
November 20, 2019

The TUnfold package: user manual

Stefan Schmitt, DESY, Notkestraße 85, 22607 Hamburg

Email: Stefan.Schmitt@desy.de

Abstract

TUnfold is a package with provides functionality for correcting migration and back-
ground effects for multi-dimensional distributions. This document gives a user-
oriented technical description of the package, valid for the version number 17.9.

1 Package overview

The TUnfold package provides algorithms to correct measured distributions for migration
effects. The algorithm is based on least-square fitting and Tikhonov regularisation, it is
described in [1]. In this document, details of the technical implementation and of the user
interface are described. It is assumed that the reader is familiar with the algorithm [1].

The package is written in the C++ programming language. It consists of the six
classes TUnfold, TUnfoldSys, TUnfoldDensity, TUnfoldIterativeEM, TUnfoldBinning
and TUnfoldBinningXML. The package is tied to the ROOT analysis framework [2].

1.1 Root versions and TUnfold versions

As of root version 5.22, some version of the TUnfold package is distributed together with
the root software. Table 1 summarizes the connection between TUnfold versions and
distributed root versions. The most recent Root version typically does not include the full
functionality of TUnfold. However, it is possible to download the latest TUnfold version
17.9 and use it together with older ROOT releases, even if that ROOT release already
includes another version of TUnfold. In order to achieve this, in the distributed TUnfold

ROOT TUnfold Supported TUnfold classes
5.21 and earlier – –
5.22 V6 TUnfold

5.23-5.25 V13 + TUnfoldSys

5.27 V15
5.28-5.36 V16.0
— V17.1 + TUnfoldDensity, TUnfoldBinning
— V17.2 + TUnfoldBinningXML

6.00 V17.3
— V17.4
— V17.5
6.10 V17.6
— V17.7
— V17.8
— V17.9 + TUnfoldIterativeEM

Table 1: correspondence of distributed ROOT versions and TUnfold versions.

17.9 package, the classes have been renamed: the class TUnfold is named TUnfoldV17,
the class TUnfoldSys is named TUnfoldSysV17, etc. In the header files, statements like

#define TUnfold TUnfoldV17

have been added, such that the renamed classes are accessible under their usual name.

1

1.2 TUnfold distribution

The TUnfold package is available for download here [3]. The package comes as a gzipped
tar archive. The archive should contain the files given in table 2. TUnfold is free software:

README notes on compiling
COPYING licence file
tunfold manual.tex LaTex source of this manual
fig/tunfold manual fig1.eps Figure 1 of this manual
fig/tunfold manual fig2.eps Figure 2 of this manual
Makefile default makefile for linux systems
altercodeversion.sh auxillary script
TUnfold.h header file providing the class TUnfoldV17
TUnfoldSys.h header file providing the class TUnfoldSysV17
TUnfoldDensity.h header file providing the class TUnfoldDensityV17
TUnfoldIterativeEM.h header file providing the class TUnfoldIterativeEMV17
TUnfoldBinning.h header file providing the class TUnfoldBinningV17
TUnfoldBinningXML.h header file providing the class TUnfoldBinningXMLV17
TUnfoldV17.cxx implementation of the class TUnfoldV17
TUnfoldSysV17.cxx implementation of the class TUnfoldSysV17
TUnfoldDensityV17.cxx implementation of the class TUnfoldDensityV17
TUnfoldIterativeEMV17.cxx implementation of the class TUnfoldIterativeEMV17
TUnfoldBinningV17.cxx implementation of the class TUnfoldBinningV17
TUnfoldBinningXMLV17.cxx implementation of the class TUnfoldBinningXMLV17
testUnfoldXX.C example macros where XX=1, 2a, 2b, 2c, 3, 4, 5a, 5b, 5c, 5d,

6, 7a, 7b, 7c

Table 2: files distributed with the TUnfold package version 17.9.

you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

TUnfold is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with TUn-
fold. If not, see http://www.gnu.org/licenses/.

