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Abstract

Tracking detectors in high energy physics experiments require an accurate determination of a large number of alignment parameters in order to allow a precise
reconstruction of tracks and vertices. In addition to the initial optical survey and corrections for electronics and mechanical effects the use of tracks in a special
software alignment is essential. The general program MILLEPEDE performs a simultaneous least squares fit of a large number of tracks, with determination of (global)
alignment parameters and (local) track parameters. The version II, which is under development, provides several options for the solution of large matrix equations.
Aim is a program that is able to determine up to 100 000 alignment parameters in a reasonable time on a standard PC.
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1. Introduction

Purpose of instrument calibration: Instrument calibration is intended to eliminate or reduce
bias in an instrument’s readings over a range for all continuous values. For this purpose, reference
standards with known values for selected points covering the range of interest are measured with
the instrument in question. Then a functional relationship is established between the values of the
standards and the corresponding measurements |. .. from NIST].

Alignment/calibration of HEP track detectors:

e based only on track residual minimization (incomplete data, several degrees of freedom unde-
fined) and on survey data;

e no “reference standards with known values” exist (= exceptions are data from ete™ — ptpu~
and cosmics without field).

Alignment /calibration requires to understand the detector (functional relationship) and to optimize
thousands or ten thousands of parameters. Aim is — after an initial optical survey and corrections for
electronics and mechanical effects:

e reduce x? of the track fits, in order to improve track and vertex recognition, and

e increase precision of reconstructed tracks and vertices, eliminating or reducing bias in detector
data.

... essential for important aspects of physics analysis with large accurate vertex detectors with potential
precision of a few pm.
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Optimization

Alignment as an optimization problem: The standard method for the determination of a large
number of correlated parameters results is the definition of an objective function F(Ap), and the
minimization of the function by the solution of a large system of linear equations (Ap = corrections
to alignment parameters)

CAp=5> C is a sparse symmetric n X n matrix, with n = ... 100000

e Construction of correct matrix C and vector b from the data, or at least of a good approximation
to the matrix C and vector b, and ...

e correct solution of the large matrix equation, or at least a good approximation to the correct
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The inverse of a sparse matrix |x X

Calculation of the — dense — matrix C~' requires (n? 4 n)/2 words and a time o< n® = solution by

inversion is (almost) impossible = use other methods.
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Time ...versus dimension n
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The two circles are points, measured with Millepede II for n = 12 015. The lower curve is for an
iterative method, which requires only space for the sparse matrix C'.
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Space ...versus dimension n
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q = fraction of non-zero off-diagonal elements
Note: printing the elements of a n-by-n matrix for 100 000 requires ~ 10 m® paper (double-sided printing).
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Iterations and convergence for solution of large systems

Direct solution: no iterations necessary (but inversion time o< n?)

Rate of convergence of iterative methods: {x;} be sequence in R™ that converges to solution *

_ *
linear convergence ||il3k+1—£13|| <r r e (0,1)
||, — ]|
_ *
superlinear convergence lim ||33k+1—33|| =0
koo ||y — ||
_ *
quadratic convergence M <M M positive
Ly — &

for all £ sufficiently large.

Speed of convergence depends on the eigenvalue spectrum — slow convergence for small eigenvalues.

Note: an iterative method can be faster than a direct method!
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Rate of convergence

Linear convergence: Example is steepest-descent;
constant r may be close to 1; iteration numbers of 100 or 1000 not uncommon; an algorithm with
r close to 1, i.e. 1 —r < 1 is in practice considered as not converging at all. For a quadratic
objective function:

- —1 A
e 2| 51 k= Condition = _22
[, — 2] F+1 Auin

(>1)

Often in applications a cut on small ||@y1 — x| is used, which means

l|epr1 — x| = (1 —7r)||xr — =¥ with (1 —r) < 1

Superlinear convergence: example is Quasi-NEWTON method;

Quadratic convergence: example is NEWTONs method;
roughly the number of exact digits double at each iteration; typically 3 to 5 iterations needed.
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Least squares

Minimize objective function F(q) = Zr?(q)
=1

The derivatives of F/(q) can be expressed in terms of the Jacobian of r (m-by-n matrix of first partial

derivatives) defined by
or;
J(q) = [ J
(@) 9g;

Exploit the special structure of least squares:

:| 7j=1,..m;i=1,..n

VF(q) = J(q)"r(q) VF(q) = J(q)"J(q) |+

s

Tj(fJWsz(Q)]

J=1

where the contribution in brackets [...] is usually neglected (Gauss-Newton method). Note that the
full matrix J has never to be stored: one row at a time is sufficient.

