e+e- Physics at the Energy Frontier

Felix Sefkow DESY

Heidelberg Physics Graduate Days 10.-14. Oktober 2016

3. The LEP / SLC legacy

Machines and detectors Physics highlights

LEP

Conceived 1976: Burt Richter suggest a 200 GeV machine for electroweak physics

- until then only studied with neutrinos and $E_{cm} = 10-20$ GeV
- Planned 1979: John Adams at Les Houches
- Approved 1982
- First physics 1989
- In the meantime:
 - 1978 approve SppS
 - 1981 have it built and commissioned
 - 1982 discover W and Z (1983)
 - but no new quarks and leptons
 - 1987 Tevatron started, 92 HERA

Gargamelle

Figure 2: John Adams' first LEP construction plan

Discovery of W and Z

- UA1 and UA2 experiments
- Masses of 80 and 90 GeV
 as predicted
- Nobel Prize 1984

Discovery of W and Z

- UA1 and UA2 experiments
- Masses of 80 and 90 GeV
 as predicted
- Nobel Prize 1984

LARGE Electron Positron Ring

LARGE Electron Positron Ring

- Accelerator physics very similar to PEP / PETRA / TRISTAN
- The challenge was in civil engineering and logistics
 - 26,7 7km, 3368 dipoles, 816 quadrupoles, 500 sextuples and 700 correction magnets, P = 1/4 Geneva

Optimising the circumference

- Energy loss due to synchrotron radiation
 - U = $4\pi r_e m_e c^2 \gamma^4$ / 3R , R = 3096 m
 - Per turn:
 - 140 MeV at 47 GeV
 - 2.33 GeV at 95 GeV
- Cost:
 - Tunnel, magnets, vacuum $\sim L \sim R$
 - RF system ~ U ~ γ^4 / R
- $C \sim a \cdot R + b \cdot \gamma^4 / R$
- dC / dR = a b y^4 / R^2
- \Rightarrow R ~ v^2 ~ E^2 , U ~ E^2 , Cost ~ E^2
- Magnets: B ~ 1 / E
 - at LEP: 0.05 0.1 T
 - widely spaced iron lamination and concrete

Super-conducting cavities

- RF cavity has a shunt impedance
- Power = P_{beam} + P_{cavity} = N·e·U / Δt + U²/ R_{shunt} , eU = $\Delta E_{sync.rad}$
- At high E cavity losses dominate

LEP parameters

Circumference	~27 km
Centre-of-mass energy	92.1 GeV(LEP1) to 209 GeV(LEP 2)
Accelerating gradient	Up to 7 MV/m (SC cavities)
Number of bunches	4 x 4
Current per bunch	~ 750 μA
Luminosity (at Z0)	~ $24 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (~1 Z0/sec)
Luminosity (at LEP2)	~ $50 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (3 WW/hour)
Interaction regions	4 (ALEPH, DELPHI, L3, OPAL)
Energy calibration	< 1 MeV (at Z0)

• Collisions every ... ?

LEP running

1990- 1995	~91 GeV 4 Million Z0's
1995	Test phase for LEP2: 130 GeV
1996	161-172 GeV: WW-threshold
1997	183 GeV 1000 W-pairs
1998	189 GeV 2500 W-pairs
1999	192-200 GeV 3000 W-pairs
2000	200-209 GeV 3000 W-pairs

Stanford Linear Collider SLC

- e⁻ up to 50 GeV; fixed-target program (until 1980's)
- e^- and e^+ for PEP-I storage rings (E_{cm} = 29 GeV; early 1980's)
- e^- and e^+ for SLC collider ($E_{cm} = M_Z \sim 91$ GeV; 1989 1999)
- e^- and e^+ for PEP-II storage rings (E_{cm} ~10 GeV; 1999 2008)

SLC:

- substantially smaller luminosities and data statistics than LEP (e-, e+ are not recycled but are dumped after each collision)
- + polarisation of e⁻ beam up to 80% (polarised e- -source; conservation of polarisation due to ~absence of synchrotron radiation)

