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Abstract

TUnfold is a tool for correcting migration and background effects in high energy physics for

multi-dimensional distributions. It is based on a least square fit with Tikhonov regularisation and

an optional area constraint. For determining the strength of the regularisation parameter, the L-

curve method and scans of global correlation coefficients are implemented. The algorithm supports

background subtraction and the propagation of statistical and systematic uncertainties, in particular

those originating from limited knowledge of the response matrix. The program is interfaced to the

ROOT analysis framework.
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1 Introduction

In high energy physics, experiments are usually performed as counting experiments, where events are
grouped into certain regions of phase-space, also called bins. However, the kinematic properties of each
event, such as four-momenta of particles and derived quantities, are measured only at finite precision due
to inevitable detector effects. As a consequence, events may be found in the wrong bin. Furthermore
there is the presence of background, such that only a fraction of the events observed in a given bin
originates from the reaction one is interested in.

In most cases, algorithms such as GEANT [1] are used to simulate migrations imposed by detector
effects, whereas underlying physics processes are simulated using event generators such as PYTHIA [2].
After tracking the generated events through the detector simulation one is able to confront the physics
process modelled by the event generator with the background-subtracted data.

However, often one is interested to report results such as differential cross sections, independent of
the detector simulation. In that case, the observed event counts have to be corrected for detector effects.
The problem may be written as

ỹi =
m
∑

j=1

Aij x̃j , 1 ≤ i ≤ n (1)

where the m bins x̃j represent the true distribution, Aij is a matrix of probabilities describing the
migrations from bin j to any of the n bins on detector level and ỹi is the average expected event count at
detector level. It is important to note here that the observed event counts yi may be different from the
average ỹi due to statistical fluctuations. A schematic view is given in figure 1. The situations becomes
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Figure 1: schematic view of migration effects and statistical fluctuations

somewhat more complicated if there is background. In that case the ỹi receive an additional contribution
from background,

ỹi =

m
∑

j=1

Aij x̃j + bi, 1 ≤ i ≤ n (2)

where bi is the background showing up in bin i. Both the background and the matrix of probabilities
often suffer from systematic uncertainties which have to be considered in addition to the statistical
uncertainties.

One may be tempted to replace ỹi → yi and x̃j → xj in equations 1 or 2 and then solve for xj , simply
by inverting the matrix of probabilities. However, it turns out that the statistical fluctuations of the yi

are amplified when calculating the xj this way. Such fluctuations are often damped by imposing certain
smoothness conditions on the xj . This procedure is termed “regularisation”.

The TUnfold algorithm [3], described in this paper and interfaced to the ROOT analysis package [5],
implements a procedure to estimate the x̃j using a least square method with Tikhonov regularisation
[4] and an optional area constraint. In order to obtain best results from the least square minimisation,
the number of degrees of freedom, n − m, has to be larger than zero. It means that the data yi have
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to be measured in finer bins than are extracted by the unfolding procedure. This condition n ≥ m is in
contrast to some other commonly used unfolding methods, where often the restriction n = m is imposed
[6, 7]. Examples of unfolding algorithms which do not have the restriction n = m are [8, 9].

No attempt is made here to give a complete overview of the commonly used unfolding algorithms. The
TUnfold algorithm [3] presented here compares best to algorithms based on matrix inversion or singular
value decomposition, like [6, 10]. Alternative approaches are often based on iterative methods or on the
use of Bayes’ theorem, for example [7, 8, 9]. Many reviews on the topic can be found in literature, only
two examples are given here [11, 12].

2 The TUnfold algorithm

2.1 Definitions

The TUnfold algorithm gives an estimator of a set of truth parameters, using a single measurement of
a set of observables. The observables are described by a vector1 of random variables, y. The random
variables y are taken to have a multivariant Gaussian distribution with mean ỹ = Ax̃, where x̃ is a
vector corresponding to the set of of truth parameters and A is a matrix. The covariance matrix of y is
Vyy. The algorithm only works if the dimension of x̃ is less or equal to the dimension of ỹ. Furthermore,
Vyy has to have full rank and the columns of A shall be linear independent. The algorithm returns an
estimator x of the truth parameters x̃, given an observation y. The estimator x, when considered as a
random variable, has a covariance matrix which is also calculated. It is labelled Vxx.