For a linear problem (fixed first partial derivatives) only one step is necessary to determine q:

(J(@)"I(9) a=(J(9)r(q)

J [
-~ -~

symmetric matrix vector

Alignment problems are usually almost linear = one least squares step may be sufficient ...
... but there may be other reasons for iterations.
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2. Alignment of a toy detector

Test of alignment method with a MC toy track de-
tector model:

10 planes of tracking chambers, 1 m high, 10
cm distance, no magnetic field;

accuracy o = 200um, with efficiency ¢ =

90%;

plane 7 sick: accuracy o ~ 400pm, with effi-
ciency € = 10%;

10 000 tracks with 82 000 hits available for
alignment;

Misalignment: the vertical position of the
chambers are displaced by ~ 0.lcm (normal
distributed).
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First attempt based on residuals

The first alignment attempt is based on the distribution of hit residuals:
e A straight line is fitted to the track data.

e The residuals (= measured vertical coordinate — fitted coordinate) are histogrammed, separately
for each plane.
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e The mean value of the residuals is taken as correction to the vertical plane position.

This is the standard method used in many experiments. What is the convergence behaviour?
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Result from the first attempt

Large changes in first iteration, small changes in second iteration, almost no progress afterwards.

After 30 iterations ...

ID true shift determined mean residual

—_

0.1391
0.1345
0.0000
—0.0756
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0.0610
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0.0000
—0.0467
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0 £+ 244
0 4 205
0 £ 150
0 + 464
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red circle = true shift (displacement)

blue disc = displacement, determined from residuum

Shifts from rfwidualq - iteration 30
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First attempt — Discussion

The result is not (yet) encouraging!

The reason for non-convergence is simple:

Two degrees of freedom are undefined: a simultaneous shift and a overall shearing of the
planes!

(... this simple fact is not always mentioned in reports on the method.)

Improvement for second residual attempt:

Fix the displacement (i.e. displacement = 0) of two planes, which are assumed to be
carefully aligned externally (e.g. planes 3 and 9).

Other possibilities are:
e Use only fixed planes (planes 3 and 9) in the fit, and determine the residuals of other planes;
e for the determination of the displacement of a certain plane use all other planes in the fit.

These possibilities are in fact used by several collaborations!
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Results from the second attempt

Large changes in first iteration, then many smaller and smaller changes: convergence is linear and
slow, because the determination of displacements is based on biased fits.

After 30 iterations with planes 3 and 9 fixed (displacement = 0) ...

ID true shift determined mean residual
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0.1345
0.0000
—0.0756
—0.1177
0.0610
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Use of higher mathematics?

Residual-based methods work with biased results. Can the bias be avoided by an improved fit?

Yes: include the alignment parameters in the parameters fitted in track fits — requires a simultaneous
fits of many tracks, with determination of (global) alignment parameters and (local) track parameters.

model: y; = a4 kel . g +a;‘5kﬂ)al fl()ljl(ll = shift for plane 7, where y; is measured
1 tracks | 24 10 = 12 parameters 9 equations
2 tracks | 4 + 10 = 14 parameters 18 equations
10 000 tracks 20 010 parameters | 82 000 equations

... a linear least squares problem of m = 82 000 equations (measurements) and n = 20 010 parameters
with n < m, which requires the solution of a matrix equation with 20010-by-20010 matrix.

The MILLEPEDE principle allows to reduce the least squares problem to n = 10 parameters!
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Results from a simultaneous fit

After one step (with planes 3 and 9 fixed at displacement = 0) ...

ID  true shift determined P mean residual
1 0.1391 0.1393 + 0.0004 0.68 0 + 150
2 0.1345 0.1346 + 0.0003 0.66 0+ 189
3 0.0000 0 £ 234
4 —0.0756  —0.0756 + 0.0003 0.58 0 £ 244
5 —0.1177 —0.1182 + 0.0003 0.53 0 £ 205
6 0.0610 0.0608 + 0.0003  0.50 0 + 150
7 0.0130 0.0141 + 0.0007  0.20 0 £ 464
8 0.0886 0.0888 + 0.0003 0.53 0 + 255
9 0.0000 0 £ 149

10 —0.0467 —0.0469 4+ 0.0003 0.57 0+ 143

(p = global correlation coefficient)

red circle = true shift (displacement)

blue disc = displacement, determined in fit

One step is sufficient:

1. step Ax? = 1.277 x 10°

02 Shifts frqm fit - iteration 1 .
®@
®
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f @ ®© o -
@
O]
@
0% 5 1'0
2. step Ax? = 1.159 x 107°
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Determination of drift velocities ... 10 additional parameters

Improvement: include, in addition, corrections to the drift velocities for each plane: Avgyig /Varife

