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1. Introduction

The determination of parameters in fits to measured data is a standard task of data
analysis.

Examples are
• determination of calorimeter calibration constants,
• fit of parton densities in a global analysis of a wide range of deep inelastic and related

scattering data (many different experiments),
• detector alignment and calibration procedures (many thousand parameters)

Standard statistical methods for parameter determination are
• Method of Least Squares
• Maximum Likelihood method

which have certain optimal statistical properties, which can be proven on the basis of
certain conditions. In both methods a multidimensional objective function is constructed,
taking into account the statistical properties of the data, and the minimum (or maximum) of
the function w.r.t. the parameters has to be determined.
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χ2 minimisation Confusion in terminology

A popular method for parameter estimation is χ2 minimisation χ2 = ∆TV −1∆ – is this
identical to least squares?
The minimum value of the objective function in Least Squares follows often (not always) a χ2

distribution.

In contrast to the well-defined standard methods
• in χ2 minimisation a variety of different non-standard concepts is used,
• often apparently motivated by serious problems to handle the experimental data in a

consistent way;
• especially for the error estimation there are non-standard concepts and methods.

From publications:

To determine these parameters one must minimize a χ2 which compares the measured
values . . . to the calculated ones . . .

Our analysis is based on an effective global chi-squared function that measures the
quality of the fit between theory and experiment . . .

Two examples are given, which demonstrate that χ2 minimisation can give biased results:

• Calorimeter calibration

• Averaging data with common normalisation error
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Calorimeter calibration 1. example

Calorimeters for energy measurements in a particle detector require a calibration, usually based
on test beam data (measured cell energies yik) with known energy E. A common method
[1, 2, 3, 4, 5, 6, 7, 8] based on the χ2 minimisation of

χ2 =
1

N

N∑
k=1

(a1y1,k + a2y2,k + . . . + anyn,k − E)
2

for the determination of the aj can produce biased results (D. Lincoln et al. [9]).

If there would be one cell only, one would have data yk with standard deviation σ, with a mean
value of y =

∑
k yk/N , and the intended result is simply a = E/y

A one-cell version of the above χ2 definition is

χ2 =
1

N

N∑
k=1

(a · yk − E)
2

with the biased result a =
E · y

(
∑

k y2
k) /N

=
E · y

y2 + σ2
6= E/y

There would be no bias, if the inverse constant ainv would have been determined from

χ2 =
1

N

N∑
k=1

(yk − ainvE)
2

In a χ2 expression the measured values yk should not be modified; instead the expectation has
to take into account all known effects.
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Common normalisation errors 2. example

Given N data xk with different standard deviations σk and a common relative normalisation
error of ε. Apparently the mean value y can not be affected by the normalisation error, but its
standard deviation is.
One method is to use the full covariance matrix for the correlated data, e.g. in the case N = 2:

V a =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2

1 y1y2
y1y2 y2

2

)
=

(
σ2

1 + ε2y2
1 ε2y1y2

ε2y1y2 σ2
2 + ε2y2

2

)
and minimising

χ2 = ∆TV −1∆ with ∆ =

(
y1 − y
y2 − y

)
Example (from [10]): Data are
y1 = 8.0± 2% and y2 = 8.5± 2%, with a common (relative) normalisation error of ε = 10%.
The mean value resulting from χ2 minimisation is:

7.87± 0.81 i.e. < y1 and < y2

- this is apparently wrong.

. . . that including normalisation errors in the correlation matrix will produce a fit which
is biased towards smaller values . . . [11]

. . . the effect is a direct consequence of the hypothesis to estimate the empirical co-
variance matrix, namely the linearisation on which the usual error propagation relies.
[10, 12]
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Origin of the apparent problem . . . the used covariance matrix!

Correct model: true y1 and y2 and the normalisation errors ε · value are identical:

V b =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
y2 y2

y2 y2

)
=

(
σ2

1 + ε2y2 ε2y2

ε2y σ2
2 + ε2y2

)
Covariance ellipse for V a

6 8 10
6

8

10

Axis of ellipse is tilted w.r.t. the diagonal and
ellipse touches the diagonal at a biased point.

Covariance ellipse for V b

6 8 10
6

8

10

Axis of the ellipse is ≈ 45◦ and ellipse touches
the diagonal at the correct point.

The result of χ2 minimisation may depend critically on details of the model implementation!
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2. Standard methods

Standard statistical methods for parameter determination are
• Method of Least Squares S(a) • χ2 minimisation is equivalent: χ2 ≡ S(a)
• Maximum Likelihood method F (a)

. . . improves the parameter estimation if the detailed probability density is known.

Least squares and Maximum Likelihood can be combined, e.g

Ftotal(a) =
1

2
S(a) + Fspecial(a)

Doubts about justification of χ2 minimisation from publications:

The justification for using least squares lies in the assumption that the measurement
errors are Gaussian distributed. [13]

However it is doubtful that Gaussian errors are realistic.

A bad χ2 . . . Finally the data may very well not be Gaussian distributed.
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Properties of the solution for y ' Aa Linear Least Squares

Solution (from ∂F/∂a = 0) is linear transformation of the data vector y:

â =
[(

ATWA
)−1

ATW
]

y = B y

Starting from Principles properties of the solution are derived, which are valid under certain
conditions:

• Data are unbiased: E[y] = A ā (ā = true parameter vector)

• Covariance matrix V y of the data is known (and correct).

Distribution-free properties of least squares estimates in linear problems are:

• Estimated parameters are unbiased: W = V −1
y

E[â] =
(
ATWA

)−1
ATW E[y] = ā

• In the class of unbiased estimates, which are linear in the data, the Least Squares estimates
â have the smallest variance (Gauß-Markoff theorem).

• The expectation of the sum of squares of the residuals is Ŝ = (n− p).

Special case of Gaussian distributed measurement errors:

Ŝ distributed according to the χ2
n−p distribution

to be used for goodness-of-fit test. Properties are not valid, if conditions violated.

Covariance matrix of a by ”error” propagation

V [â] = B V [y] BT =
(
ATWA

)−1 = inverse of second der. matrix of F (a)
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Test of non-Gaussian data

MC test of least squares fit of 20 data points to straight line (two parameters), generated with
data errors from different distributions, but always mean = 0 and same standard deviation
σ = 0.5.

uniform errors

-1 0 1
0

5000

1E4

Uniform errors
Gaussian errors

-2 0 2
0

1E4

20

30

E 03 Gaussian errors

double exponential errors

-2 0 2
0

20

40

60

E 03 Double exponential errors
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Results for slope parameters 25000 entries

uniform errors

0.95 1 1.05 1.1
0

500

1000

slope

Uniform errors

m = 0.9998 +- 0.12E-03

s = 0.01935 +- 0.09E-03

σ = 0.0194

Gaussian errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.13E-03

s = 0.01949 +- 0.09E-03

Gaussian errors

σ = 0.0195

double exponential errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.12E-03

s = 19.004E-03 +- 0.09E-03

Double exponential errors

σ = 0.0190

• All parameter distributions are Gaussian, and of the width, expected from the standard
error calculation.