2.2 Algorithm

The unfolding algorithm, as implemented in TUnfold, determines the stationary point of the “Lagrangian”

L(x, λ) =L1 + L2 + L3 where (3)

L1 =(y − Ax)TVyy
−1(y − Ax), (4)

L2 =τ2(x − fbx0)T(LTL)(x − fbx0), (5)

L3 =λ(Y − eTx) and (6)

Y =
∑

i

yi, (7)

ej =
∑

i

Aij , (8)

The term L1 is what one expects from a least square minimisation. The vector y has n rows. The
covariance matrix Vyy of y is diagonal in many cases, such that the diagonals hold the squares of the
uncertainties. TUnfold also supports the use of non-diagonal Vyy. The vector x corresponds to the
unfolding result and has m rows. The elements Aij of A describe for each row j of x the probabilities to
migrate to bin i of y. The matrix A often is determined using Monte Carlo simulations.

The term L2 describes the regularisation, which damps fluctuations in x. Such fluctuations originate
from the statistical fluctuations of y, which are amplified when determining the stationary point of
equation 3. The parameter τ2 gives the strength of the regularisation. It is considered as a constant

1Throughout this paper, matrices (M) and vectors (v) are printed in bold. Matrices or vectors without indices, written
next to each other, are multiplied. Where needed, brackets with indices are used to refer to specific elements. The notation
MT indicates that a matrix is transposed, its rows and columns are swapped. The inverse of M is written as M−1. A
vector is treated as a matrix with only one column, such that a transposed vector has only one row. The dot product of
two vectors v1 and v2 thus is equivalent to the matrix multiplication v1

Tv2. Other examples are (Ax)i =
P

j Aijxj and

(AT)ij = Aji.
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while determining the stationary point of L. The matrix L has m columns and nR rows, corresponding to
nR regularisation conditions. The bias vector fbx0 is composed of a normalisation factor fb and a vector
x0. In the simplest case, one has fb = 0, nR = m and L is the unity matrix. In that case, L2 simplifies
to τ2||x||2, effectively suppressing large deviations of x from zero. If fb = 1, deviations of x from x0 are
suppressed. Choices of the matrix L different from the unity matrix are discussed in section 7.

The term L3 is an optional area constraint. There is a Lagrangian parameter λ. The sum over all
observations is given by Y , equation 7. The efficiency vector e has m rows and is calculated from A as
indicated in equation 8. If the area constraint is used, the normalisation of the result x, corrected for
the efficiencies e, is thus enforced to match the total event count Y . This procedure is applied in order
to limit possible biases on the normalisation which are present if the data y follow Poisson’s statistics
whereas the least square ansatz is strictly valid only for normal distributed measurements. The problem
is discussed in more detail in literature, for example in [13].

The minimum or stationary point of L(x, λ) is determined by setting the first derivatives to zero. In
the case without area constraint, λ is set to zero and only the derivatives of L1 + L2 with respect to the
components of x are set to zero. When including the area constraint, the equations are solved for x and
λ together. The partial derivatives of L(x, λ) are

∂L(x, λ)

∂xj

= − 2
(

ATVyy
−1(y − Ax)

)

j
+ 2τ2

(

(LTL)(x − fbx0)
)

j
− λej , (9)

∂L(x, λ)

∂λ
=Y − eTx. (10)

(11)

The stationary point x of L is found as

x =

{

x|λ=0 without area constraint

x|λ=0 + λ
2Ee with area constraint

where (12)

x|λ=0 =E
[

ATVyy
−1y + τ2(LTL)fbx0

]

, (13)

E =
(

ATVyy
−1A + τ2(LTL)

)

−1

and (14)

λ

2
=

Y − eTx|λ=0

eTEe
. (15)

In order to calculate the covariance matrix of x, given the covariance matrix of y, the corresponding
partial derivatives are calculated