= shift for plane j

local local global Aq"’dl‘ift global
yi=ap T tay - ta + Lariss,s - as;
J

Udrift

Avgrig . .
= relative vy, difference
Udrift j

reduction of residual o by 30 - 40 %

ID | true shift determined P ‘ Avdritt /Vdrift determined p mean residual
1 0.1391 0.1393 £+ 0.0004 0.68 0.0020 0.0019 £ 0.0002 0.016 0+ 119
2 0.1345 0.1346 £+ 0.0003 0.66 -0.0153 —0.0150 4+ 0.0002 0.020 0+ 128
3 0.0000 0.0193 0.0194 + 0.0002 0.017 0+ 137
4 —0.0756  —0.0756 + 0.0003 0.58 0.0200 0.0197 + 0.0002 0.013 0+ 139
5 —0.1177 —0.1182 +0.0003 0.53 -0.0138 —0.0136 +=0.0002 0.013 0+ 141
6 0.0610 0.0608 £+ 0.0003  0.50 0.0003 0.0004 £ 0.0002 0.019 0+ 139
7 0.0130 0.0141 £ 0.0007  0.20 -0.0306 —0.0303 +0.0006 0.038 0 + 348
8 0.0886 0.0888 + 0.0003 0.53 0.0237 0.0238 + 0.0002 0.018 0+ 134
9 0.0000 -0.0044 —0.0044 +0.0002 0.008 0 £ 127

10 —0.0467 —0.0469 £+ 0.0003 0.57 0.0021 0.0019 £ 0.0002 0.013 0+ 117

... this would be rather difficult with a pure residual-based method.

The next improvement would be the introduction of wire 7j’s — additional 10 x 25 = 250 parameters.
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A more realistic scenario

So far the tracks are fitted with a straight line. Now a third parameter is added to the parameterization

and a parabola is fitted (i.e.

Th initial misalignment will
true shifts.

case of unknown momentum):

model:

local local local 2
yi =ay T tay T tag

create a curvature # 0 — the data are now insufficient to determine the

Alignment by residual method

Curvlalure
800

400

-0.1 0 0.
curvature in units of 10°(-3)

. 0.2———Shifts from residuls - jteratjon 30—
O o
S
3 (@]
i of @
i o
_ ! :
(o]
A5 ; 1'0

Curvlalure

1000 9

500 1

-0.1 0 0.
curvature in units of 10°(-3)

fitted curvature before . ..

... after aligment
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3. Millepede I

Determination of corrections Ap for alignment parameters p is based on minimization of residuals —
the difference between fitted and measured track position:

A, = fitted value — measured value

A “global” objective function F (Ap, q) or x*-function is constructed, which depends on the correc-
tions Ap and all track parameters q

F(Ap, q)=x*(Ap. q;) = > (Z (Z (ZA?/03)>>

Data sets are

Physics data: track data from ete -, e~ p-, p p-reactions,

Cosmics with magnetic field (large distance to IP) and without magnetic field (straight tracks,
curvature zero),

e vertex- or mass-constrained track data,

external alignment data.

A mixture of different data is recommended, in order to introduce different correlations between the
alignment parameters and to increase the precision.
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Normal equations of least squares Global \? fit

Minimization requires first derivatives of hit residuals w.r.t. the parameters — linearization. Residuals
and derivatives are used to determine matrix and vector of the so-called normal equations of least
squares:

C|... H, .. [ Ap \
L L X k = track index
Hr]f 0 CZrack 0 Aq};raCk b;rack
0 0 .

which defines the alignment corrections Ap and all track parameters g, from the data used in the fit

The size of the huge matrix depends on the number of alignment parameters and on number of tracks.

Note: ignoring the alignment parameters, the (biased) track parameters are determined from the
matrix equation

CZrack Aquack _ bZrack with cov. matrix V;Crack _ (C‘]cgrack)*l
with a small matrix and vector — or ignore track fits and calculate

CAp=b»

The Millepede principle allows to find the solution of the huge equation, because the sparse structure
of the matrix allows a reduction to the matrix size for the alignment parameters, using the results
from the track fits and the rectangular mized matrices Hy.
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Normal equations

Simultaneous least squares fit of all global and all local parameters (i.e. all tracks).

kE'th track:

T T
Yi ~ f‘(l.i;pglobal7 qlocal) + (dgglobal> Apglobal + (6iocal) Aq}focal

The complete matrix equation for global and local parameters includes sums over track index k and contains many matrices: n-by-n matrices

C for n global parameters and m-by-m matrices C}fca] and n-by-m matrices

global-local
H,

If the H%lObal"local are neglected, the complete equation decays into 1 + K independent matrix equations.

global global-local
0
T
<H%loba1—local> 0 C}Cocal
0 0

A pglobal

A q}ﬁocal

global
>k by

local
bk

Apsebal can be calculated without approximation with a great simplification: =
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Reduction of matrix size ...the MILLEPEDE principle