• This is valid for both fitted parameters.
• Mean χ2-values are all equal to ndf = 20− 2 = 18, as expected, but
• χ2-probabilities have different distributions, as expected.
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Likelihood function and information

Case of m variables a1, . . . , aj, . . . , am: the information I is a m-by-m symmetric matrix I
with elements

Ijk = E

[
∂ lnL
∂aj

∂ lnL
∂ak

]
= −E

[
∂2 lnL
∂aj∂ak

]
The minimal variance V [â] of an estimate â is given by inverse of the information matrix I :

minimal variance V [â] = I−1

Define the negative log likehood function as objective function and find minimum

F (a) = − lnL(a) g =
∂F

∂aj

= 0 .

In case of good statistic the Hessian is almost constant in the region around the minimum and
the inverse H−1 is a good estimate of the covariance matrix V a of the parameters a.

V a = H−1

This corresponds to standard error propagation from the data errors to the parameter errors.
The curvature (second derivative) of F (a) determines the covariance matrix; this is essentially
error propagation from the input (data) errors to the parameter errors; it does not depend
on the goodness-of-fit.
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Matrix inversion – timing

n = RINV SMINV HHLROT unit

10 13.5 7.4 29.4 µsec

100 7.7 2.6 11.6 msec

1000 12.4 3.3 16.4 sec

3162 17.9 2.4 28.7 min

words n2
1/2 n2

3/2 n2

Inversion with n = 25000 will take ≈ one day
(SMINV), but would require 1.25 GB.

time = constant× n3

1 10 100 1000
1E-9

1E-8

1E-7

n

co
ns

ta
nt

time = constant n**3

SMINV

diagonalization

RINV

SMINVX

SMINV: Special Gauss-Jordan algorithm for symmetric matrices with pivot selection on
diagonal. Detects singularity by check of diagonal elements, making use of the
global correlation coefficient, and inverts a submatrix in case of singular matrix.

2.6 MHz Pentium with 512 MB; single precison computation.

V. Blobel – University of Hamburg Comments on χ2 minimisation page 12



Matrix inversion – accuracy Symmetric 1000 by 1000 matrix

Check of accuracy based on V ′ =
(
V −1)−1

. Plots show log10 of difference versus sum of
elements; lines correspond to 10−2 10−4 10−6.

SMINV
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RINV
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ε ≈ 10−3

Highest precision by RINV (Cern), but fails without result for a rank defect of 1. Accuracy of
SMINV not changed by rank defect of 1.
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3. Data and parameter errors

Data errors: Statistical and systematic uncertainties can only be correctly taken into account
in a fit, if there is a clear model describing all aspects of the uncertainties.

Statistical data errors: described either

• by (“uncorrelated”) errors – standard deviation σi for data point yi (origin is usually counts
– Poisson distribution),

• by a covariance matrix V y.

Two alternative models for systematic errors:

• multiplicative effects – normalisation errors

• additive effects – offset errors

that had to be accounted for in different ways in a fit.

V. Blobel – University of Hamburg Comments on χ2 minimisation page 14



Normalisation errors Systematic errors I

Data yi in Particle Physics are often (positive) cross sections, obtained from counts and several
factors (Luminosity, detector acceptance, efficiency).

In general there is a normalisation error, given by a relative error ε. If data from > 1 experiment
are combined, the normalisation error ε has to be taken into account.

Method: Introduce one additional factor α, which has been measured to be α = 1± ε, modify
expectation according to

fi = α · f (xi, a)

and make fit with

S(a) =
∑

i

(yi − α · f (xi, a))
2

σ2
i

+ ∆Snorm with ∆Snorm =
(α− 1)

2

ε2

or ∆Snorm = ln α

(
3 +

ln α

ln (1 + ε2)

)
lognormal distribution

One factor αk has to be introduced for each experiment, if data from more than one experiment
are fitted.
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Additive errors Systematic errors II

Example: error of calorimeter constant – a change of the constant will change all data values
yi – events are moved between bins.
Determine shifts si of data values yi, for a one-standard deviation change of the calorimeter
constant – the shifts si will carry a relative sign.
1. Method: Modify covariance matrix to include contribution(s) due to systematic errors

V a = V stat + V syst with V syst = ssT (rank=1 matrix)

2. Method: Introduce one additional parameter β, which has been measured to be 0 ± 1,
for each systematic error source, modify expectation according to

fi = f (xi, a) + β · si

and make fit with

S(a) =
∑

i

(yi − (f (xi, a) + βsi))
2

σ2
i

+ β2

Advantage of additional parameter β:

• Allows to test the pull = β̂/
√

1− Vββ due to the systematic error.

• Allows to test the effect of the fit model on the systematic effect from the global correlation
coefficient ρglobal

β .

• Allows more insight into systematic effect by inspection of the correlation coefficients ρβ,aj

between β and the other parameters.

• First derivative of expectation (for fits) is trivial: ∂fi/∂β = si.

The parameter(s) β can be eliminated in a modified χ2 definition. [14]
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Check of the covariance matrix . . . and of error propagation

Single parameter aj: Calculate, for many fixed values of aj, the function value S(a), which
requires always a minimisation with (m− 1) parameters (MINOS feature of MINUIT).

Function g(a): Calculate, for many fixed values of g, the function value S(a), which requires
always a function minimisation. The standard method of constraining, in a fit, the g(a) to a
fixed value gfix is by the method of Lagrange multipliers, minimizing

F (a) + λ · (g(a)− gfix)

w.r.t. the parameters a and the Lagrange multiplier λ. This defines an (m − 1)-dimensional
subspace.

Note that the extremum is a saddle point: F is minimal w.r.t. a and maximal w.r.t. λ, and
standard minimisation programs (like MINUIT) cannot be used.

An alternative is to assume, by trial-and-error, fixed values of the Lagrange multiplier λ and
to minimize

F (a) + λ · g(a)

and, after minization, to calculate the corresponding fixed g(a) (allows to use MINUIT). [14]
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Systematic errors in χ2 expressions

There is a variety of methods:

χ2 =
∑

i

(α · fi − yi)
2

σ2
i

+
(α− 1)

2

ε2
χ2 =

∑
i

(fi − α · yi)
2

σ2
i

+
(α− 1)

2

ε2

χ2 =
∑

i

(fi/(1 + βsi)− yi)
2

σ2
i

+ β2 χ2 =
∑

i

(fi · (1 + βsi)− yi)
2

σ2
i

+ β2

. . . in my nomenclatur.

“Offset method”: Systematic errors are ignored in the fit (“forces the theory prediction to be
as close as possible to the data”), but later added in quadrature. [13]

The fit result must be biased, if incomplete error information is used.
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Parameter errors in χ2 minimisation

Notice that the covariance matrix

V p
ij = 〈∆i∆j〉 = ∆χ2 ·H−1

ij

depends on the choice of ∆χ2 which usually, but not always, is taken to be ∆χ2 = 1.
This choice . . . corresponds to the definition of the width of a Gaussian distribution.
[13]

In full global fit art in choosing “correct” ∆χ2 given complication of errors. Ideally
∆χ2 = 1, but unrealistic. [15]

. . . and ∆χ2 is the allowed variation in χ2. . . . and a suitable choice of ∆χ2 . . . and ∆χ2

is the allowed deterioration in fit quality for the error determination. [16]

Group ∆χ2 Ref. # Value of αS(M 2
Z)

H1 1 [17] 2 0.115± 0.0017 (exp) +0.0009
−0.0005 (model) ±0.005 (theory)

GKK 1 [18, 19] 3 0.112± 0.001 (exp)

MRST02 20 [16] many 0.1195± 0.002 (exp) ±0.003 (theory)

ZEUS 50 [20, 21] several 0.1166± 0.0040 (exp) ±0.0081 (model) ±0.004 (theory)

CTEQ6 100 [22] several 0.1165± 0.0065 (exp)

Also the errors obtained for functions of the parameters by error propagation are multiplied by a ∆χ2.
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Examples with large ∆χ2

The large, artificial and arbitrary magnification of errors is hardly acceptable – the procedure
points to a deep problem in the whole data analysis. Two examples from parton distribution
fits: [14, 15]

W production at the Tevatron αS(M 2
Z)

Both curves are parabolas to a very good approximation over a range of ∆χ2 > 100 . . .