(Dxy)ki :=
∂xk

∂yi

=

{

Bki without area constraint

Bki + (Ee)k
1−(BTe)i

eTEe
with area constraint

where (16)

B =EATVyy
−1. (17)

The covariance matrix of the result x, originating from Vyy is thus given by

Vxx = DxyVyy(D
xy)T. (18)

3 Normalisation of the matrix of migrations

In most cases, A is determined from Monte Carlo simulations. Within TUnfold, it is foreseen to initialise
the unfolding from a matrix M of event counts, determined in a Monte Carlo event simulation, where M

has n + 1 rows and m columns, one row more than A. The extra row is used to count those events which
are generated in a particular bin j but are not found in any of the reconstructed bins. For the purpose
of this paper, the extra row of M is denoted with index i = 0, whereas all other matrices and vectors
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have indices starting from 1. In other words, the matrix elements Mij count the Monte Carlo events
generated in bin j of x and reconstructed in bin i > 0 of y, whereas the matrix elements M0j count the
Monte Carlo events generated in bin j and not reconstructed in any of the bins of y. For the unfolding
algorithm, A and x0 are initialised from M as follows

Aij =
Mij

sj

, where i > 0 and (19)

sj =
n
∑

i=0

Mij , (20)

(x0)j =sj . (21)

4 Choice of the regularisation strength

When unfolding, the strength of the regularisation, τ2, is an unknown parameter. If τ2 is too small, the
unfolding result often has large fluctuations and correspondingly large negative correlations of adjacent
bins. If τ2 is too large, the result is biased towards fbx0. Several methods to choose the strength of the
regularisation are discussed in literature, for example eigenvalue analyses [14], minimisation of correlation
coefficients [15], and the L-curve method [16]. At present, in TUnfold a simple version of the L-curve
method is implemented to determine τ2 as well as methods to minimise global correlation coefficients.

4.1 L-curve scan

The idea of the L-curve method is to look at the graph of two variables Lcurve
x and Lcurve

y and locate the
point where the curvature is maximal. These variables are defined as

Lcurve
x = logL1 and (22)

Lcurve
y = log

L2

τ2
, (23)

such that Lcurve
x tests the agreement of x with the data and Lcurve

y tests the agreement of x with the
regularisation condition. Note that Lcurve

y does not have an explicit dependence on τ2. For τ2 → 0 the
value of Lcurve

x is minimal and Lcurve
y is maximal, because L2 → 0 and x corresponds to the stationary

point of L1+L3. As τ2 gets large, Lcurve
x increases whereas Lcurve

y is getting small, because the Lagrangian
is dominated by L2. It is observed that the parametric plot of Lcurve

y against Lcurve
x often shows a kink

(is L-shaped). The kink location is chosen to determine τ2.

In TUnfold, the L-curve algorithm is implemented as follows: the unfolding is repeated for a number
of points in t = log τ , thus scanning the L-curve. The curvature C of the L-curve is determined as

C =
d2Lcurve

y dLcurve
x − d2Lcurve

x dLcurve
y

(

(dLcurve
x )2 + (dLcurve

y )2
)

3

2

. (24)

The first and second derivatives of Lcurve
x (Lcurve

y ) with respect to t, dLcurve
x (dLcurve

y ) and d2Lcurve
x

(d2Lcurve
y ), respectively, are approximated using cubic spline parametrisations of the scan results. The

maximum of C is finally determined with the help of a cubic spline parametrisation of C(t).

4.2 Minimising global correlation coefficients

A method of minimising global correlation coefficients is also implemented. Given the covariance matrix
Vxx the global correlation coefficient of a component i of x is defined as

ρi =

√

1 −
1

(Vxx
−1)ii(Vxx)ii

. (25)

Two sorts of correlation coefficients scans have been implemented:
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1. minimising the average correlation: the regularisation strength τ2 is chosen such that the average
global correlation

∑

i ρi/m is minimised, where m is the dimension of x.

2. minimising the maximum correlation: the regularisation strength τ2 is chosen such that the maxi-
mum correlation maxi(ρi) is minimised.