For each track in a loop, on all tracks:

1. Track- or other fit: perform fit by finding the best local parameter values for the actual track
until convergence with determination of the covariance matrix V', of the local parameters

2. Derivatives: calculate for all hits (index i) the vectors of derivatives 8°°* and d®°" for all local
and the relevant global parameters, and update matrices:

C =C+ Z widzgh)bal <dngbal>T b:=b+ Z wz'?”z‘dngbal H, = Z widngbal ((ﬂocal)T

and finally for the track C :=C — H,V,H} b:=b— H,(Viby)

The ‘blue’ equations transfer the ‘local’ information to the global parameters.

After the loop on all tracks the complete information is collected; now the matrix equation for the
global parameters has to be solved:

solve CAps°™ —=p for Apslodd e.g. by Apsetal —C~1p

Note: matrices C' and vectors b from several data sets can be simply added to get combined result.
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Numerical linear algebra

Determination of good solution for Ap in

CAp=b» C ! =V = covariance matrix for parameters

with large or huge n x n matrix depends on algorithm and data, and requires

0. Scaling: Use consistent units in data and variables — matrix and vector should be well scaled, i.e.
elements should have similar precision.

1. Algorithm — Stability: With a stable algorithm the computed solution is the exact solution of
a nearby problem. Gaussian Elimination with diagonal pivoting (restricted scan for largest next
element) is considered to be a stable algorithm for positive definite matrices.

2. Data — Conditioning: Data are called ill-conditioned, if small changes in the data can cause
large changes in the solution (— small eigenvalue(s)). Matrix is ill-conditioned if variables are
undefined or poorly defined or strongly correlated.
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Solution by matrix inversion for n up to 5000

Standard method for solution of CAp = b with symmetric matrix is stable Gauss algorithm with
pivot selection of diagonal, with

Computing time = constant x n® < 1 hour for n = several thousand
(in reality “constant” increases for large n).

A standard matrix routine will fail — at least a few parameters out of many thousands
will be badly defined. — Matrix is destroyed without result for Ap.

Subroutine SPMINV (in Millepede) for symmetric matrices in (n? + n)/2 words: choose largest pivot,
but stop inversion if no acceptable pivot found, i.e. invert largest possible submatrix; return zero
corrections for remaining parameters.

All variances and covariances available in inverse matrix.

The global correlation coefficient, p; is a measure of the total amount of correlation between the
J-th parameter and all the other variables. It is the largest correlation between the j-th parameter
and every possible linear combination of all the other variables.

1 1 —1
ey M WOy Vee
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Global correlations

Range of global correlation coefficient is 0. .. 1.

tries
Correlation 1o Euries e8| [ _Comewstonr i
RMS 0.09698 0.2354

RMS
g - £ so=
; = £ E
< sor £ 7oE
- E - F
E =
o T E T
E 50—
s 40—
20— 30—
£ 20
10— E
- 10F
= | 1 I L ! L L | = i L L L | | L L L
8, o1 0.2 03 04 0.5 o8 0.7 0.8 0.9 [X] 02 a3 04 05 06 07 08 0.9
global alobal correlation
[Gos o2 ey ] e o
@ RMS __ 0.04197 2 - {RMS __ 0.1095
2 E ——— 2 =
E a0 £ T
5 Yk S sof
s F 5 m
2 ssf = o rY
30F- zZ a0
25 £
E 30—
20— E
15 20—
10E- F
E 10—
sE t
0.1 0.2 0.3 0.4 0.5 06 0.7 [X] 02 03 €4 0SS 06 07 1

0. 0.9 08 08
global correlation global correlation

Values ~ 1 means strong correlation and almost singular matrix — inversion may be impossible.

Values depend on geometry and type of data — additional data (cosmics, vertex constrained tracks)
can reduce the global correlation and improve the alignment.
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Undefined degrees of freedom ...or weakly defined degrees of freedom

Alignment of HEP track detectors ...if based only on track residual minimization: incomplete data,
with several degrees of freedom undefined! Certain parameters are undefined or only weakly defined
and could distort the detector.

General linear transformation of whole detector with translation and 3 x 3 matrix R

z d, T
yl=|d|+R |y
Z d, z

defined by 3 + 9 parameters, will not affect the x? of the fits. The matrix can be decomposed into

e three rescaling factors of coordinate axes: f;, fy, fy,
e three rotations: D,, D,, D, and three shearings: 7., 7., T,,.
In addition there may be weakly defined nonlinear transformations (bend).

