertex detectors, these proceedings.

[4] J. Nocedal and S.J. Wright, Numerical Optimization, Spinger Series in Operations Research,
Springer, 1999.

[5] J.F. Bonnans, J.C. Gilbert, C. Lemarechal, and C.A. Sagastizabal, Numerical Optimization – The-
oretical and Practical Aspects, (2003) Springer.

[6] M. Stoye, PhD thesis, in preparation, University of Hamburg

[7] V. Blobel and C. Kleinwort, A new method for the high-precision alignment of track detectors,
PHYSTAT2002, Durham, andarXiv-hep-ex/0208021.

[8] P. Bruckman De Renstrom, Aligment strategy from ATLAS inner detector alignment, these pro-
ceedings.

10

[9] C. Kleinwort, Alignment Experience from ZEUS/H1, these proceedings.

[10] C.C. Paige and M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J.
Numer. Anal.12(4), (1975) 617 - 629, and
www.stanford.edu/group/SOL/software/minres.html.

[11] J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation35
(1980), 773 - 782.

[12] D.C. Liu and J. Nocedal, On the limited-memory BFGS method for large scale optimization, Math-
ematical Programming45 (1989) 503 - 528.

11