Furthermore, it is possible to choose the covariances

1. The covariance matrix Vxx may or may not include systematic uncertainties.

2. There is the option to partition the covariance matrix such that only parts of the matrix are used
for the calculation of global correlation coefficients.

3. It is possible to merge bins or groups of bins prior to calculating the ρi.

When partitioning the covariance matrix, the corresponding unused rows and columns of Vxx are removed
prior to inverting the matrix and calculating the global correlation coefficients. When merging bins of
groups of bins, the corresponding rows or columns of the matrix are added up.

The scan is implemented such that the unfolding is repeated for a number of points in t = log τ . For
each point the chosen correlation type (maximum or average) is calculated. The minimum is determined
using a cubic spline interpolation.

5 Background subtraction

Often there is background present in the measured data y. It is worth to mention that the background
has to include all types of events which are possibly reconstructed in one of the bins of y but do not
originate from any of the bins of x. In particular, part of the signal process may be generated outside
the phase-space covered by x and thus has to be counted as background. Sometimes it is possible to
determine background sources from the data as a part of the unfolding process, for example using a
discriminator [17]. In order to achieve that, background normalisation factors are included as extra bins
of the vector x, corresponding to extra columns of the matrices A, M. The background normalisation is
then determined in the unfolding process.

On the other hand, it is often useful to simply subtract the background prior to unfolding. Within
TUnfold, the following method of background subtraction is implemented

y =y0 − f bb, (26)

(Vyy)ij =(V0
yy)ij + δij(f

b(δb)i)
2 + (δf b)2bibj . (27)

Here, the components of y0 are the data prior to background subtraction, with covariance matrix V0
yy.

The background has a normalisation factor f b with uncertainty δf b. The background shape is described
by a vector b and the uncertainties on the components of b are given by the vector δb. Finally, δij is the
Kronecker symbol.

The covariance matrix Vyy receives contributions from the covariance matrix of y0 as well as from the
uncertainties on the background shape, the latter contributing only to the diagonal elements. In addition
there are contributions to the covariance matrix from the background normalisation uncertainty. Because
the background normalisation is correlated for all analysis bins, it also contributes to the off-diagonal
elements of the matrix.

In TUnfold, the background subtraction is generalised such that multiple background sources may be
subtracted. The contribution of individual sources of uncertainty to the result’s covariance matrix may
be studied after unfolding.
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6 Systematic uncertainties on the matrix of migrations

The matrix of migrations, A, usually receives uncertainties from various sources. First, there are statistical
uncertainties, originating from counting the Monte Carlo events in the matrix M. Second, there may
be systematic uncertainties, in many cases described by a variation M → M + δM, corresponding to a
variation of experimental conditions.

The statistical uncertainties are bin-to-bin independent uncertainties ∆Mij on M. They are propa-
gated through the unfolding formalism and result in a contribution VM,stat

xx to the covariance matrix of
x. Details are given in the appendix.

A systematic variation δM is propagated to the result vector in the form of a vector of systematic shifts,
δx. The corresponding covariance matrix contribution is given by VδM

xx = δx(δx)T. The calculation of
δx is described in the appendix. TUnfold supports multiple sources of systematic variation.

7 Choice of regularisation conditions

Within TUnfold, the matrix of regularisation conditions L can be chosen with some flexibility. Three
basic types of regularisation are supported:

1. rows of L where only one element is non-zero, corresponding to a regularisation of the amplitude
or size of x,

2. rows of L where two elements are non-zero, corresponding to a regularisation of the first derivative
of x,

3. rows of L where three elements are non-zero, corresponding to a regularisation of the second deriva-
tive (curvature) of x.

The first derivatives are approximated by differences of event counts in adjacent bins, xi+1−xi. Similarly,
the second derivatives are approximated by (xi+1 − xi) − (xi − xi−1).

When initialising TUnfold, it is possible to choose one of the three basic types of regularisation. This
type of regularisation is then applied to all bins of x.

1. if TUnfold is initialised to regularise on the size, L is initialised to the unity matrix.

2. if TUnfold is initialised to regularise on the first derivatives, L has m − 1 rows and the non-zero
elements are: Li,i = −1 and Li,i+1 = 1.