These degrees of freedom can be fixed

e by mixture of different data and by external measurements — hardware alignment devices, i.e.
alignment by tracks has to be supplemented by external information, or fixed

e by equality constraints or by orthogonalization methods.
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Equality constraints

Undefined degrees of freedom can be fixed by adding equality constraint equations of the type

g(p) =0 e.g. dy = ZA% =0

e.g. “zero average displacement”, or “zero rotation of the whole detector”.

There are several possibilities:
e fix certain parameters (e.g. planes), or
e fix linear combinations of parameters (after diagonalization), or

e add equality constraint equation, i.e. append linearized Lagrange multiplier equation
A(g(p) + g* - Ap = 0) with g = dg(p)/0Op:

C global g A pglobal bglobal

gt |0 A —g(p)

Notes: problem with Lagrange function can be solved by matrix inversion, but matrix is no longer
positive definit. Alternative is penalty function (... + |g(p)|*) or combination of both (augmented
Lagrangian).

V. Blobel — University of Hamburg Software Alignment for Tracking Detectors page 26




Parameters of a Vertex detector

Planar sensors (silicon pixel or strip detectors): local (sensor) coordinates ¢ = (u,v,w) and global
detector coordinates r = (x,y, z) are transformed by

qg=R(r—ro) R = nominal rotation, 7y = nominal position
After alignment the transformation becomes (with Aq = (Au, Av, Aw))
g&d — AR R(r — 7y) — Aq

The correction matrix AR is given by small rotations by «, [ and v around the w-axis, the (new)
v-axis and the (new) w-axis:

1 v -8
AR=R,RsR, =~ | —v 1 « ,
g —a 1

where the approximation has sufficient accuracy for small angles o, 5 and ~.

Six parameters are required for each individual detector element, out of which three parameters (two
translations, one rotation) are very sensitive.

Note: Number of parameters per sensor can be reduced = partially separable functions.
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Driftchamber alignment

Claus Kleinwort et al., Detailed calibration of H1 drift chamber using MILLEPEDE with about 1400
parameters.

&
a
s}

1400 parameters using 50 000 tracks: 5 Cosmics Aug 99, p>5 ad
2300
e common alignment of the drift chamber and g ”wa
the silicon detector; 250
e for both CJC1 and CJC2 14 global param- 200 O N I el
eters representing an overall shift or tilt are | e
introduced; v Lo 0 D

e local variations of the drift velocity vqg  for
cells halfs and layers halfs are observed, which |
are parametrized by 180 + 112 corrections, 5o |2 distonce.fram.node simieza o o
which change with the HV configuration;

0 0.5 1 1.5 2 2.5 3 3.5 4
RMS(residuals) vs drift drift length [eml

e for each wire group (8 wires) corrections to Tg
are introduced (330 corrections).

Reduction of residual RMS by MILLEPEDE.

No problems with undefined degrees of freedom for parameters like Ty or vqe corrections.
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History ...of Millepede 1

First development of Millepede principle (reduction of matrix) 1996 ...and used in H1 1997 ...

V. Blobel: Experience with Online Calibration Methods, Contribution to CHEP’97, Berlin 1997 (in-
cluding the Millepede principle), not accepted.

MILLEPEDE design: experiment-independent program, with well-defined interface to experiment-
dependent data.

Available on web page http://www.desy.de/ blobel
V. Blobel, Linear Least Squares Fits with a Large Number of Parameters, (2000), 22 pages
and full Fortran code.

V. Blobel and C. Kleinwort: A New Method for the High-Precision Alignment of Track Detectors,
PHYSTAT2002, Durham, arXiv-hep-ex/0208021

Used (or under test) by H1(1997), CDF(2001), HERA-b, ZEUS, CMS, ATLAS, LHC-b ...?77 and
rewritten in C++ several times (unpublished).

Principle of reducing matrix size (perhaps) used earlier:

Schreiber, O. (1877): Rechnungsvorschriften fir die trigonometrische Abteilung der Landesaufnahme, Ausgleichung und
Berechnung der Triangulation zweiter Ordnung. Handwritten notes. Mentioned in W. Jordan (1910): Handbuch der
Vermessungskunde, Sechste erw. Auflage, Band I, Paragraph III: 429-433. J.B.Metzler, Stuttgart.
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4. Millepede 11

Start of development in May 2005 after discussions with Hamburg cms group, with aim:

alignment with up to 100 000 parameters in a reasonable time on a standard PC;

keep Millepede principle (simultaneous fit of arbitrary number of tracks and alignment parame-
ters);

allow different (direct and iterative) methods for the solution of large matrix equation, using
mathematical methods from the (mathematical) community (literature) (not home-made itera-
tive methods);

design with even stronger separation of experiment-dependent program and the Millepede align-
ment;

automatic recognition of existing alignment parameters, allowing suppression of parameters with
too few data;

constraints as equality constraints, or like measurements.