1.3 Makefile

For many unix systems, the Makefile provided with this distribution is suitable for com-
piling the examples and the library. Note however, compilation only has been tested on
selected systems. In general, modifications to the Makefile may be needed in order to
compile the TUnfold package. The main commands from the Makefile are

2

make lib creates a shared library libtunfold.so.

make bin creates wrapper code to call the example macros and compiles them as stand-
alone executables. For example the file testunfold1.C is created and compiled as
executable testunfold1.

For using the TUnfold package, it is probably best to work through the example given by
the three macros testUnfold2a.C, testUnfold2b.C and testUnfold2c.C.

1.4 Class overview

The classes distributed with TUnfold are described briefly in the following. For most
applications, the proper class to use is TUnfoldDensity and possibly also the class
TUnfoldBinning to set up the analysis bins. The class TUnfoldIterativeEM can be used
to compare with the iterative EM unfolding method [4, 5, 6, 7], also known as D’Agostini
or “Bayesian iterative” unfolding [8].

class TUnfold provides the core unfolding algorithm, matrix operations and methods
to import from histograms or to export to histograms.

class TUnfoldSys adds functionality to the class TUnfold to treat background and
systematic uncertainties.

class TUnfoldDensity adds functionality to the class TUnfoldSys to properly take into
account bin widths and multi-dimensional distributions.

class TUnfoldIterativeEM comes with an interface similar to TUnfoldDensity, so
one can compare directly between iterative and Tikhonov type unfolding, using an
equivalent methods to choose the regularisation strength or the number of iterations.

class TUnfoldBinning is used to tell the class TUnfoldDensity how the bins in complex
binning schemes are arranged.

class TUnfoldBinningXML provides an interface to read and write complex binning
schemes as XML files.

Table 3 gives a summary of the most important methods available with the TUnfold
package.

2 Getting started with an example

In this section, the steps to run the example implemented in the macros 2a, 2b, 2c is
explained.

3

Run the unfolding
Method Description
constructor define matrix of migrations and basic regu-

larisation scheme
SetInput() define measurement
AddSysError() set a systematic uncertianty
SubtractBackground() set a background source
DoUnfold() unfold once, with fixed tau
ScanSURE() scan the SURE variable (unfold multiple

times) and determine the optimal tau or the
optimal number of iterations

ScanLcurve() scan L-curve (unfold multiple times) and de-
termine tau

ScanTau() scan correlations (unfold multiple times) and
determine tau

Retreive unfolding results
Method Description
GetOutput() unfolding result
GetEmatrixTotal() total error matrix
GetRhoItotal() total global corelations
GetDeltaSysSource() systematic shifts from one systematic error
GetDeltaSysBackgroundScale() systematic shifts from one background scale

error
GetEmatrixSysUncorr() error matrix from uncorrelated uncertainty

on migration matrix
GetEmatrixSysBackgroundUncorr error matrix from uncorrelated uncertainty

on one background source
GetEmatrixInput error matrix from input errors

Retreive unfolding error matrix (only when using class TUnfold)
Method Description
GetEmatrix (deprecated) get error matrix
GetRhoI (deprecated) get global corelations

Table 3: basic methods required to use the unfolding package. The table lists the name
of the method and a short description. Not all methods are implemented for the iterative
EM unfolding.

2.1 Example compilation

This describes the typical steps to compile the examples on a linux computer.

1. Set up ROOT on your computer

2. Check that root version is greater or equal 6 and class TXMLNode is available

> root-config --version

4

6.18/04

> ls $(root-config --incdir)/TXMLNode.h

/cvmfs/sft.cern.ch/lcg/releases/LCG_96b/ROOT/6.18.04/x86_64-centos7-gcc8-opt/include/TXMLNode.h

3. Download, unpack and compile the TUnfold package

> mkdir tunfold_v17.9

> cd tunfold_v17.9

> wget https://www.desy.de/~sschmitt/TUnfold/TUnfold_V17.9.tgz

...

> tar xvfz TUnfold_V17.9.tgz

> make bin

...

2.2 Run the example

The example consists of three parts

1. Generate signal, background and “data”

> ./testunfoldmain2a

...

