ÜBUNGSBLATT 10 ZU THERMODYNAMIK UND STATISTISCHE MECHANIK

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: guenter.sigl@desy.de

tel: 040-8998-2224

Abgabetermin: 18.1.2016 vor den Übungen

- 1. (4 Punkte) Ein ideales Gas werde auf konstanter Temperatur T und bei konstantem chemischen Potential μ gehalten. Berechnen Sie die Standardabweichung der Teilchenzahl $\sigma_N = \left(\langle N^2 \rangle \langle N \rangle^2\right)^{1/2}$ als Funktion der mittleren Teilchenzahl $\langle N \rangle$.
- 2. (6 Punkte) Ein Molekül habe eine Vibrationsmode mit natürlicher Frequenz ω und befinde sich in einem Wärmebad der Temperatur T.
 - a) Berechnen Sie die Standardabweichung $\sigma_U = (\langle U^2 \rangle \langle U \rangle^2)^{1/2}$ der Energie der an der Vibrationsmode beteiligten Quantenzustände als Funktion von ω , T und von fundamentalen Konstanten.
 - b) Berechnen Sie analog das dritte zentrale Moment $(\langle U^3 \rangle \langle U \rangle^3)^{1/3}$.
- 3. (4 Punkte) Betrachten Sie ein Strahlungsfeld im thermischen Gleichgewicht bei Temperatur T. Berechnen Sie die Standardabweichung σ_U der inneren Energie in einem Teilvolumen V. Hinweis: Verwenden Sie die innere Energie U(T,V) aus Aufgabe 3 von Übungsblatt 3.
- 4. (6 Punkte) Betrachten Sie das ideale Gas masseloser Fermionen im Grenzfall $T \to 0$.
 - a) Berechnen Sie das großkanonische Potential $\Phi(T \to 0, V, \mu)$. Hinweis: Überlegen Sie zunächst wie die Besetzungszahl $N(\epsilon)$ als Funktion der Teilchenenergie aussehen muss. Wie hängt in diesem Falle der Fermiimpuls $p_{\rm F}$ mit μ zusammen ?
 - b) Berechnen Sie daraus die Teilchendichte $n(T \to 0, \mu) = N/V$ und die Energiedichte $u(T \to 0, \mu) = U/V$.
 - c) Geben Sie den Entartungsdruck $p(T \to 0, \mu)$ an.