. . . while usually one would consider only a range of ∆χ2 ≈ 4, corresponding to two standard
deviations.
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4. Statistical properties of the data

A theorists view:

Indeed, we have always believed the theory, rather than experiment, will provide the
dominant source of error. [16]

But let us look at the statistical and systematic properties of the data.

• Are the data points (highly) correlated?

The main problem of the analysis is the correction for measurement errors (un-
smearing corrections), which are . . . [later more]

g(y) =

∫
Ω
A(y, x)f (x)dx or short y = Ax

f (x) = true distribution, g(y) = measured distribution, A(y, x) = resolution function.

• Ist there enough information available on correlations/systematic errors, to be used in a
fit?
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Comparing correlated data points

The two blue points with high negative/positive correlation are compared to a theoretical curve.

negative correlations ρ = −0.9

0 5 10
0

5

10

P = 0.0005 %

P = 59 %

positive correlations ρ = +0.9

0 5 10
0

5

10

P = 59 %

P = 0.0005 %

The χ2-probabilities P are quite different for same sign/opposite sign deviations to the theo-
retical curve.

The average data point (red) of the two blue data points is very precise for negative correlations,
but of almost the same precision as both single points for positive correlations.
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An example for a measured histogram

. . . using migration parameter ε = 0.24, i.e. 52 % of true events remain in the same bin, and
for 10 000 events.

0 10 20 30
0

200

400

600

observed distribution with meas. error

bins (y)

Note the small structure in the center:

• It may be just a statistical fluctuation (→
smooth after unfolding)

• If it is a real structure in the distribution,
then the true peak has to be higher!
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Result of solution by inversion x̂ = A−1y

Reconstructed data points and true curve

0 10 20 30
0

500

1000 unfolded distribution and true curve

bins (x)

Correlation coefficients ρij

0 10 20 30
0

10

20

30
Covariance matrix

−1

0

+1

Highly fluctuation data points due to large negative correlations, caused by limited resolution.
Correlation coefficients ρij with |ρij| > 0.05 are shown by colour boxes: here the coefficients
ρi,i+1 between neighbour bins are ≈ −0.95.
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Solution by orthogonal decomposition Amplitudes

U T · | y ∼= Ax = UDU Tx

c = U Ty ∼= D
(
U Tx

)
= Db b = D−1c

. . . for true distribution and folded distribution

0 10 20 30
0

1

10

100

1000

coeff of true and folded distribution

index j

. . . from measurement

0 10 20 30
0

1

10

100

1000

coeff of measured distribution

index j

Folded amplitudes are measured and can be transformed to reconstruct the true amplitudes.
Green line represents statistical errors (noise level). True and folded amplitudes below the noise
level can not be reconstructed.
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Solution with cut-off . . . at N/2 coefficients

Take only the significant first 15 amplitudes to reconstruct the distribution with 30 data points.

0 10 20 30
0

200

400

600

unfolded distribution and true curve

bins (x)
0 10 20 30

0

10

20

30
Covariance matrix after cut-off

Covariance matrix has rank 15 and coefficients ρi,i+1 between neighbour bins are large and
positive (≈ +0.6): “statistical” errors are smaller than original errors!
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Solution with N/2 data points

If two bins are combined to one, the distribution has a covariance matrix with full rank.

0 10 20 30
0

200

400

600

unfolded distribution and true curve

bins (x)
0 5 10 15

0

5

10

15

Covariance matrix after cut-off

All correlation coefficients are small, even between neighbour bins (|ρi,i+1| < 0.2) – but at the
cost of a reduced number of points.
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Unsmearing corrections Practice in HEP

The standard method in particle physics to correct for the limited resolution is explained in
words (no mathematical formula):

. . . The main problem of the analysis is the correction for measurement errors (un-
smearing corrections), which are large at large x where the structure functions vary
rapidly with x. We proceed by assuming a “true” structure function and calculate by
Monte Carlo simulation, on the basis of the known experimental resolution functions,
the result to be expected in the apparatus. By iteration a “true” distribution
which reproduces the experimental result is found. The “unsmearing fac-
tor” is the ratio of Monte Carlo events for any particular (x, Q2) bin in the “true”
distribution divided by those in the resolution smeared distribution. If this factor
differs from unity by more than 30 %, the bin is not retained. . . . [23]

The method above is correct, if the “true” distribution is found without error. One could stop
the procedure once the “true” distribution is found, but what about the measurement errors?

Any “true” distribution assumed to be very smooth may result in positive correlations
between neighbour bins – the data have weights in fits which are too large.
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Published data on deep inelastic scattering

Shown are the total (statistical and “uncorrelated” systematic) errors. In addition there are
“correlated” systematic errors and a normalisation error of 1.8 % and 1.5 %, resp. The curve
is a fitted parabola, with a χ2, that is better than expected (the data are rather smooth).

1998/1999 data (16.4 pb−1)
at Q2 = 200 GeV2

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

1999/2000 data (65.2 pb−1)
at Q2 = 200 GeV2

0.001 0.01 0.1 1
0

0.5

1

1.5

Unsmearing corrections are done based on earlier fits; bins are required to have stability and
purity of > 30%.
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Same data Errors multiplied by
√

50

Taking ∆χ2 of 50 to calculate 1 standard deviation errors is equivalent to multiplication of all
input errors by

√
50.

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

This looks strange indeed!
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Summary

Objective functions to be minimized should follow statistical principles in order to avoid biased
results:

• input data should have no bias, and correct statistical errors or covariance matrix, resp.

• complete systematic error contributions specified with a clear model of their meaning in
fits

• the introduction of additional parameters for systematic error contributions allows insight
into the interdependence (correlation coefficients, global correlations, pulls)

• parameter errors should be based only on error propagation from the input errors, not on
arbitrary ∆χ2 factors.
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1. Introduction

The determination of parameters in fits to measured data is a standard task of data
analysis.

Examples are
• determination of calorimeter calibration constants,
• fit of parton densities in a global analysis of a wide range of deep inelastic and related

scattering data (many different experiments),
• detector alignment and calibration procedures (many thousand parameters)

Standard statistical methods for parameter determination are
• Method of Least Squares
• Maximum Likelihood method

which have certain optimal statistical properties, which can be proven on the basis of
certain conditions. In both methods a multidimensional objective function is constructed,
taking into account the statistical properties of the data, and the minimum (or maximum) of
the function w.r.t. the parameters has to be determined.
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χ2 minimisation Confusion in terminology

A popular method for parameter estimation is χ2 minimisation χ2 = ∆TV −1∆ – is this
identical to least squares?
The minimum value of the objective function in Least Squares follows often (not always) a χ2

distribution.