This produces the file “testUnfold2a data.root” (data events) and the file “testUn-
fold2a MC.root” (signal and background events with truth information).

2. Fill signal, background and data into histograms

> ./testunfoldmain2b

...

This produces the root file “testunfold2b histograms.root” (input histograms for
the unfolding) and two sets of plots “testunfold2b controlPlots.eps” (Figure 1) and
“testunfold2b migrations.eps” (Figure 2).

3. Unfold the data

> ./textunfoldmain2c

...

This produces the root file “testunfold2c unfolded.root” with unfolding results, a
set of plots “testunfold2c scan.eps” (Figure 3) and another set of plots “testun-
fold2c coverageFromData.eps” (Figure 4)

5

0 10 20 30 40 50 60 70 80 90 100

 [GeV]
T,rec

P

0

200

400

600

800

1000

e
v
e
n

ts

signal region

"Data"

MC signal

MC fakes

MC background

0 10 20 30 40 50 60 70 80 90 100

 [GeV]
T,rec

P

0

50

100

150

200

250

300

e
v
e
n

ts

fakes sideband

Figure 1: Control plots produced by the example 2b, in the “signal region” and the “fakes
sideband”.

fakes
. [2,4]

. . . [10,12.5]

. . . [20,25]
. . . [40,45]

. . . [ofl]

 bins
T,gen

P

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
effiency

purity

0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty

fakes
. [2,4]

. . . [10,12.5]

. . . [20,25]
. . . [40,45]

. . . [ofl]

 bins
T,gen

P

sideband
.
.

[2,3]
.
.
.

[6,7]
.
.
.[10,11.2]
.
.
.[15,16.2]
.
.
.[20,22.5]
.
.
.

[30,32.5]
.
.
.
.
.
.
.
.
.
.
.[ofl]

 b
in

s
T

,r
e
c

P

Figure 2: Bin purity, efficiency and matrix of probabilities, for the example 2b.

2.3 Discussion of the plots

The plots produced by the example 2a, 2b, 2c are discussed in the following. Figure 1
shows the input to the unfolding. The property PT,rec is measured in two regions: the
“signal region” and the “fakes sideband”. In this example there is background mainly at
high PT,rec. At low PT,rec there is some background from “fakes”. The normalisation of
the “fakes” background is determined in the unfolding. There is an extra reconstructed
bin for measuring the total event count in the “fakes sideband”. In addition there is a
extra truth bin to determine the fakes normalisation fromn data.

Figure 2 shows the efficiency, purity and matrix of probabilities for the unfolding. The
purities (shown here after subtracting background but including fakes) are rather low;
however it is still possible to get reasonable results in the unfolding step.

Figure 3 shows the unfolding results from scanning the L-curve (Tikhonov only) and
from scanning the “SURE” variable (Tikhonov and iterative EM method). The optimal

6

1.42 1.44 1.46 1.48 1.5 1.52 1.54

)
L

2χ(
10

log

6.7

6.8

6.9

7

7.1

7.2

)
A2

χ(
1

0
lo

g

Tikhonov, Lcurve
Lcurve
largest curvature

=0.000352τat
D.F.=18.6233

5− 4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1−

)τ(
10

log

1

10

2
10

Tikhonov, ,minimize SURE
SURE
D.F.

A

2
χ

=0.000635τmin(SURE) at
D.F.=18.1123

0 20 40 60 80 100

iteration

1

10

2
10

Iterative EM, minimize SURE
SURE
D.F.
deviance
min(SURE) at iteration=34
D.F.=15.4342

Figure 3: Scan of the Tikhonov regularisation parameter (left,middle) and of the number
of EM iterations (right). For the left plot, the L-curve method is used. or the middle and
right plot, the SURE variable is minimized.

2 4 6 8 10 12 14 16 18

bin number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

v
e

ra
g

e no regularisation

Tikhonov + SURE

2 4 6 8 10 12 14 16 18

bin number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

v
e

ra
g

e no regularisation

Iterative + SURE

2 4 6 8 10 12 14 16 18

bin number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o

v
e

ra
g

e no regularisation

Iterative, N=4

Figure 4: Data-driven determination of coverage intervals for each analysis bin and three
choices of Regularisation: (left) Tihkonov with SURE minimisation, (middle) iterative
EM method with SURE minimisation (right) iterative EM method with four iterations.