3. if TUnfold is initialised to regularise on the second derivatives, L has m − 2 rows and the non-zero
elements are: Li,i = 1, Li,i+1 = −2, Li,i+2 = 1.

On the other hand, it is also possible to choose neither of the basic types and to set up details of the
regularisation for specific bins or groups of bins instead.
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7.1 Regularisation of multi-dimensional distributions

In many cases, x is not simply a one-dimensional distribution. Instead, the bins of x may originate from
several distributions, for example if there are bins controlling the background normalisation in addition
to the signal bins. Furthermore, the signal bins may originate from a multi-dimensional distribution. For
example, the signal may have 4× 3 bins in two variables PT and η. The vector x then has 12 bins, where
the first 4 bins correspond to the 4 PT bins of the first η bin, etc. Such a structure is not problematic
when regularising on the size, but care has to be taken when regularising on the first or second derivatives.

Within TUnfold there is support to initialise one-, two- or three-dimensional regularisation patterns.
For example, when regularising the two-dimensional pattern of 4×3 bins from the (PT , η) example above
on the second derivative, L is set up as follows:

L =

































1 −2 1 0 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 1 0 0 0 0 0
0 0 0 0 0 1 −2 1 0 0 0 0
0 0 0 0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 0 0 0 1 −2 1
1 0 0 0 −2 0 0 0 1 0 0 0
0 1 0 0 0 −2 0 0 0 1 0 0
0 0 1 0 0 0 −2 0 0 0 1 0
0 0 0 1 0 0 0 −2 0 0 0 1

































(28)

Here, rows 1-2 correspond to the regularisation of the second derivatives on PT for the first η bin.
Similarly, rows 3-4 and 5-6 act on PT for the second and third η bin, respectively. Finally, rows 7-10
correspond to the second derivatives in η for the four PT bins.

7.2 Regularisation on the density, multi-dimensional distributions

The regularisation schemes discussed so far do not take into account the effects of non-uniform bin widths.
Another complication arises in cases where multidimensional distributions of signal and backgrounds have
to be mapped to the one-dimensional vectors x, y and to the matrix M. The latest version of TUnfold
[3] addresses these issues. Multidimensional distributions are mapped on one axis of the vectors x and
y. The regularisation conditions may be refined such that the effects of non-uniform bin widths [19] are
taken into account.

7.2.1 Densities

During the unfolding, the bins of x correspond to event counts. However, often is desirable to regularise
not on the even count but on the density. The density is calculated by dividing the number of events in
a given bin by the width of the bin. For calculating the regularisation conditions, the number of events
x is transformed to a density x̂,

xj → x̂j = xj ×
fuser

j
∏

d wdj

. (29)

The number of events xj is divided by the multi-dimensional bin width
∏

d wdj , where wdj is the bin width
of bin j in the dimension d, as specified by the underlying multidimensional distribution. In addition,
there is an arbitrary user function fuser

j , which may be used to compensate known kinematic factors2. In
TUnfold, the transformation to the density is implemented by modifying the elements of the matrix L,

Lrj → Lrj ×
fuser

j
∏

d wdj

, (30)

where the index r is used to enumerate the nR regularisation conditions.

2An example is the use of the “reduced cross section” rather than the ordinary cross section for inclusive deep-inelastic
scattering [18]. The ordinary cross section changes by several orders of magnitude as a function of kinematic variables
and hence is difficult to regularise. In contrast, the reduced cross section does not vary a lot, and thus is more natural to
regularise on.
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7.2.2 Derivatives

In the case where the regularisation is made on the derivatives, the bin width may also be included in
the approximate calculation of the derivatives. The calculation of first derivatives is modified such that

(xj2 − xj1) →
∆d

δd
j2j1

(xj2 − xj1), (31)

where j2 and j1 are the indices of adjacent bins of a multi-dimensional distribution and d is the dimension
of the distribution for which the derivative is calculated. The distance between the two bin centres is δd

j2j1

and ∆d is a normalisation constant specific to the dimension d. In TUnfold, the normalisation constant
by default is chosen to be the average bin width in dimension d. The ∆d are relevant if derivatives
are considered for multi-dimensional distributions, where often the derivatives along one dimension are
different in magnitude from derivatives along another dimension. For example, in the variable PT the
typical bin width may be 10 [GeV], where as in η the typical bin width may be 0.5. In this case, the
derivatives in PT typically are a factor of 20 smaller than those in η, unless the normalisation ∆d is
chosen appropriately.