In contrast to the well-defined standard methods
• in χ2 minimisation a variety of different non-standard concepts is used,
• often apparently motivated by serious problems to handle the experimental data in a

consistent way;
• especially for the error estimation there are non-standard concepts and methods.

From publications:

To determine these parameters one must minimize a χ2 which compares the measured
values . . . to the calculated ones . . .

Our analysis is based on an effective global chi-squared function that measures the
quality of the fit between theory and experiment . . .

Two examples are given, which demonstrate that χ2 minimisation can give biased results:

• Calorimeter calibration

• Averaging data with common normalisation error
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Calorimeter calibration 1. example

Calorimeters for energy measurements in a particle detector require a calibration, usually based
on test beam data (measured cell energies yik) with known energy E. A common method
[1, 2, 3, 4, 5, 6, 7, 8] based on the χ2 minimisation of

χ2 =
1

N

N∑
k=1

(a1y1,k + a2y2,k + . . . + anyn,k − E)
2

for the determination of the aj can produce biased results, as pointed out by D. Lincoln et al.
[9].

If there would be one cell only, one would have data yk with standard deviation σ, with a mean
value of y =

∑
k yk/N , and the intended result is simply a = E/y

A one-cell version of the above χ2 definition is

χ2 =
1

N

N∑
k=1

(a · yk − E)
2

and minimizing this χ2 has the biased result

a =
E · y

(
∑

k y2
k) /N

=
E · y

y2 + σ2
6= E/y
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. . . contnd.

The bias mimics a non-linear response of the calorimeter.
A known bias in fitted parameters is easily corrected for.

Example: for a hadronic calorimeter one may have

Energy resolution
σ

E
=

0.7√
E

which will result in a biased ratio =
E

E + 0.72

(at E = 10 GeV the resolution is 22 % and the bias is 5 %).

There would be no bias, if the inverse constant ainv would have been determined from

χ2 =
1

N

N∑
k=1

(yk − ainvE)
2

General principle: In a χ2 expression the measured values yk should not be modified; instead
the expectation has to take into account all known effects.
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Common normalisation errors 2. example

There are N data xk with different standard deviations σk and a common relative normalisation
error of ε. Apparently the mean value y can not be affected by the normalisation error, but its
standard deviation is.
One method is to use the full covariance matrix for the correlated data, e.g. in the case N = 2:

V a =

(
σ2

1 0

0 σ2
2

)
+ ε2 ·

(
y2

1 y1y2

y1y2 y2
2

)
=

(
σ2

1 + ε2y2
1 ε2y1y2

ε2y1y2 σ2
2 + ε2y2

2

)
and minimising

χ2 = ∆TV −1∆ with ∆ =

(
y1 − y

y2 − y

)
Example (from [10]): Data are
y1 = 8.0± 2% and y2 = 8.5± 2%, with a common (relative) normalisation error of ε = 10%.
The mean value resulting from χ2 minimisation is:

7.87± 0.81 i.e. < y1 and < y2

- this is apparently wrong.

. . . that including normalisation errors in the correlation matrix will produce a fit which
is biased towards smaller values . . . [11]

. . . the effect is a direct consequence of the hypothesis to estimate the empirical co-
variance matrix, namely the linearisation on which the usual error propagation relies.
[10, 12]
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Origin of the apparent problem . . . the used covariance matrix!

The contribution to V from the normalisation error was calculated from the measured values,
which were different; the result is a covariance ellipse with axis different from 45◦ and this
produces a biased mean value.

The correct model is: y1 and y2 have the same true value, then the normalisation errors ε ·value
are identical, with

V b =

(
σ2

1 0

0 σ2
2

)
+ ε2 ·

(
y2 y2

y2 y2

)
=

(
σ2

1 + ε2y2 ε2y2

ε2y σ2
2 + ε2y2

)
i.e. the covariance matrix depends on the resulting parameter.
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Ellipses

Covariance ellipse for V a

6 8 10
6

8

10

Axis of ellipse is tilted w.r.t. the diagonal and
ellipse touches the diagonal at a biased point.

Covariance ellipse for V b

6 8 10
6

8

10

Axis of the ellipse is ≈ 45◦ and ellipse touches
the diagonal at the correct point.

The result may depend critically on certain details of the model implementation.
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The method with one additional parameter . . .

Another method often used is to define

χ2
a =

∑
k

(f · yk − y)
2

σ2
k

+
(f − 1)

2

ε2
,

which will also produce a biased result.

The χ2 definition for this problem

χ2
b =

∑
k

(yk − f · y)
2

σ2
k

+
(f − 1)

2

ε2

will give the correct result (data unchanged and
fitted value according to the model), as seen by
blue curve.

6 7 8 9

4

6

8

mean Y

ch
i s

qu
ar

e

chi square(b)

chi square(a)

V. Blobel – University of Hamburg Comments on χ2 minimisation page 39



2. Standard methods

Standard statistical methods for parameter determination are
• Method of Least Squares S(a) • χ2 minimisation is equivalent: χ2 ≡ S(a)
• Maximum Likelihood method F (a)

. . . improves the parameter estimation if the detailed probability density is known.

Least squares and Maximum Likelihood can be combined, e.g

Ftotal(a) =
1

2
S(a) + Fspecial(a)

Doubts about justification of χ2 minimisation from publications:

The justification for using least squares lies in the assumption that the measurement
errors are Gaussian distributed. [13]

However it is doubtful that Gaussian errors are realistic.

A bad χ2 . . . Finally the data may very well not be Gaussian distributed.
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The standard linear least squares method

The model of Linear Least Squares: y = A a

y = measured data A = matrix (fixed) a = parameters V y = covariance matrix of y

Least Squares Principle: minimize the expression (W = V −1
y )

S(a) = (y −Aa)
T

W (y −Aa) or F (a) =
1

2
S(a)

with respect to a.

Derivatives of expression F (a):

g =
∂F

∂a
= −ATWy +

(
ATWA

)
a

H =
∂2F

∂ajak

=
(
ATWA

)
= constant

Solution (from ∂F/∂a = 0) is linear transformation of the data vector y:

â =
[(

ATWA
)−1

ATW
]

y = B y

Covariance matrix of a by ”error” propagation

V [â] = B V [y] BT =
(
ATWA

)−1 = inverse of H
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Properties of the solution

Starting from Principles properties of the solution are derived, which are valid under certain
conditions:

• Data are unbiased: E[y] = A ā (ā = true parameter vector)

• Covariance matrix V y of the data is known (and correct).

Distribution-free properties of least squares estimates in linear problems are:

• Estimated parameters are unbiased:

E[â] =
(
ATWA

)−1
ATW E[y] = ā

• In the class of unbiased estimates, which are linear in the data, the Least Squares estimates
â have the smallest variance (Gauß-Markoff theorem).

• The expectation of the sum of squares of the residuals is Ŝ = (n− p).