Tikhonov parameter τ is found to be of order 0.5 × 10−4, while the optimal number of
EM iterations is 34 in this example. The effective number of degrees of freedom is larger
than 18 for the Tikhonov case but only 15.4 when using EM iterations, as compared to
the number of unfolded bins which is 19.

Figure 4 shows a determination of the data-driven coverage for each of the analysis
bins. Ideally, the coverage is expected to be 68%. One can see that the Tihkonov method
with SURE minimisation performs reasonably well, while the iterative EM method with
SURE minimisation has a poor coverage in the low-purity bins and an unacceptably low
coverage for a small number of iterations.

3 Histograms and binning schemes

ROOT histograns are used to exchange information between the TUnfold package and
the user. Internally, the algorithm works with vectors to store the bins of the input and
output distributions. In the following, the relations of histogram bins to vector elements
are discussed.

7

underflow

bin 1

bin 2

bin 3

bin 4

bin 5

bin 6

bin 7

bin 8

overflow

bin 9

bin 10

U
n
fo

ld
in

g
 r

e
s
u
lt
 (

b
in

 n
u
m

b
e
rs

 ~
 m

a
tr

ix
 o

f
m

ig
ra

ti
o
n
s
)

−1

3

−1

1

1

1

2

2

3

4

4

5

not used

not used

overflow

underflow

bin 5

bin 4

bin 3

bin 2

bin 1

Output histogram

binmap[0]..binmap[11]

Figure 5: For the classes TUnfold and TunfoldSys, the bin map defines which bins of the
unfolding result are stored in which histogram bin. In the example, 10 bins are mapped
to 5 bins.

3.1 Use of bin maps with class TUnfold and TUnfoldSys

When importing data into the classes TUnfold or TunfoldSys, only the bin contents and
bin errors of the histograms are relevant. The bin edges are not used. When extracting
data into an existing histogram, the binning of that histogram is not checked. It is up to
the user to book a histogram with the proper binning. It is then possible to change the
mapping of the vector components to histogram bins. The mapping function is stored
as an array of integer numbers and is denoted “bin map”. Each element of the bin map
corresponds to one of the bins in the unfolding result. The value stored in the bin map
indicates the destination histogram bin in which the result shall be stored. It is possible
to add up several bins of the unfolding result simply by using the same destination bin
number for different elements of the bin map. The concept of the bin map is illustrated
in figure 5.

3.2 Binning schemes and TUnfoldDensity

For the classe TUnfoldDensity and TUnfoldIterativeEM the bins are structured in a
“binning scheme” using the class TUnfoldBinning. For one-dimensional unfolding, the
binning schemes can be constructed directly from the histogram bins of the matrix of
migrations. In this case, the user does not have to use the class TUnfoldBinning directly.
For more complex problems, involving multi-dimensional distributions, multiple channels
or unfolding of background normalisation factors, the corresponding binning schemes have
to be defined by the user. The binning scheme information is used when setting up the
regularisation scheme. In addition, it is used to create histograms having proper bin
widths when extracting data from the classes TUnfoldDensity or TUnfoldIterativeEM.