SLD at SLC

- SLC physics tarted with MARK-II in 1988
- Replaced by SLD in 1991

e+e- Physics

Polarimetry at SLC

- At SLC, can chose electron polarisation
- Polarised source, spin transport and rotation
- Polarimeter: Compton scattering of circular polarised photons on longitudinally polarised electrons
 - cross section dependence on scattered photon energy depends on parallel or anti-parallel spin alignment
 - detect momentum-analysed lector s in multi-channel Cherenkov detector

LEP experiments

LEP experiments

LEP experiments

ALEPH

ALEPH TPC

- TPC: time projection chamber
 - "no" material
 - r = 1.8m, L = 4.4 m
 - 41'000 pads
 - up to 480 dE/dx measurements / track

ALEPH TPC

- TPC: time projection chamber
 - "no" material
 - r = 1.8m, L = 4.4 m
 - 41'000 pads
 - up to 480 dE/dx measurements / track

Silicon vertex detector

- Then brand-new technology
- Added after first years of running to all the LEP detectors

- ALEPH:
 - 100 µm strips
 - 12 µm resolution
- Break-through in heavyflavour physics
 - lifetimes, oscillations, inclusive secondary vertex tags

Silicon vertex detector

2. The LEP legacy

Machines and detectors Physics highlights

Physics Highlights

- Electro-weak precision studies at the Z
- W boson physics
- QCD and heavy flavours

Cross sections at LEP

Electro-weak physics at the Z resonance

Electro-wea $(d)_{R},..$ Weak interaction couples to LH W^{-} . doublets of weak is $s_{\mu} = \frac{1}{2} e^{i \frac{\pi}{2}}$ $I_W \equiv 0$ Local SU(2) gauge invariance: 3 820 ($1 \pm W_2$)³ gauge bosons $=\frac{g_W}{\sqrt{2}}\overline{\chi}$ - charged and neutral cut reputs Add neutral spin 1 field B^Y = $\frac{g'}{2}\overline{\psi}Y_e\gamma_\mu\psi = \frac{g'}{2}\overline{e}_LY_{e_L}\gamma_\mu e_L\psi = \frac{g'}{$ Coupling to hypercharge $A_{\mu} = B_{\mu}^{Z} \overline{\cos} \left[g' I_{W}^{3} \overline{\sin} \theta_{W} \overline{\eta} g' \overline{\theta}_{W}^{3} \overline{\eta} \theta_{W} \overline{\eta} \theta' \overline{$ $O \sin \theta_W$ $Hypercharge \chi = 12Q - 22I_3$ γ and Z super positions of W_3^{u} , $(d)_R, \dots, j_M^Z$ $-siln^{e} \theta_{\chi \mu} e_{L}$ $e_L + \overline{e}_R Y_{e_R} \chi_{\mu} e_R | - \frac{1}{2} g_W \sin \theta_W | e_R | - \frac{1}{2} g_W \sin \theta_W | e_R | e_R + \overline{e}_R g_W \sin \theta_W \sin \theta_W | e_R + \overline{e}_R g_W \sin \theta_W | e_R + \overline{e}_R g_W \sin \theta_W |$ $e\overline{e}_L Q_e \gamma_\mu e_L + e\overline{e}_R Q_e \gamma_\mu e_R = \frac{1}{2}g' \cos \theta_W [\overline{e}_L]$ and B Weak mixing angle θ_W $Q \sin^2 \theta_W / [\bar{e}_L \gamma_\mu e_L] - g_Z Q \sin^2 \theta_W$ $e = g_W \sin \theta_W = g' \cos \theta_W = g_Z \cos \theta_W \sin \theta_W$ $g_W = g_W - g_W \sin \theta_W$ Couplings related

e+e- Physics

Felix Sefkow 10.-14, Oktober 2016

21

$$Br(Z \to e^+e^-) = Br(Z \to \mu^+\mu^-) = Br(Z \to \tau^+\tau^-) \approx 3.5\%$$

$$Br(Z \to \nu_1\overline{\nu}_1) = Br(Z \to \nu_2\overline{\nu}_2) = Br(Z \to \nu_3\overline{\nu}_3) \approx 6.9\%$$

$$Br(Z \to d\overline{d}) = Br(Z \to s\overline{s}) = Br(Z \to b\overline{b}) \approx 15\%$$

$$Br(Z \to u\overline{u}) = Br(Z \to c\overline{c}) \approx 12\%$$

 $\Gamma_Z = \sum_i \Gamma_i = 2.5 \,\text{GeV}$ $\mathbb{T}_Z = \mathbb{P}_2 \times \mathbb{P}_2$