Special case of Gaussian distributed measurement errors:

Ŝ/σ2 distributed according to the χ2
n−p distribution

to be used for goodness-of-fit test. Properties are not valid, if conditions violated.
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Test of non-Gaussian data

MC test of least squares fit of 20 data points to straight line (two parameters), generated with
data errors from different distributions, but always mean = 0 and same standard deviation
σ = 0.5.

uniform errors

-1 0 1
0

5000

1E4

Uniform errors
Gaussian errors

-2 0 2
0

1E4

20

30

E 03 Gaussian errors

double exponential errors

-2 0 2
0

20

40

60

E 03 Double exponential errors
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Results for slope parameters 25000 entries

uniform errors

0.95 1 1.05 1.1
0

500

1000

slope

Uniform errors

m = 0.9998 +- 0.12E-03

s = 0.01935 +- 0.09E-03

σ = 0.0194

Gaussian errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.13E-03

s = 0.01949 +- 0.09E-03

Gaussian errors

σ = 0.0195

double exponential errors

0.95 1 1.05 1.1
0

500

1000

slope

m = 1 +- 0.12E-03

s = 19.004E-03 +- 0.09E-03

Double exponential errors

σ = 0.0190

• All parameter distributions are Gaussian, and of the width, expected from the standard
error calculation.

• This is valid for both fitted parameters.
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χ2 and χ2-probability 25000 entries

• Mean χ2-values are all equal to ndf = 20− 2 = 18, as expected, but
• χ2-probabilities have different distributions, as expected.

uniform errors

0 0.5 1
0

200

400

chi square probability

Uniform errors
Gaussian errors

0 0.5 1
0

100

200

300

chi square probability

Gaussian errors

double exponential errors

0 0.5 1
0

500

1000

1500

chi square probability

Double exponential errors

Conclusion: Least squares works fine and as expected, also for non-Gaussian data,
if . . . and only if

• data are unbiased and covariance matrix is complete and correct.
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Likelihood function and information

Given a sample x1, . . . , xi, . . . , xn (or short {x}) of measured values from a distribution p(x; a)
(i.e. normalized density).

What is the information in the sample about the parameter(s) a?

The likelihood function as joint density of the observed values of the random variable x:

Likelihood function L(a) =

n∏
i=1

p(xi; a)

with normalisation ∫
Ω
L(a) dx1dx2 . . . dxn = 1

Case of m variables a1, . . . , aj, . . . , am: information I becomes a m-by-m symmetric matrix I
with elements

Ijk = E

[
∂ lnL
∂aj

∂ lnL
∂ak

]
= −E

[
∂2 lnL
∂aj∂ak

]
The minimal variance V [â] of an estimate â is given by the inverse of the information matrix
I :

minimal variance V [â] = I−1
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Maximum likelihood method in practice

Define the negative log likehood function as objective function and find minimum

F (a) = − lnL(a) g =
∂F

∂aj

= 0 .

In case of good statistic the Hessian is almost constant in the region around the minimum and
the inverse H−1 is a good estimate of the covariance matrix V a of the parameters a.

V a = H−1

This corresponds to standard error propagation from the data errors to the parameter errors.

The covariance matrix
• the function value F (â) determines the goodness-of-fit (not always); the goodness-of-fit

has to be acceptable.
• the curvature (second derivative) of F (a) determines the covariance matrix; this is essen-

tially error propagation from the input (data) errors to the parameter errors; it does
not depend on the goodness-of-fit.
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Minimisation of objective function

F (a + ∆a) = F (a) + gT ·∆a +
1

2
∆aTH∆a + . . .

with

gradient gj =
∂F

∂aj

Hessian Hjk =
∂2F

∂aj∂ak

Newton step ∆a = −H−1g

Least squares contributions

F (a) =
1

2

∑
i

1

σ2
i

(yi − f (xi, a))
2

∂F

∂aj

=
∑

i

1

σ2
i

∂f

∂aj

(yi − f (xi, a))

∂2F

∂aj∂ak

=
∑

i

1

σ2
i

(
∂f

∂aj

∂f

∂ak

− ∂2f

∂aj∂ak

(yi − f (xi, a))

)
Ignoring second derivatives improves the Newton step!
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Newton steps . . . in fit of exponential

Colour contours of objective function S(a): steps correspond to ∆χ2 ≈ 50

Second derivatives ∂f/∂a ignored

1.8 2 2.2

1.8

2

2.2

Second derivatives ∂f/∂a included

1.8 2 2.2

1.8

2

2.2

Ignoring second derivatives improves the Newton step!
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Minimisation

MINUIT is standard, general, well documented and “easy” to use, but it requires to code the
objective function (χ2 function) – which is not always simple and straightforward.

Often the objective function could have standard form – a fit of function f (xi, a) to data sets
yi – and would allow:

• Standardized handling for function integration over bins (histograms) and of the systematic
additive and multiplicative (normalisation) errors.

• strategy to have a reduced number of parameter changes for those parameters, where this
is expensive,

• use of first derivative (analytical or numerical) of f (x, a) to construct first (gradient) and
second derivative (Hessian) of objective function,

• making use of the structure of the equations e.g. for the systematic error contributions,

• allow equality constraints between parameters (Lagrange).
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Matrix inversion

Matrix inversion is an essential part of minimisation and covariance matrix calculation.

Inversion is a n3 process and can be time consuming for large matrix dimension. Matrix
inversion fails for singular matrices and is inaccurate for almost singular matrices.

For experiments with many data points, the inversion of such large matrices may lead
to numerical instabilities, in addition to being time-consuming. [14]

Minimizing χ2 . . . is impractical because it involves the inversion of the measurement
covariance matrix which, in global fits, tends to be very large.

Matrices to be inverted in statistical compuation are symmetric and represent covariance/Hessian
matrices. The storage and computation can make use of the symmetry.

Matrices with highly correlated parameters are almost singular.
Strategy: if parameters are highly correlated – invert submatrix and treat dependent parameters
as fixed (zero correction).
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Matrix programs

RINV Cern-Library program for full matrices, using triangular factorization with row inter-
change (special code for n ≤ 3). Returns flag for singularity, but singularity will often go
undetected.

SMINVX Special Gauss-Jordan algorithm for symmetric matrices with pivot selection
on diagonal. Detects singularity by check of diagonal elements and inverts a
submatrix in case of singular matrix.

SMINV Same as SMINVX, but with index calculation avoiding integer multiply and up to
a factor of 3 faster.

HHLROT Diagonalization (eigenvalues + eigenvectors) by Householder transformation fol-
lowed by diagonalization of tridiagonal matrices. [24] Allows to recognize insignificant
components of the solution.
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Global correlation and pivot selection

The global correlation coefficient, ρk is a measure of the total amount of correlation
betwen the k-th parameter and all the other variables. It is the largest correlation between the
k-th parameter and every possible linear combination of all the other variables.