8

0.1<x <0.2

underflow

0.3<x <0.4

0.4<x <0.5

0.5<x <0.7

overflow

0.2<x <0.3

gen

gen

gen

gen

gen

0
.0

5
<

x

<

0
.1

re
c

0
.3

5
<

x

<

0
.4

re
c

0
.4

<
x

<

0
.4

5
re

c

0
.3

<
x

<

0
.3

5
re

c

0
.2

<
x

<

0
.2

5
re

c

0
.2

5
<

x

<

0
.3

re
c

0
.1

<
x

<

0
.1

5
re

c

0
.4

5
<

x

<

0
.5

re
c

re
c

0
.6

<
x

<

0
.7

re
c

0
.5

<
x

<

0
.6

re
c

0
.7

<
x

<

0
.8

0
.1

5
<

x

<

0
.2

re
c

n
o
t
re

c
o
n
s
tr

u
c
te

d

n
o
t
re

c
o
n
s
tr

u
c
te

d

of 2D histogram

region of 2D histogram

underflow / overflow

visible part

Figure 6: The matrix of migrations in the case of one-dimensional unfolding is illustrated.
The truth parameter xgen has five non-equidistant bins, ranging from 0.1 to 0.7 plus
underflow and overflow bins (seven bins in total). The reconstructed parameter xrec has
twelve bins ranging from 0.05 to 0.8. The underflow and overflow bins in xrec are used to
count the non-reconstructed events.

In the event loop, the binning scheme provides functionality to find the proper bin numbers
for filling the histogram of migrations or the histogram of measurements.

3.3 Unfolding one-dimensional distributions in TUnfoldDensity

When unfolding one-dimensional distributions, it is most convenient to book and fill the
histogram of migrations using the bins as required for the analysis. There is no need
to define binning schemes. The matrix of migrations is stored as a two-dimensional
histogram, where on one axis the truth bins are arranged. It is possible to have underflow
and overflow bins for the truth parameters. If these are present, their content is also
unfolded from the data.

On the other axis there is the reconstructed quantity, again with the appropriate bins.
Here, it is not possible to use the underflow and overflow bins for measurements. Instead,
these bins are used to count events which originate from a specific truth bin but where
the reconstructed quantity is not available (ineffiencies). An example is given in figure 6.

3.4 Complex binning schemes

The class TUnfoldBinning provides means to map bins originating from multi-dimensional
distributions on a one-dimensional histogram axis. The multi-dimensional distributions
are arranged in a tree structure.

For the truth parameters, the branches of the tree structure could correspond to
different decay channels, signal, background, etc. Each branch then holds several bins,
usually in the form of a multi-dimensional histogram.

9

Similarly, for the reconstructed parameters, the branches of the tree structure could
correspond to different reconstructed channels, control distributions, auxillary measure-
ments, etc.

So in general, there are two “binning trees”, a tree of truth bins and a tree of recon-
structed bins. When filling the histogram of migrations, the proper bin numbers both in
the tree of truth bins and in the tree of reconstructed bins have to be determined.

The bin number igen on truth level is determined as follows: first, the appropriate
branch in the tree is determined, for example by deciding on the event type (signal or
background). The method FindNode() may be used to locate a branch in the tree using
its name.

Next, using the truth parameters, the bin number igen is calculated using the method
GetGlobalBinNumber() on the branch. Below this is illustrated in a code fragment,
assuming the signal branch contains a three-dimensional histogram with the variables
xTrue, yTrue, zTrue.

Int_t iGen;

const TUnfoldBinning *signalBranch=generatorBinning->FindNode("signal");

iGen=signalBranch->GetGlobalBinNumber(xTrue,yTrue,zTrue);

The bin number irec in the tree of reconstructed bins is determined in a similar manner,
for example by deciding on the reconstructed channel and then using the appropriate
reconstructed quantities to calculate the bin number. If the event was not reconstructed,
the special bin number irec = 0 has to be be used.

Finally, the event weight wgen is filled in the corresponding bin of the two-dimensional
histogram of migrations. Sometimes there is a secondary event weight wrec to account for
detector efficiency corrections. If that extra weight is different from unity, the event has to
be filled twice into the histogram of migrations. First, the histogram of migration is filled
at the position (igen, irec) using the weight wgen × wrec. Next, the histogram of migration
is filled again, this time at the position (igen, 0) using the event weight wgen × (1− wrec).

For data, the procedure to determine the bin number irec is applied for the recon-
structed quantities only, and a one-dimensional histogram is filled. There is no need to
fill the special bin number irec = 0 for data.

Setting up binning schemes with TUnfoldBinning is illustrated in the example macro
testUnfold5b.C. How to use the binning scheme to fill histograms is illustrated in
testUnfold5c.C. Unfolding and extracting distributions using the binning scheme is il-
lustrated in testUnfold5d.C.