In analogy to the case of first derivatives, the calculation of second derivatives may be modified to
take into account bin widths using the transformation

(xj3 − xj2) − (xj2 − xj1) →
(∆d)

2

δd
j2j1

+ δd
j3j2

(

xj3 − xj2

δd
j3j2

−
xj2 − xj1

δd
j2j1

)

, (32)

where j1, j2 and j3 are indices corresponding to a triplet of adjacent bins of a multidimensional dis-
tribution. The distance of bin centres and normalisation factors are defined similar to the case of first
derivatives.

In TUnfold, the calculation of first or second derivatives including bin widths is implemented by
adding the appropriate modifications to the matrix L. It is possible to use the modified calculation of
derivatives together with the density calculation explained in section 7.2.1.

7.2.3 Example of a more complicated regularisation scheme

Consider the use of 4 × 3 bins in (PT , η), where the bins borders in Pt are [5, 7, 10, 15, 25] and the bin
borders in η are [−2,−0.5, 0.5, 2]. The dimension d = 1 corresponds to PT and d = 2 corresponds to η.
In the example, the bin widths along pT are [2, 3, 5, 10] and those along η are [1.5, 1, 1.5]. The first four
components of the vector x hold the four bins in PT of the first η bin, etc. The bin widths are thus given
by

w1,1 = w1,5 = w1,9 = 2
w1,2 = w1,6 = w1,10 = 3
w1,3 = w1,7 = w1,11 = 5
w1,4 = w1,8 = w1,12 = 10

and
w2,1 = w2,2 = w2,3 = w2,4 = 1.5
w2,5 = w2,6 = w2,7 = w2,8 = 1

w2,9 = w2,10 = w2,11 = w2,12 = 1.5
(33)

and average bin sizes are ∆1 = 5 and ∆2 = 1.33. The distances of the bin centres are [2.5, 4, 7.5] along
Pt and [1.25, 1.25] along η, respectively, so

δ1
2,1 = δ1

6,5 = δ1
10,9 = 2.5

δ1
3,2 = δ1

7,6 = δ1
11,10 = 4

δ1
4,3 = δ1

8,7 = δ1
12,11 = 7.5

and
δ2
5,1 = δ1

6,2 = δ2
7,3 = δ2

8,4 = 1.25
δ2
9,5 = δ1

10,6 = δ2
11,7 = δ2

12,8 = 1.25 .
(34)

The resulting matrix L for the case of curvature regularisation on the density, including bin width
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effects, then looks like

L =

































0.51 −0.56 0.13 0 0 0 0 0 0 0 0 0
0 0.12 −0.11 0.02 0 0 0 0 0 0 0 0
0 0 0 0 0.77 −0.83 0.19 0 0 0 0 0
0 0 0 0 0 0.18 −0.17 0.03 0 0 0 0
0 0 0 0 0 0 0 0 0.51 −0.56 0.13 0
0 0 0 0 0 0 0 0 0 0.12 −0.11 0.02

0.19 0 0 0 −0.57 0 0 0 0.19 0 0 0
0 0.13 0 0 0 −0.38 0 0 0 0.13 0 0
0 0 0.08 0 0 0 −0.22 0 0 0 0.08 0
0 0 0 0.04 0 0 0 −0.11 0 0 0 0.04

































, (35)

where the numbers have been rounded to two digits.

8 Structure of the TUnfold software package

TUnfold is implemented in the programming language C++ and is interfaced to the ROOT analysis
framework. The package is organised in four classes

TUnfold implements the basic unfolding algorithm and L-curve scan.

TUnfoldSys inherits from the TUnfold class and adds functionality to perform background subtraction
and propagation of systematic uncertainties.