ρk =

√
1− 1

(V )kk ·
(
V −1)

kk

and (V )kk ·
(
V −1)

kk
=

1

1− ρ2
k

Rule in SMINV: use largest pivot element (on diagonal), but avoid elements with (V )kk ·(
V −1)

kk
> 1/ε. Stop inversion if no acceptable pivot can be found and clear corresponding

matrix elements.

i.e. invert the largest possible submatrix if complete matrix is singular.
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Matrix inversion – timing

n = RINV SMINV HHLROT unit

10 13.5 7.4 29.4 µsec

100 7.7 2.6 11.6 msec

1000 12.4 3.3 16.4 sec

3162 17.9 2.4 28.7 min

words n2
1/2 n2

3/2 n2

Inversion with n = 25000 will take ≈ one day
(SMINV), but would require 1.25 GB.

time = constant× n3

1 10 100 1000
1E-9

1E-8

1E-7

n

co
ns

ta
nt

time = constant n**3

SMINV

diagonalization

RINV

SMINVX

2.6 MHz Pentium with 512 MB; single precison computation.
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Matrix inversion – accuracy Symmetric 1000 by 1000 matrix

Check of accuracy based on V ′ =
(
V −1)−1

. Plots show log10 of difference versus sum of
elements; lines correspond to 10−2 10−4 10−6.

SMINV
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ε ≈ 10−5

RINV
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L
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G
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’i
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ε ≈ 10−6

HHLROT

-6 -4 -2 0 2

-10

-5

0 Inversion by diagonalization

LOG10(Vij + V’ij)

L
O

G
10

(V
ij 

- V
’i

j)

ε ≈ 10−3

Highest precision by RINV (Cern); lowest precision for inversion with diagonalisation (also
more sensitive).
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Matrix inversion – accuracy Symmetric 1000 by 1000 matrix

Result for matrix made singular with rank defect of 1.
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L
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G
10

(V
ij 

- V
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ε ≈ 10−3

RINV (Cern) fails without result; other algorithms have still useful result for 999 by 999
submatrix with unchanged precision.
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How to express the fit function? An Example

Assume a Gaussian density function with 3 parameters N , µ and σ

f (x) = N ·∆x · 1√
2πσ

· exp

{
−(x− µ)

2

2σ2

}
is fitted to a histogram (bin size ∆x) using the Poisson maximum likelihood method. All three
parameters are (almost) uncorrelated. The result for N will be the true value with an error of√

N because of the Poisson model (and error propagation).

If however the density is expressed by

f (x) = N ·∆x · exp

{
−(x− µ)

2

2σ2

}
(e.g. PAW and root), then N is (negatively) correlated with σ and the relative error of N is
enlarged due to the correlation.
After a proper full matrix error propagation AV AT of course the previous error expression is
obtained.
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. . . contnd.

An example from parton density fits: the gluon parametrization is

xg(x, Q2
0) = . . . − A− (1− x)

η− x−δ−

where A− ∼ 0.2, δ− ∼ 0.3 and η− fixed at ∼ 10. A change of δ− changes both shape and
normalisation.

. . . very small changes in the value of δ− can be compensated almost exactly by a
change in A− and (to a lesser extent) in the other gluon parameters . . . [16]

. . . we notice that a certain amount of redundancy in parameters leads to potentially
disatrous departures . . . For example, in the negative term in the gluon parameteriza-
tion very small changes in the value of δ− can be compensated almost exactly by a
change in A− and in the other gluon parameters . . . [16]

We found our input parameterization was sufficiently flexible to accomodate data, and
indeed there is a certain redundancy evident. [25]

In that case the Hessian will be (almost) singular, inversion is impossible and the convergence
of the fit is doubtful.
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3. Data and parameter errors

Data errors: Statistical and systematic uncertainties can only be correctly taken into account
in a fit, if there is a clear model describing all aspects of the uncertainties.

Statistical data errors: described either

• by (“uncorrelated”) errors – standard deviation σi for data point yi (origin is usually counts
– Poisson distribution),

• by a covariance matrix V y.

Two alternative models for systematic errors:

• multiplicative effects – normalisation errors

• additive effects – offset errors

that had to be accounted for in different ways in a fit.
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Normalisation errors Systematic errors

Data yi in Particle Physics are often (positive) cross sections, obtained from counts and several
factors (Luminosity, detector acceptance, efficiency).

In general there is a normalisation error, given by a relative error ε. If data from > 1 experiment
are combined, the normalisation error ε has to be taken into account.

Method: Introduce one additional factor α, which has been measured to be α = 1± ε, modify
expectation according to

fi = α · f (xi, a)

and make fit with

S(a) =
∑

i

(yi − α · f (xi, a))
2

σ2
i

+ ∆Snorm with ∆Snorm =
(α− 1)

2

ε2

One factor αk has to be introduced for each experiment, if data from more than one experiment
are fitted.
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The log-normal distribution . . . and the normalisation error

The normalisation factor determined in an experiment is more the product than the sum of
random variables. According to the multiplicative central limit theorem the product of positive
random variables follows the log-normal distribution, i.e. the logarithm of the normalisation
factor follows the normal distribution.

For a log-normal distribution of a
random variable α with E[α] = 1
and standard deviation of ε the
contribution to S(a, α) is

∆Snorm = ln α

(
3 +

ln α

ln (1 + ε2)

)
→ (α− 1)

2

ε2
for small ε

0 1 2 3

0.2

0.4

0.6

0.8

1

1.2
Log-normal distribution with sigma = 0.5

The normal and the log-normal distribution, both with
mean 1 and standard deviation ε = 0.5.
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Additive errors Systematic errors II

Example: error of calorimeter constant – a change of the constant will change all data values
yi – events are moved between bins.

Determine shifts si of data values yi, for a one-standard deviation change of the calorimeter
constant – the shifts si will carry a relative sign.

1. Method: Modify covariance matrix to include contribution(s) due to systematic errors

V a = V stat + V syst with V syst = ssT (rank=1 matrix)

e.g. V stat
ij = sisj, and use modified matrix in fit with S(a) = ∆TV −1

a ∆

• Requires inversion (once) of the n× n matrix of the data.

• Otherwise no change of formalism necessary.

• Used e.g. by Lep Electroweak Heavy Flavour WG.[26]
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. . . contnd.

2. Method: Introduce one additional parameter β, which has been measured to be 0 ± 1,
for each systematic error source, modify expectation according to

fi = f (xi, a) + β · si

and make fit with

S(a) =
∑

i

(yi − (f (xi, a) + βsi))
2

σ2
i

+ β2

Advantage of additional parameter β:

• Allows to test the pull = β̂/
√

1− Vββ due to the systematic error.

• Allows to test the effect of the fit model on the systematic effect from the global correlation
coefficient ρglobal

β .

• Allows more insight into systematic effect by inspection of the correlation coefficients ρβ,aj

between β and the other parameters.

• First derivative of expectation (for fits) is trivial: ∂fi/∂β = si.

The parameter(s) β can be eliminated in a modified χ2 definition. [14]
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Several systematic error sources

When using the 2. method one parameter β` has to be introduced for each systematic effect.
The corresponding subvector of the gradient and submatrix of the Hessian is easily defined:

Hessian H =

(
Haa Haβ

HT
aβ Hββ

)
with (Hββ)`k = δ`k +

∑
i

s`i ski

σ2
i

The matrix Hββ is a constant and has to be inverted only once.

Inverse: H−1 = V =

(
V aa V aβ

V T
aβ V ββ

)
=

((
Haa −HaβH

−1
ββH

T
aβ

)−1 −V aaHaβH
−1
ββ

−H−1
ββH

T
aβV aa H−1

ββ −H−1
ββH

T
aβV aβ

)
with diagonal matrix (Hββ)`` = 1+

∑
i

s2
i

V aa is the covariance matrix of the parameters a; the contribution from systematic errors
(Hββ) is not separated. H−1

aa + H−1
aa HT

aβHaβH
−1
aa is probably not correct.