 $f = 2.4952 \pm 0.0023 \, \text{GeV}$

 $f_{7}=234952\pm0.0023\,\text{GeV}$

 $\P = \frac{1}{2} =$

Felix Sefkow 10.-14. Oktober 2016

22

V.

ALEPH DALI

Z branching ratios

 \mathbf{M}

10.-14. Oktober 2016 Felix Sefkow

Counting neutrinos

- prefers N = 3, but...
- smarter way:

Counting neutrinos

 $\sqrt{s} = 2 E_{beam} - E_{\gamma}$

- prefers N = 3, but...
- smarter way:

$$\Gamma_{tot} = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{qq} + N_{families} \Gamma_{\nu\nu}$$

∽ Z

Total cross section

2

Total cross section

Z line shape analysis

Z line shape analysis

The Z mass

- From the line shape
- Precision 2 x 10⁻⁵
- Need to understand many tiny effects
- Crucial: beam energy calibration
- NB: Z width much less affected

Felix Sefkow 10.-14. Oktober 2016

The Z mass

- From the line shape
- Precision 2 x 10⁻⁵
- Need to understand many tiny effects
- Crucial: beam energy calibration
- NB: Z width much less affected

LEP beam energy calibration

Beam energy variations

Beam energy variations

e+e- Physics

Felix Sefkow 10.-14. Oktober 2016

Beam energy variations

- Tidal effects in the rock move the magnets and change the orbit, thus RF phase and energy
- 1mm larger radius → 10 MeV more energy
- Similar effect by Lake Geneva water level

e+e- Physics

More energy variations

Correlation between trains and LEP

More energy variations

Correlation between trains and LEP

• Electrical ground loops

Felix Sefkow 10.-14. Oktober 2016

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore
- Asymmetry
- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_{\mu}$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^{e}_{FB} = 3/4 A^{2}_{e}$ or A_{LR}

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \times \frac{1}{64\pi^2 s} (|M_{RR}|^2 + |M_{RL}|^2 + |M_{LR}|^2 + |M_{LL}|^2)$$
$$= \frac{(4\pi\alpha)^2}{256\pi^2 s} (2(1+\cos\theta)^2 + 2(1-\cos\theta)^2)$$

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore
- Asymmetry
- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_\mu$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^{e}_{FB} = 3/4 A^{2}_{e}$ or A_{LR}

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \times \frac{1}{64\pi^2 s} (|M_{RR}|^2 + |M_{RL}|^2 + |M_{LR}|^2 + |M_{LL}^2|)$$

$$= \frac{(4\pi\alpha)^2}{256\pi^2 s} (2(1+\cos\theta)^2 + 2(1-\cos\theta)^2)$$

 $\frac{\mathrm{d}\sigma_{RR}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_R^e)^2 (c_R^\mu)^2 (1 + \cos\theta)^2$ $\frac{\mathrm{d}\sigma_{LL}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_L^\mu)^2 (1 + \cos\theta)^2$ $\frac{\mathrm{d}\sigma_{LR}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_R^\mu)^2 (1 - \cos\theta)^2$ $\frac{\mathrm{d}\sigma_{RL}}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \frac{g_Z^4 s}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2} (c_L^e)^2 (c_R^\mu)^2 (1 - \cos\theta)^2$

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore
- Asymmetry
- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_{\mu}$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^e_{FB} = 3/4 A^2_e$ or A_{LR}

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore
- Asymmetry
- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_{\mu}$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^e_{FB} = 3/4 A^2_e$ or A_{LR}

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore

• Asymmetry
$$A_{\mathrm{FB}} = rac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_\mu$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^{e}_{FB} = 3/4 A^{2}_{e}$ or A_{LR}