Test by PhD student (cms) since summer 2005. Not yet all options realized.
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Decay of Millepede ... Iterations

Millepede = Mille + Pede

Mille: small C++4 or Fortran routine, called within the experiments event-processing program

Pede: stand-alone experiment-independent alignment program, with many options and input files.

Mille Event loop: write alignment information (derivatives, hits, ...) to special file

Pede Normal equation loop: read data and text files and form C and b

Solution of matrix equation: direct or iterative

solve CAp=0b for Ap

End of solution

End of normal equation loop

End of event loop

12 h for event loop, % h for ... PEDE II

Event loop: only once to extract the data (more than once, if large non-linearities)
Normal equation loop: once (or repeated, if outlier suppression necessary or for L-BFGS)

Solution of matrix equation: inversion direct (n < 5000), or iteratively
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Overview over methods

Pede performs (like Millepede I) fits to single e.g. tracks, and generates the vector and matrix of the

normal equations in different formats.

No single optimal method, different methods for different conditions (number of parameters, sparsity):
Matrix inversion: e same routine as in MP I, for up to 5 000 parameters, with time o< n?;

Diagonalization: e slower than inversion, allows to recognize insignificant linear combinations (no
constraints necessary );

Sparse matrix storage: e allows to store big sparse matrices

Generalized minimal residual method: e fast method for large sparse matrices, factor 5 000
faster than inversion for n =12 000. Routines MINRES e (and SYMMLQ ©);

Preconditioning: © allows to reduce number of iterations, possible in MINRES (and SYMMLQ);

Band matrix decomposition: * fast (time oc m? - n), but only approximation (but useful for
preconditioning?); bordered band matrix possible too;

Limited memory BFGS: * uses only virtual matrix, low space requirement, but many iterations(?);

Partially separable functions: * trick, to reduce number of parameters (but more iterations).

Code: e =included in MILLEPEDE 11, x = prepared © = not yet tried.

V. Blobel — University of Hamburg Software Alignment for Tracking Detectors page 32



Solution by matrix inversion for n up to 5000

Standard method for symmetric matrices is stable Gauss algorithm with pivot selection of diagonal,
with

3

Computing time = constant X n < 1 hour for n = several thousand

(in practice “constant” increases for large n).

A standard matrix routine will fail — at least a few parameters out of many thousands
will be badly defined.

Subroutine SPMINV (in Millepede) for symmetric matrices in (n? +n)/2 words: choose largest pivot,
but stop inversion if no acceptable pivot found, i.e. invert largest possible submatrix; return zero
corrections for remaining parameters.

All variances and covariances available in inverse matrix.

The global correlation coefficient, p; is a measure of the total amount of correlation between the
J-th parameter and all the other variables. It is the largest correlation between the j-th parameter
and every possible linear combination of all the other variables.

1 1 —1
ey M WOy Vee
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Solution by diagonalization

The diagonalization of the symmetric matrix C = J*J allows to recognize singularity or near sin-
gularity by the determination of eigenvalues, and to suppress corresponding linear combinations of

parameters.
Algorithms are iterative, computing time &~ 10 times larger compared to inversion, and solution less

precise.

C=UDU" Diagonalization of symmetric matrix

with D diagonal, U square and orthogonal with UUT =UTU =1. Note: C™'=U D' U"

eigenvalue ordering in D = [diag (A\;)]: A1 > ... 2 A > Agr1 = ... A, =0 (or very small)

Solution of | CAp=0b| by Ap=U {diag (%)] {diag (%)} (UTb)

.

—q with Vig=1

with 1/A; = 0 for \; = 0 or small ¢; with |¢;| < 1

= Suppression of insignificant linear combinations, which could produce distortions of the detector.
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Solution by singular value decomposition SVD

Singular value decomposition avoids the formation of normal equations (C = J*J) and is numerically
more accurate than normal-equation methods.

J=VDU" Singular value decomposition (SVD) for m x n matrix J

with D diagonal, U square and orthogonal with UU" = UT U = 1 and m x n matrix V column-
orthogonal with V' V' = 1. Diagonal elements o; of D are called singular values, with o2 = \;.

1
Solution of | min||J Ap — ||, | by Ap=U [diag (_)} (VTT)

0;

with 1/0; = 0 for o; = 0 or close to 0.

= Suppression of insignificant linear combinations, which could produce distortions of the detector.

Advantage: numerically accurate due to small condition number #(D) = y/x(JT.J)

Disadvantage: requires to store huge m x n matrices J/V and large n x n matrix U, and can not be
used (in this form) in large alignment problems. SVD can be applied to the matrix C' = J TJ: then it
is equivalent to diagonalization.
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Sparse matrix storage

Large matrices are usually sparse, with small fraction of non-zero off-diagonal elements (fraction
called ¢). Mathematical methods for the solution of matrix equations exist, which only require the
product of the matrix with vectors.