See Press et al. [27]: Inversion can be done by an nlog2 7 = n2.807 algorithm.
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Covariance matrix of parameters and error propagation

Parameter errors: The parameter errors are given by the inverse of the Hessian Haa (the
parameter submatrix)

V aa

If the approximation is good, then the function difference should follow a parabola in any
direction ∆a:

F (a + ∆a)− F (a) =
1

2
∆aTH∆a H = V −1

aa

This is usually an excellent approximation, also for “non-Gaussian” data errors.

Errors of a function g(a) of the fitted parameters are calculated by standard error propagation:

V g = T V aa T T

where T is the matrix of derivatives.

Both aspects have to be checked, especially in case of poor statistic.
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Check of the covariance matrix . . . and of error propagation

Single parameter aj: Calculate, for many fixed values of aj, the function value S(a), which
requires always a minimisation with (m− 1) parameters (MINOS feature of MINUIT).

Function g(a): Calculate, for many fixed values of g, the function value S(a), which requires
always a function minimisation. The standard method of constraining, in a fit, the g(a) to a
fixed value gfix is by the method of Lagrange multipliers, minimizing

F (a) + λ · (g(a)− gfix)

w.r.t. the parameters a and the Lagrange multiplier λ. This defines an (m − 1)-dimensional
subspace.

Note that the extremum is a saddle point: F is minimal w.r.t. a and maximal w.r.t. λ, and
standard minimisation programs (like MINUIT) cannot be used.

An alternative is to assume, by trial-and-error, fixed values of the Lagrange multiplier λ and
to minimize

F (a) + λ · g(a)

and, after minization, to calculate the corresponding fixed g(a) (allows to use MINUIT). [14]
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Systematic errors in χ2 expressions

There is a variety of methods:

χ2 =
∑

i

(α · fi − yi)
2

σ2
i

+
(α− 1)

2

ε2
χ2 =

∑
i

(fi − α · yi)
2

σ2
i

+
(α− 1)

2

ε2

χ2 =
∑

i

(fi/(1 + βsi)− yi)
2

σ2
i

+ β2 χ2 =
∑

i

(fi · (1 + βsi)− yi)
2

σ2
i

+ β2

. . . in my nomenclatur.

“Offset method”: Systematic errors are ignored in the fit (“forces the theory prediction to be
as close as possible to the data”), but later added in quadrature. [13]

The fit result must be biased, if incomplete error information is used.

V. Blobel – University of Hamburg Comments on χ2 minimisation page 67



An example from χ2 minimisation

. . . in the global χ2, which has a value χ2 = 2328 for 2097 data points, usually signifies
that the fit to one or more data sets is becoming unacceptable poor. . . . Overall, this
gives 24 free parameters. . . . In fact we finish up with 15 free parameters in total . . . [16]

The χ2-probability for a χ2 = 2328 at 2097 − 15 = 2082 degrees of freedom is indeed very
small: P = 1.16× 10−4.

The standard procedure (PDG) is to assume that the data errors are too small by a factor of√
2082/2328 = 0.946 and to increase the parameter errors by a factor of

√
2328/2082 = 1.057.

This would be only a small magnification of the standard errors.
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Parameter errors in χ2 minimisation

Notice that the covariance matrix

V p
ij = 〈∆i∆j〉 = ∆χ2 ·H−1

ij

depends on the choice of ∆χ2 which usually, but not always, is taken to be ∆χ2 = 1.
This choice . . . corresponds to the definition of the width of a Gaussian distribution.
[13]

In full global fit art in choosing “correct” ∆χ2 given complication of errors. Ideally
∆χ2 = 1, but unrealistic. [15]

. . . and ∆χ2 is the allowed variation in χ2. . . . and a suitable choice of ∆χ2 . . . and ∆χ2

is the allowed deterioration in fit quality for the error determination. [16]

Group ∆χ2 Ref. # Value of αS(M 2
Z)

H1 1 [17] 2 0.115± 0.0017 (exp) +0.0009
−0.0005 (model) ±0.005 (theory)

GKK 1 [18, 19] 3 0.112± 0.001 (exp)

MRST02 20 [16] many 0.1195± 0.002 (exp) ±0.003 (theory)

ZEUS 50 [20, 21] several 0.1166± 0.0040 (exp) ±0.0081 (model) ±0.004 (theory)

CTEQ6 100 [22] several 0.1165± 0.0065 (exp)

Also the errors obtained for functions of the parameters by error propagation are multiplied by a ∆χ2.
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Examples with large ∆χ2

The large, artificial and arbitrary magnification of errors is hardly acceptable – the procedure
points to a deep problem in the whole data analysis. Two examples from parton distribution
fits: [14, 15]

W production at the Tevatron αS(M 2
Z)

Both curves are parabolas to a very good approximation over a range of ∆χ2 > 100 . . .

. . . while usually one would consider only a range of ∆χ2 ≈ 4, corresponding to two standard
deviations.
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4. Statistical properties of the data

A theorists view:

Indeed, we have always believed the theory, rather than experiment, will provide the
dominant source of error. [16]

But let us look at the statistical and systematic properties of the data.

• Are the data points (highly) correlated?

The main problem of the analysis is the correction for measurement errors (un-
smearing corrections), which are . . . [later more]

• Ist there enough information available on correlations/systematic errors, to be used in a
fit?
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Comparing correlated data points

The two blue points with high negative/positive correlation are compared to a theoretical curve.

negative correlations ρ = −0.9

0 5 10
0

5

10

P = 0.0005 %

P = 59 %

positive correlations ρ = +0.9

0 5 10
0

5

10

P = 59 %

P = 0.0005 %

The χ2-probabilities P are quite different for same sign/opposite sign deviations to the theo-
retical curve.

The average data point (red) of the two blue data points is very precise for negative correlations,
but of almost the same precision as both single points for positive correlations.
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The unfolding problem

Reconstruct the distribution f (x) of the true variable x from the measured distribution g(y) of
the quantity y, which is related to the true variable x, based on the knowledge of the resolution
(or migration) function A(y, x).

g(y) =

∫
Ω
A(y, x)f (x)dx or short y = Ax

where

g(y) = measured distr. y = measured histogram

f (x) = ideal (true) distr. x = true histogram

A(y, x) = resolution fcn. A = resolution/migration matrix

The resolution matrix A has usually be determined from the x/y-pairs of a sample of MC
events.

In matrix notation: determine vector x from the measured vector y, with a known matrix A
- i.e. solve a linear equation.
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Examples for a migration matrix

A Matrix A, depending on a single parameter ε (= migration parameter):

A =


1− ε ε 0 0 0

ε 1− 2ε ε 0 0

0 ε 1− 2ε ε 0

0 0 ε 1− 2ε ε

0 0 0 ε 1− ε



Red elements show migration probability from second true bin into three bins of the measured
distribution.

The matrix is symmetric and therefore has real eigenvalues.
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Solution of y = Ax by inversion First attempt

A direct solution is possible with inversion of the matrix A:

estimate x̂ = A−1y

error propagation V (x̂) = A−1V y

(
A−1)T

The method has good statistical properties – no bias:

E [x] = A−1E [y] = A−1AE [x] = x

In practice the result is satisfactory for a matrix A with dominating diagonal.