TUnfoldDensity inherits from the TUnfoldSys class. It adds a method to perform scans of global cor-
relations. More important, it provides support for multidimensional binning schemes, implemented
with the help of the class TUnfoldBinning.

TUnfoldBinning is a class to set up binning schemes. The binning schemes are organised in tree-
like structures. The nodes of the tree correspond to distinct channels. Each channel may hold a
multidimensional distribution in some variables. An example of a binning scheme for the vector x

with signal and background bins is shown in figure 2.

node
"signal"

node
"background"

root node
"generator"

fir
st 

ch
ild

pa
re

nt

parent

no
bins

previous node

next node

7 bins in pt

3 
bi

ns
in

 e
ta

8 bgnd sources

Figure 2: example binning scheme with three nodes. The “generator” node is the root node. It has
two child nodes, “signal” and “background”. The “signal” node has a two-dimensional binning in two
variables, pt and eta, whereas the background node has unconnected bins corresponding to various back-
ground sources.

9 Summary

The mathematical foundations of the TUnfold software package have been presented. TUnfold can be
used to correct measurements for migration effects using the well known mathematical techniques of least-
square fitting and Tikhonov regularisation. For choosing the strength of the regularisation parameter, two
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types of scanning methods are implemented: the L curve method and a flexible minimisation procedure of
correlation coefficients. The package offers the possibility to set up non-trivial regularisation schemes for
unfolding multi-dimensional distribution. Standard methods to subtract background and to propagate
systematic uncertainties are also implemented.

A Partial derivatives used for the propagation of uncertainties

The partial derivatives of Aij with respect to Mkj are

∂Aij

∂Mkj

=
δik − Aij

sj

. (36)

The partial derivatives of x with respect to the matrix elements Aij are given by

∂xk

∂Aij

=Ckjzi − (Dxy)kixj where (37)

Ckj =

{

Ekj without area constraint

Ekj −
(Ee)j(Ee)k

eTEe
with area constraint

and (38)

zi =

{

(

Vyy
−1(y − Ax)

)

i
without area constraint

(

Vyy
−1(y − Ax)

)

i
+ λ

2 with area constraint.
(39)

In order to derive this result, the partial derivatives of E with respect to the elements of the inverse E−1

are expressed by the elements of E,
∂Eij

∂(E−1)kl

= −EikElj . (40)

The partial derivative of x with respect to the regularisation parameter τ2 is

∂xk

∂(τ2)
=







(

E(LTL)(fbx0 − x)
)

k
without area constraint

(

E(LTL)(fbx0 − x)
)

k
− eTE(LTL)(fbx0−x)

eTEe
(Ee)k with area constraint.

(41)

B Propagation of systematic uncertainties

Correlated systematic shifts are propagated in the form of systematic shifts of the result. Given a shift
δM to the matrix M, one finds the corresponding shift δA of A using equation 19. The resulting shift on
x is then given by

δx =
∑

i,j

∂x

∂Aij

(δA)ij = C(δA)Tz − Dxy(δA)x, (42)

Statistical uncertainties ∆Mij of the elements of M may also be relevant. The calculation could be
done by repeated application of equations 36 and 42 for each independent source of uncertainty ∆Mij .
However, the required computing costs are large. In TUnfold, the computation is factorised such that
the computing cost is O(n3)

(VM,stat
xx )ij =

∑

k

FikFjkpk +
∑

k

CikCjk

∑

l

Qlkz2
l +

∑

k

Dxy
ik Dxy

jk

∑

l

Qklx
2
l

− (FGT + GFT)ij − (DxyHT + H(Dxy)T)ij where

(43)
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Qij =

(

∆Mij

sj

)2

and pj =

n
∑

i=0

Qij , (44)

Fij =
∑

k

∂xi

∂Akj

Akj = Cij(A
Tz)j − (DxyA)ijxj , (45)

Gij =
∑

k

∂xi

∂Akj

Qkj = Cij(Q
Tz)j − (DxyQ)ijxj , (46)

Hij =zj

∑

k

CikxkQjk. (47)
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