The indexed storage scheme of PCGPACK, modified for a symmetric matrix, is used: it requires arrays
with
n+q-n(n—1)/2 double precision (data) and integer (indices) words

and is optimized for the product (9 lines of code).
During matrix generation (sums): a (binary) search is necessary to find the location for an index pair

(i, 5)
The automatic generation of parameter-index relations requires a large number of comparisons.

Example: For 100 000 parameters and 1 Mio tracks, each 20 hits about 2¢ x 10'” sequential comparisons
would be necessary, for ¢ = 1% this corresponds to 6 cpu-years (1 nanosec/comparison).

A faster method using a combination of hashing, sorting and binary search is used.
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Generalized minimal residual method (GMRES)

Solution of a very large system of linear equations with sparse matrix, by an clever solution of a quadratic
minimization problem, in analogy to the method of conjugate gradients (Hestenes, Stiefel 1952).

Example: MINRES (M. A. Saunders), designed to solve

system of linear equations CAp=b» or min ||C Ap — b||,

where C' is a symmetric matrix of logical size n x n, which may be indefinite and/or singular, very
large and sparse. It is accessed only by means of a subroutine call

call Aprod ( n, x, y ) to return y = Cx
for any given vector .

Example of compact storage: row-index sparse storage *)

For n = 100 000 and 512 Mbytes memory: ¢ = 1%
5 Gbytes memory: ¢ = 10%

C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, STAM J. Numer. Anal. 12(4), pp. 617-629.
www.stanford.edu/group/SOL/software/minres.html

*) W. H. Press, S. A. Teukolsky, W. T. Vetterling, B.P. Flannery, NUMERICAL RECIPES — The Art of Scientific Computing, Cambridge Univ.
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Comparison

For 12 000 parameters

e matrix inversion (cpu-time 12 h, 46 min, 5 s), and

e iterative solution with MINRES (cpu-time 32 s).
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Example: 250 000 tracks, 500 Mbytes file, 4 400 variable parameters, 3.1 % non-zero off-diagonal elements (plot =
ps-file), 100 sec for preparation, and 100 sec per iteration (250 000 track fits + solution).
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Preconditioning

The convergence rate of iterative methods depends on the spectral properties of the matrix.

A transformation may improve the spectral properties:

instead of CAp=0b>
solve M 'CAp=M"b for Ap ,

which has the same solution as the original system, but the condition number of M 'C may be
smaller.

The matrix M ! should be an approximation to C~*, such that M 'C ~ 1.
One possibility: band portion of the inverse of the band matrix approximation of matrix C.

Preconditioning is an option in MINRES by means of a subroutine call
call Msolve( n, x, y ) , to solve My=x fory

without altering vector a.
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Cholesky decomposition

Decomposition of the symmetric matrix C
C=LDL" decomposition

is “numerically extremely stable”, and can be made in-space. Matrix L is a left unit triangular matrix
(diagonal elements =1) and D is a diagonal matrix (less stable for semi-definite matrix).

Solution of CAp = L (DL" Ap) = b by

Lv =0b forward substitution L'Ap = D 'v forward substitution

With clever ordering (?) of parameters the matrix C' can be approximated by a band matrix.

Band matrices with band-width m: the band structure is kept in this decomposition and com-
puting time for solution is only oc n x m?. Selected elements of the inverse matrix (corresponding to
the band of the original matrix C') can be calculated quickly.

Fast methods exist also for

Variable-bandwidth matrices (‘sky-line” matrix), and for

Bordered band matrices (‘arrow” matrix), where e.g. border (additional full rows and columns) is
due to Lagrange multiplier constraints.

Decomposition is similar to the original Cholesky factorization; the introduction of the diagonal matrix D avoids the square-root operations.
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Band matrix decomposition

C=LDL"
XX 1 X 1Xx
XXX x1 X 1x
XXX x1 X 1Xx
XXX x1 X 1Xx
XXX x1 X 1Xx
XXX = x1 X X X 1Xx
XXX x1 X 1Xx
XXX x1 X 1x
XXX x1 X 1x
XXX x1 X 1Xx
XXX x1 X 1x
XX x1 X 1

Note: the inverse of a bandmatrix is a full dense matrix, but
the bandpart of the inverse can be calculated fast.

XX XX

XXX XX

. . . XXX XX

In reality there will be bordered band matrices: = XXX X X
even for those cases there are fast direct methods for X§§X §§
the solution — and for the determination of elements XXX XX
. . XXX XX

of the inverse matrix. XX XX X
XXX X

HKXXX XXX XX XXX

HKXXAKXXX XX XXX
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Quasi-Newton methods ..