However: the results looks terrible if the matrix A describes a large migration to neighbour
bins.
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An example for a measured histogram

. . . using migration parameter ε = 0.24, i.e. 52 % of true events remain in the same bin, and
for 10 000 events.

0 10 20 30
0

200

400

600

observed distribution with meas. error

bins (y)

Note the small structure in the center:

• It may be just a statistical fluctuation (→
smooth after unfolding)

• If it is a real structure in the distribution,
then the true peak has to be higher!
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Result of solution by inversion

Reconstructed data points and true curve

0 10 20 30
0

500

1000 unfolded distribution and true curve

bins (x)

Correlation coefficients ρij

0 10 20 30
0

10

20

30
Covariance matrix

−1

0

+1

Highly fluctuation data points due to large negative correlations, caused by limited resolution.
Correlation coefficients ρij with |ρij| > 0.05 are shown by colour boxes: here the coefficients
ρi,i+1 between neighbour bins are ≈ −0.95.

V. Blobel – University of Hamburg Comments on χ2 minimisation page 77



Solution of y = Ax by orthogonal decomposition Second attempt

Decomposition of symmetric matrix A: A = UD U T with diagonal matrix D of eigenvalues
λ and U TU = 1. Matrix U contains eigenvector uj in j-th column.

Transformation to new basis:

U T · | y ∼= Ax = UDU Tx

c = U Ty ∼= D
(
U Tx

)
= Db b = D−1c

Vector y is transformed to vector c using matrix U (eigenvectors uj):

c = U Ty or cj = uT
j y j = 1 . . . n

Unfolding is simply multiplication/division of coefficients by eigenvalues (and depends only an
matrix A):

Unfolding y → x cj →
cj

λj

= bj = uTx j = 1 . . . n
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Amplitudes . . . corresponding to eigenvectors

. . . for true distribution and folded distribution

0 10 20 30
0

1

10

100

1000

coeff of true and folded distribution

index j

. . . from measurement

0 10 20 30
0

1

10

100

1000

coeff of measured distribution

index j

Folded amplitudes are measured and can be transformed to reconstruct the true amplitudes.
Green line represents statistical errors (noise level). True and folded amplitudes below the noise
level can not be reconstructed.
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Solution with cut-off . . . at N/2 coefficients

Take only the significant first 15 amplitudes to reconstruct the distribution with 30 data points.

0 10 20 30
0

200

400

600

unfolded distribution and true curve

bins (x)
0 10 20 30

0

10

20

30
Covariance matrix after cut-off

Covariance matrix has rank 15 and coefficients ρi,i+1 between neighbour bins are large and
positive (≈ +0.6): “statistical” errors are smaller than original errors!
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Solution with N/2 data points

If two bins are combined to one, the distribution has a covariance matrix with full rank.

0 10 20 30
0

200

400

600

unfolded distribution and true curve

bins (x)
0 5 10 15

0

5

10

15

Covariance matrix after cut-off

All correlation coefficients are small, even between neighbour bins (|ρi,i+1| < 0.2) – but at the
cost of a reduced number of points.
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Unsmearing corrections Practice in HEP

The standard method in particle physics to correct for the limited resolution is explained in
words (no mathematical formula):

. . . The main problem of the analysis is the correction for measurement errors (un-
smearing corrections), which are large at large x where the structure functions vary
rapidly with x. We proceed by assuming a “true” structure function and calculate by
Monte Carlo simulation, on the basis of the known experimental resolution functions,
the result to be expected in the apparatus. By iteration a “true” distribution
which reproduces the experimental result is found. The “unsmearing fac-
tor” is the ratio of Monte Carlo events for any particular (x, Q2) bin in the “true”
distribution divided by those in the resolution smeared distribution. If this factor
differs from unity by more than 30 %, the bin is not retained. . . . [23]

The method above is correct, if the “true” distribution is found without error. One could stop
the procedure once the “true” distribution is found, but what about the measurement errors?

Any “true” distribution assumed to be very smooth may result in positive correlations
between neighbour bins – the data have weights in fits which are too large.
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Published data on deep inelastic scattering

Shown are the total (statistical and “uncorrelated” systematic) errors. In addition there are
“correlated” systematic errors and a normalisation error of 1.8 % and 1.5 %, resp. The curve
is a fitted parabola, with a χ2, that is better than expected (the data are rather smooth).

1998/1999 data (16.4 pb−1)
at Q2 = 200 GeV2

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

1999/2000 data (65.2 pb−1)
at Q2 = 200 GeV2

0.001 0.01 0.1 1
0

0.5

1

1.5

Unsmearing corrections are done based on earlier fits; bins are required to have stability and
purity of > 30%.
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Same data Errors multiplied by
√

50

Taking ∆χ2 of 50 to calculate 1 standard deviation errors is equivalent to multiplication of all
input errors by

√
50.

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

0.001 0.01 0.1 1
0

0.5

1

1.5

x

si
gm

a

This looks strange indeed!
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Selected topics

• Poisson approximation by Gaussian

• Histogram fits

• Poisson contribution to objective function

• Contaminated normal distribution

• Three eigenvectors in unfolding
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Poisson approximation by Gaussian Example: observed y = 7

Blue curve is Gaussian approximation with µ = σ2 = 7 in both figures.

Poisson density for µ = 7:

P =
µne−µ

n!

0 5 10 15
1E-4

0.001

0.01

0.1

n

densities

Poisson ML contribution:

P =
f ye−f

y!

0 5 10 15
1E-4

0.001

0.01

0.1

f

ML contributions
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Histogram fits

Should on use a least squares fit (χ2 minimization) of Poisson maximum likelihood in a fit to
histogram data?

Some people put the requirement as low as λ = 5, but 10 is probably safer. [28]

It is undesibale to have less than five events in any bin. [?]

Just excluding bins with no entries will introduce a bias.
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Poisson contribution to objective function

F (a) =
∑

i

f (xi, a)− yi ln f (xi, a)

or better F (a) =
∑

i

(f (xi, a)− yi) + yi ln
yi

f (xi, a)

∂F

∂aj

=
∑

i

yi

∂f
∂aj

f (xi, a)
− ∂f

∂aj

∂2F

∂aj∂ak

=
∑

i

yi

∂f
∂aj

∂f
∂ak

− ∂2f
∂aj∂ak

f (xi, a)

f 2(xi, a)
−
∑

i

∂2f

∂aj∂ak
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Contaminated normal distribution Outliers

Everyone believes in the normal law of errors, the experimenters because they think it is
a mathematical theorem, the mathematicians because they think it is an experimental
fact. [Poincaré]

Outliers – single unusual large or small values among a sample – are dangerous and will usually
introduce a bias in the result.

Modifications of the standard least squares procedure with

• recognition and

• special treatment of outliers

may be useful to reduce the unwanted bias in fitted parameters.
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Three eigenvectors in unfolding

Condition number of matrix is λmax/λmin = 24. The migration parameter is ε = 0.24, i.e. 52
% of the entries after folding remain in the correct bin.

0 10 20 30

-0.2

0

0.2

eigenvectors 2, 3 and N/2

bins (x,y)
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