There is also a newer example, testUnfold2a.C, testUnfold2b.C and testUnfold2c.C.
In that example, Tikhonov methods and the interative EM method are compared, in each
case using the equivalent “SURE” method to define the regularisation strength (or number
of iterations).

Another example testUnfold7a.C, testUnfold7b.C, testUnfold7c.C also compares
different unfolding methods. It has been presented at a conference and a writeup is
available [9].

10

3.5 XML interface to binning schemes

An XML interface is provided for the binning schemes. The DTD definition is repeated
here. There is a method TUnfoldBinningXML::WriteDTD() which saves the DTD to a
file.

<!-- TUnfold Version V17.3 -->

<!ELEMENT TUnfoldBinning (BinningNode)+ >

<!ELEMENT BinningNode (BinningNode+|(Binfactorlist?,Axis)|Bins) >

<!ATTLIST BinningNode name ID #REQUIRED firstbin CDATA "-1"

factor CDATA "1.">

<!ELEMENT Axis ((Bin+,Axis?)|(Axis)) >

<!ATTLIST Axis name CDATA #REQUIRED lowEdge CDATA #REQUIRED>

<!ELEMENT Binfactorlist (#PCDATA)>

<!ATTLIST Binfactorlist length CDATA #REQUIRED>

<!ELEMENT Bin EMPTY>

<!ATTLIST Bin width CDATA #REQUIRED location CDATA #IMPLIED

center CDATA #IMPLIED repeat CDATA #IMPLIED>

<!ELEMENT Bins (BinLabel)* >

<!ATTLIST Bins nbin CDATA #REQUIRED>

<!ELEMENT BinLabel EMPTY>

<!ATTLIST BinLabel index CDATA #REQUIRED name CDATA #REQUIRED>

There are methods ExportXML and ImportXML to write or read binning trees in XML
format. One XML file may contain several binning schemes.

It is probably best to study the example macros testUnfold5a.C–testUnfold5d.C
to find out how the XML interface works. In the example testUnfold5a.C, pseudo
events are written to root files “testUnfold5 data.root”, “testUnfold5 signal.root”, “tes-
tUnfold5 background.root”. In testUnfold5b.C, binning schemes are set up and then
stored as XML in a file named “testUnfold5binning.xml”. In testUnfold5c.C the XML
file is read and the binning schemes are used when looping over the data, signal and
background events. Histograms required for the unfolding are filled. The histograms and
the binning schemes are then stored in another root file “testUnfold5 histograms.root”.
Finally, the macro testUnfold5d.C reads back that root file and runs the unfolding. One
could try to edit the XML file and run testUnfold5c.C and testUnfold5d.C repeatedly
to see the effects.

There is also a macro testUnfold6.C which reads a binnig scheme from an xml file
and prints the binning scheme and various bin maps extracted from the binning scheme.

4 Regularisation

For unfolding, regularisation conditions are imposed. For the Tikhonov methods TUnfold,
TUnfoldSys or TUnfoldDensity, the regularisation is given by the scalar product (τLz, τLz),

11

where z is the difference of the unfolding result to a bias vector and L is a matrix describ-
ing the regularisation scheme. The parameter τ gives the strength of the regularisation.
The number of columns of L is identical to the number of unfolded bins. The number of
rows reflects the number of regularisation conditions, it may be different from the number
of columns.

When using the iterative EM method TUnfoldIterativeEM, the regularisation strength
is given by the number of iterations. As opposed to Tihkonov methods, where the special
point τ = 0 correponds to the absence of regularisation, for the iterative method the
special point (start value) corresponds to maximum regularisation.

4.1 Basic Tikhonov regularisation types

For the Tikhonov methods, three basic types of regularisation are supported: kRegModeSize,
kRegModeDerivative, kRegModeCurvature. The type of regularisation may be specified
with the constructor of either of the classes TUnfold, TUnfoldSys, TUnfoldDensity as
the third argument. In that case, the given basic regularisation is applied to all bins.

