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1. Geodesic Equation and Extremal Action

Show that the geodesic equation of motion in a gravitational field,
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can also be derived from extremizing the action
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under small variations xµ(λ)→ xµ(λ) + δxµ(λ) of the path connecting two space-time points
such that the variations δxµ vanish at the end points. Hint: Transform to proper time as
integration variable, using
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and thus the variation of Eq. (1) has the form
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and leads to the equation of motion
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2. Torsion and Riemann Tensor as Multi-Linear Maps

The covariant derivative with respect to a vector field X is defined by

∇X ≡ Xµ∇µ

and defines a linear map from second vector field Y to a third vector field ∇XY . Using this
notation show the following:

(a) The torsion tensor with the components T λµν ≡ Γλµν −Γλνµ for an arbitrary connection Γλµν
defines a bilinear map from two vector fields X = Xµ∂µ and Y = Y ν∂ν to a third vector field
whose components are given by

T λµνX
µY ν .

Show that this bilinear map can be written as

T (X, Y ) = ∇XY −∇YX − [X, Y ] .

(b) The Riemann tensor defines a trilinear map from three vector fields X = Xµ∂µ, Y = Y ν∂ν ,
and Z = Zσ∂σ to a forth vector field whose components are given by

Rρ
σµνX

µY νZσ .

Show that this trilinear map can be written as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

To demonstrate this express the components Rρ
σµν of the Riemann tensor in terms of general

connection coefficients Γλµν as derived in the lecture.

3. Properties of the Riemann Tensor

(a) Show that the sum over cyclic permutations of the last three indices of the Riemann tensor
vanishes,

Rρσµν +Rρµνσ +Rρνσµ = 0 .

(b) Show that this is equivalent to
Rρ[σµν] = 0 .

Hint: Use the expression for the Riemann tensor in a locally inertial frame.
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