Supporting Information

Comparison of Small Angle Scattering Methods for the Structure Analysis of Octyl-β-maltopyranoside Micelles

Lizhong He, Vasil M. Garamus, Sérgio S. Funari, Marc Malfois, Regine Willumeit, Bernd Niemeyer

Section 1s - Volumetric Properties of OM

Table 1s summarizes the apparent molar volume of OM in water at different temperatures. The data obtained with D_2O were given in Table 2s for comparison. It was found that the apparent molar volume in D_2O is close to that in H_2O . By fitting the data in Table 1s, the parameters $V_{\Phi}^{\ 0}$, a and b in eq 3 were obtained, which are summarized in Table 3s. Using these parameters, the partial molar volume of OM, \overline{V} , were calculated by eq 4.

The Tanford method gives the volume of hydrocarbon chain at 25 °C (see eq 5). To get the value at a different temperature, a correlation procedure was carried out by combining the Gunn et al. method ¹ with the Chueh et al method. ¹ It is known that these two methods were proposed for bulk liquid hydrocarbon. However, since the state of liquid hydrocarbon in the micelle core is close to that in bulk liquid hydrocarbon, ² this procedure is reasonable. For a given temperature, the ratio of the saturated molar liquid volume to that at 25 °C was calculated using the Gunn et al. method. Then, this ratio was used in the Chueh et al. method to get the liquid density at the pressure of 1 atm using the density value at 25 °C as the reference. From the liquid density data, the volume of a hydrocarbon chain at the desired temperature was obtained. The vapor pressure needed in the Chueh et al. method was

obtained by the Antoine vapor-pressure equation, and all other parameters were obtained from the reference 1.

As the molecular volume and hydrocarbon chain volume are known, the head group volume can be calculated via

$$v_h = v_{mol} - v_c \tag{1s}$$

The molecular volume, hydrocarbon chain volume and the head group volume at different temperatures were summarized in Table 4s.

Section 2s- SAXS data

Figure 1s. Effect of temperature on SAXS scattering curves. c = 96.5 mM, solvent: H_2O .

Figure 2s. Effect of temperature on SAXS scattering curves. c = 97.4 mM, solvent: D₂O.

Figure 3s. Comparison of p(r) function from SAXS data in H₂O and D₂O at 25 °C. In H₂O, c = 96.5 mM; In D₂O, c = 97.4 mM.

Figure 4s. Comparison of p(r) function from SAXS data in H₂O and D₂O at 50 °C. In H₂O, c = 96.5 mM; In D₂O, c = 97.4 mM.

References in Supporting Information

- Reid, R.; Prausnitz, J. M.; Sherwood, T.K. The Properties of Gas and Liquids; 3nd Edition;
 McGraw-Hill Book Company: New York, 1977
- 2) Tanford, C. The Hydrophobic Effect: Formation of Micelle and Biological Membranes; John Wiley & Sons: New York, 1980

Table 1s Apparent molar volume of OM in H_2O , V_ϕ , at different temperatures

		•						
	V_{ϕ} , (cm ³ .mol ⁻¹)							
C (mol.kg ⁻¹)	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 °C	50 °C
0.01007	336.8	338.0	339.6	341.8	343.4	345.1	-	-
0.01547	335.6	337.7	339.4	341.7	343.4	344.7	-	-
0.01818	335.5	337.8	339.9	341.3	343.4	345.1	-	-
0.02046	335.9	338.0	339.9	341.6	343.5	345.1	-	-
0.02500	336.7	338.9	340.8	342.7	344.8	346.5	348.3	351.3
0.02562	336.4	338.5	340.9	342.7	344.7	346.4	-	-
0.03077	336.6	339.1	341.4	343.6	345.7	347.5	-	-
0.03503	337.8	340.6	342.9	345.2	347.0	348.7	350.4	353.4
0.04145	338.6	341.1	343.4	345.4	347.2	349.0	-	-
0.04398	339.6	342.3	344.4	346.3	348.3	350.0	351.4	354.3
0.05196	340.8	343.2	345.5	347.3	349.1	350.5	-	-
0.05769	340.7	343.1	345.2	347.0	348.7	350.4	351.8	354.6
0.08218	343.3	345.5	347.3	349.0	350.6	352.2	353.6	356.3
0.10022	344.6	346.6	348.4	350.1	351.6	353.1	354.4	357.1
0.11678	344.8	346.8	348.5	350.1	351.6	353.0	354.4	357.0
0.14732	345.5	347.3	349.0	350.5	352.0	353.4	354.7	357.4
0.19952	346.5	348.2	349.8	351.3	352.7	354.1	355.5	357.9

Table 2s Apparent molar volume of 0.0914 mol.kg⁻¹ OM in D₂O at different temperatures

	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 °C	
$V_{\phi} \text{ (cm}^3 \text{.mol}^{-1})$	343.2	345.5	347.4	348.6	349.8	351.7	353.9	

Table 3s Fitting parameters for calculation of the partial molar volume^a

	10 °C	15 °C	20 °C	25 °C	30 °C	35 °C	40 °C	50 °C
V _Φ (cm ³ .mol ⁻¹) ^b	328.9	329.6	330.9	333.0	334.8	336.47	338.8	342.3
a (cm ³ .mol ^{-1.5} .kg ^{0.5})	58.11	72.52	79.84	79.02	79.86	80.48	76.98	73.48
b (cm ³ .mol ⁻² .kg)	-38.30	-66.74	-82.93	-84.47	-89.10	-92.17	-89.93	-87.18

^a The application of these parameters should be restricted in the measured concentration region in Table 1s.

Table 4s Molecular volumetric properties of OM at different temperatures

T (°C)	Molecular volume* v_{mol} (ų)	hydrocarbon chain volume v_c (Å ³)	
10	579.5	238.4	341.1
15	582.4	239.8	342.6
20	585.0	241.2	343.8
25	587.3	242.6	344.7
30	589.5	244.1	345.4
35	591.7	245.5	346.2
40	593.6	247.0	346.6
50	597.6	250.1	347.5

^{*} calculated from partial molar volume at 100 mM.

 $^{^{\}rm b}$ $V_{\Phi}^{\rm o}$ is only a fitting parameter here, and it does not correspond to the partial molar volume at infinite dilute solution.

Figure 1s

Figure 2s

Figure 3s

Figure 4s