The simplest regularisation condition is given by kRegModeSize, corresponding to the
case where L is the unity matrix. The matrix L is diagonal and does not mix different
bins. The regularisation is given by τ 2

∑
z2i .

For the condition kRegModeDerivative, the matrix L calculates differences xj − xi,
thus approximating first derivatives. In that case, the structure of the input bins matters,
because differences should be calculated between adjacent bins only. For one-dimensional
distributions this done by simply setting j = i + 1. For two-dimensional distributions,
derivatives may be defined along both dimensions and the relation is getting more com-
plicated. When using the classes TUnfoldDensity and TUnfoldBinning, the relation of
the bins is known and appropriate regularisation schemes are defined automatically.

For the condition kRegModeCurvature, the matrix L approximates second derivatives
(xk − xj) − (xj − xi). Similar to the case of kRegModeDerivative the corresponding
matrix structure may get rather complicated in case of multi-dimensional distributions,
and is most conveniently handled through the use of the classes TUnfoldDensity and
TUnfoldBinning.

4.2 Non-standard Tikhonov regularisation schemes

Sometimes it is useful to set up non-standard regularisation schemes. When using the
class TUnfoldDensity with user-defined binning schemes, there is additional control over
the regularisation scheme. One may select modifications of the calculation of L such that
the components of z are normalized to the corresponding bin widths prior to calculating
the regularisation conditions. Furthermore, it is possible to take into account the bin
widths for the calculation of the first or second derivatives. One may also set specific
normalisation factors or normalisation functions with the binning scheme and use those
to modify the normalisation of z in the calculation of the regularisation.

12

For binning schemes based on trees with several branches it is possible to restrict
the regularisation to one of the branches or to set up dedicated regularisation schemes
for each of the branches (method RegularizeDistribution()). For multi-dimensional
distributions it is possible to exclude underflow or overflow bins or to exclude derivatives
calculated along specific axes from the regularisation. Ultimatelty, it is also possible to
define arbitrary regularisation conditions by adding single rows to the matrix L (method
AddRegularisationCondition()).

5 Determination of the regularisation strength

One of the frequent questions related to regularized unfolding methods is the choice of the
regularisation parameter τ for Tikhonov methods or the number of iterations for iterative
methods.

If τ is too small, there is no regularisation. If τ is too large, the unfolding result is
biased strongly by the regularisation condition. Similarly, for iterative methods there is
danger to have a low number of iterations and thus “unfold” the start value decorated
with small data statistical uncertainties.

In the TUnfold package, three basic methods to determine the regularisation strength
have been implemented. The SURE method is implemented both for Tikhonov and
iterative unfolding, while the other two methods, L-curve scan and minimisation of cor-
relations, are available only for the Tikhonov case.

5.1 Scan of the normalized SURE variable

The SURE variable is constructed from the “training error” and the estimated effecive
number of degrees of freedom. The method is aiming to minimise a risk estimator. It is
described in [10] and the references therein. The normalized SURE variable is given by
[−2 lnL(y) + 2DF(y)], where both the likelihood L and the effecive number of degrees of
freedom DF are estimated from the data y. For the Tikhonov methods, the likelihood
is given by a least-square with the inverse weight matrix taken from the covariance or
the histogram errors as provided with the SetInput() method. For the iterative EM
method, the likelihood is constructed using Poisson probability distributions in each bin.
The effective number of degrees of freedom is given by DF =

∑
i,j Aij

∂x̂j

∂yi
, where Aij is the

matrix of probabililties. The partial derivative describe how the unfolding result in bin j
depends on the data observed in bin i.

5.2 L-curve scan

The L-Curve scan is available with the classes TUnfold, TUnfoldSys and TUnfoldDensity.
The method is named ScanLcurve. It works as follows: the unfolding is repeated for a
number of points with different τ , for example np = 30. A parametric curve of two

13

variables X(τ) and Y (τ) is calculated. The exact definition of these variables is given in
[1]. The optimal chioce of τ is determined as the position having the largest curvature
(“kink”) in the (X, Y) plane. For scanning the L-curve, the following parameters may be
set: number of points np, minimum (τmin) and maximum (τmax) value of τ to scan. If
τmin = τmax , the interval is chosen automatically. When running the scan, the following
three curves are produced: X(τ), Y (τ) and Y (X).