...require only the gradient of the objective function F(p) at each iteration. New step Ap for line
search of F'(p + a - Ap) is calculated from

HAp=VF or BVF=Ap withB=H"
with approximate Hessian H or inverse Hessian B.

Starting from a simple assumption (e.g. v1) the Hessian H or the inverse Hessian B is improved by
updates, using the difference vectors

Sk = Pg+1 — Pk Y, = Vi1 — VI .

Requiring the secant equation Hy 18 =y, or By1y, = Sk, the most-popular update formula is

Pr = 1/yr,£sk By, = (1 — pkskyg) By, (1 - pkyks;f) + pksksg (BFGS)

To minimize F'(p + « - Ap) the line-search has to satisfy the Wolfe (or strong Wolfe) conditions.

The BFGS method has O(n?) operations per iteration and has a superlinear rate of convergence . . . but
requires of course to store the full (dense) matrix B.

Quasi-Newton method, a revolutionary idea, invented by physicist W.C. Davidon (Argonne) in the mid 1950s; paper

not accepted for publication. Different update formulas were developed during the following 20 years.
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Limited memory BFGS

One step of the BFGS method has the form

Pri1 =Py — - By VE, (line search, « usually close to 1)

The limited memory BFGS (short: L-BFGS) method uses update information only

from most recent iterations.
With By = 71 the product B;VF}, can be evaluated from the last m difference vectors y;, sk, a
“memoryless” BFGS method.

Good values for m are in the range 3. .. 20;

the storage requirement with n (2m + 4) is linear in n, and

~ 3/2m?n operations are needed per iteration.

The rate of convergence is linear.

...an optimization method for n > 100000 parameters ?

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation 35 (1980), 773 - 782.
D.C. Liu and J. Nocedal, On the limited-memory BFGS method for large scale optimization, Mathematical Programming
45 (1989) 503 - 528
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Partially separable functions

In separable optimization, the objective function F'(p) is decomposed into a sum of simpler functions
that can be optimized separately, for example

F(p) = Fi(p,) + F2(py) + F3(ps)
... requires detailed information about the structure of the objective function.
Can the method be applied to alignment?

Consider the six parameters Ap of a single sensor (translation + rotation) and the corresponding 6 x 6
matrix C' and right-hand side 6-vector b:

CAp=b» with diagonalization C =UDU?"
The transformed vector of linear combinations
g=U"D
has a diagonal covariance matrix V' = D™, and thus the linear combinations are uncorrelated.

Idea: consider only the three most-sensitive (i.e. with largest diagonal elements) or most-significant
linear combinations, or try two pairs of each three linear combinations, which are almost independent.
This reduces the storage space of the matrix to 1/4.
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M-estimates Outlier rejection

The presence of outliers in the data can deteriorate the alignment result. Difficulty: wrong initial
alignment parameters can fake outliers.

Millepede I: Large initial cut at ~ 100 reduced to 3¢ in ~ 5 iterations.

Millepede II: No cut in first iteration, followed by technique of M-estimates in subsequent iterations.

The objective function in least squares is the sum of squares of scaled residuals z, with larger influence
for larger residuals (outliers). The square is replaced in M-estimates by a dependence with reduced
influence for larger residuals.

influence function add. weight

p(z) = Inpdf(z) P(z) =dp(2)/dz  w(z) =(2)/z

1
Least squares 5 22 =z =1
c? z 1
Cauchy(c = 2.3849) = —In (1 + (z/c) ) == - -
2 1+ (2/c)? 1+ (2/c)’
. e .2
Huber if |2| <c¢=1.345 /2 _Jz _ )1
if |z| > ¢ =1.345 c(|z| —¢/2) c - sign (2) c/|z|

V. Blobel — University of Hamburg Software Alignment for Tracking Detectors page 45



Summary

A comparison of large scale optimization methods

Residuals F(p) VF H=V?F H ' Method MP
X = = = = Residual
— X X — — Steepest descent
— X X — X Quasi-Newton (e.g. BFGS)
= X X X X Newton (standard optimization)
— — X X X Inversion LII
= = X X X Diagonalization I1
— — X (X) — Sparse H solution 11
— — X (X) (x)  Band or bordered band matrix I1
— X X - (x)  L-BFGS (virtual H™ ') 11

e Several solution modes in MILLEPEDE II should allow alignment even with
n = 100000 parameters.

e Options to add constraints and to reduce influence of outliers included.

e Simultaneous use of several (all) types of events and data — physics data: single tracks, ver-
tices, invariant-mass constraints, and cosmics, overlaps ... external measurements is essential for

accurate alignment.
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