The scan proceeds as follows: Given a τ interval to scan, first the unfolding is per-
formed for τ = τmin and τ = τmax . Intermediate points are then inserted such that a
most uniform population along the curve X(τ), Y (τ) is achieved. Given two or more
points (Xi, Yi), ordered in the corresponding τi, a new point is inserted into the interval
which has the largest size S2 = (Xi+1 −Xi)

2 + (Yi+1 − Yi)2 until np − 1 points have been
calculated. The last point of the scan is inserted at the best choice of tau, determined
from the set of np − 1 points.

5.3 Minimisation of correlation coefficients or other quantities

With the class TUnfoldDensity another method of determining τ is implemented. The
method ScanTau() repeats the unfolding np times for different choices of τ . During that
scan, the minimum of a function Z(τ) is determined. The possible choices of the function
Z are summarized in table 4. They all depend on the calculation of global correlation
coefficients ρi, which is described in [1]. When using the method ScanTau(), the following

Mode definition of Z

kEScanTauRhoAvg Z = 1
nbin

∑
i ρi (average global correlation)

kEScanTauRhoMax Z = maxi ρi (maximum global correlation)
kEScanTauRhoAvgSys Z = 1

nbin

∑
i ρi,sys (average global correlation,

including systematic errors)
kEScanTauRhoMaxSys Z = maxi ρi,sys (maximum global correlation,

including systematic errors)
kEScanTauRhoSquareAvg Z = 1

nbin

∑
i(ρi)

2 (average of squares of global

correlation coefficients)
kEScanTauRhoSquareAvgSys Z = 1

nbin

∑
i(ρi,sys)

2 (average of squares of
global correlation coefficients including sys-
tematic errors)

Table 4: Choices of the function Z for implemented with the method ScanTau().

parameters have to be set: the number of points np, the minimum and maximum value
of τ to scan and the mode (table 4). If the minimum and maximum value of τ agree,
the scan range is determined automatically. In addition one may change the way the
correlation coefficients ρi are calculated. The calculation may be restricted to one branch
in the binning tree or may use all branches. Within the distributions it is possible to
exclude underflow and overflow bins or to integrate over bins. The scan returns four
curves: the curve Z(τ) and in addition the three curves also returned by ScanLcurve().
For a given interval in τ , np−1 points are inserted such that large τ intervals are split into

14

two. Finally, using the set of np − 1 points, the position of the minimum is determined
and the unfolding is repeated at the position of the minimum.

The scan of correlation coefficients has the desired property that correlations in the
result are minimized. Ideally, the correlation coefficients are small and can be neglected.
However, this has to be checked carefully.

A drawback of the method is that it often fails. In particular, this method can not
be used with the kRegModeSize regularisation condition. For the regularisation methods
kRegModeDerivative and kRegModeCurvature, the method is expected to work more
reliably.

References

[1] S. Schmitt, JINST 7 (2012) T10003 [arXiv:1205.6201].

[2] R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389 (1997) 81.

[3] S. Schmitt, TUnfold version 17.9, http://www.desy.de/~sschmitt/tunfold.html.

[4] Richardson, W. H.”, Opt. Soc. Amer. A 62 (1972) 55.

[5] Lucy, L. B., Astron. J. 79 (1974) 745.

[6] Vardi, Y. and Shepp, L. A. and Kaufman, L., J. Amer. Stat. Assoc. 80 (1985) 8.

[7] Multhei, H. N. and Schorr, B., Nucl. Instrum. Meth. A257 (1987) 371.

[8] D’Agostini, G., Nucl. Instrum. Meth. A362 (1995) 487.

[9] S. Schmitt, XII Quark Confinement and the Hadron Spectrum conference,
proceedings [arXiv:1611.01927].

[10] Tibshirani, R. J. and Rosset, S., J. Amer. Stat. Assoc. 114 (2019) 697
[arXiv:1612.09415].

15