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore

• Asymmetry
$$A_{\mathrm{FB}} = rac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_\mu$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on Ae
- Use $A^{e}_{FB} = 3/4 A^{2}_{e}$ or A_{LR}

- Recall QED case
- Now replace e with c and introduce propagator
- Since RH and LH couplings are different, the cos θ term does not drop out anymore

• Asymmetry
$$A_{\mathrm{FB}} = rac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- $A_{FB} = 3/8 \ B/A = 3/4 \ A_e A_\mu$
- $c_V / c_A = 1 4 |Q| \sin^2 \theta_W$
- Asymmetries measure weak couplings and Weinberg angle
- All depend on A_e
- Use $A^{e}_{FB} = 3/4 A^{2}_{e}$ or A_{LR}

Forward backward asymmetries

- For data above and below Z peak interference with γ change enhances A_{FB}
- Need to account for QED here, too
 and t channel interference for ee
- Off-peak runs enhance EW sensitivity, but less statistics or everyone else
- Running strategy not trivial

Forward backward asymmetries

- For data above and below Z peak interference with γ change enhances A_{FB}
- Need to account for QED here, too
 - and t channel interference for ee
- Off-peak runs enhance EW sensitivity, but less statistics or everyone else
- Running strategy not trivial

Forward backward asymmetries

Left Right Asymmetry

- At SLC, can chose electron polarisation
- Average over positron polarisation states
- $\sigma_L = 1/2 (\sigma_{LR} + \sigma_{LL}) \sim (c^e_L)^2 [(c^\mu_L)^2 + (c^\mu_L)^2]$
- A_{LR} depends on c^e only: $A_{LR} = A_e$
- Additional observables: polarised forward backward asymmetries

Before - after

Measurements of Z couplings

- Extracted from FB asymmetries
- Lepton universality confirmed with per-mil precision

Heavy flavour tags

Impact parameter

- Almost a Lorentz invariant
- d = L sin δ, L = βγ τ
- $\sin \delta = p_T / p$, $p = \beta \gamma m$, $p_T = p^{*_T}$
- \Rightarrow d = $\tau \cdot p^* T/m$ but of course pT still varies from event to event

e+e- Physics

Inclusive charge tags

- Inclusive: jet charge
- b quarks: vertex charge

tau polarisation

- All fermions are produced in polarised state
- But observable only for tau via decay distributions

 $\mathscr{P}_{\tau}(\cos\theta_{\tau^{-}}) = -\frac{\mathscr{A}_{\tau}(1+\cos^{2}\theta_{\tau^{-}})+2\mathscr{A}_{e}\cos\theta_{\tau^{-}}}{(1+\cos^{2}\theta_{\tau^{-}})+\frac{8}{3}A_{\mathrm{FB}}^{\tau}\cos\theta_{\tau^{-}}}.$

• Can extract A_{T} and A_{e}

more complex observable for ρ and a_1 muons less sensitive

Weak mixing angle

0.7 per-mil accuracy

• The A_l A_b tension is still there...

Electro-weak physics at LEP2
LEP2: W boson pair production

e+e- Physics

W decay modes

W decay modes

- ev, μv, τv: 1/9 each
- u d-bar, c s-bar: 3/9 each

W decay modes

- ev, μv, τv: 1/9 each
- u d-bar, c s-bar: 3/9 each

- hadron hadron: 45%
- lepton-hadron: 44%
- lepton lepton: 11%
- e, µ only: 5%

W branching ratios

• Again: count and normalise to luminosity

 τ agreement with e, μ average only 2.6 σ

$w branching ratios v 10.86 \pm 0.09 \\ \chi^{2/ndf} = 15.4 / 11 \\ 10 \ 11 \ 12 \\ Br(W \rightarrow lv) [\%]$

• Again: count and normalise to luminosity

W pair cross section

30 LEP Dramatic evidence for 20 non-Abelian nature of electro-weak interaction σ_{WW} (pb) without Z exchange cross section would violate unitarity 10 Rise ~ $\beta = \sqrt{(1 - 4m^2_W/s)}$ YFSWW/RacoonWW mass measurement no ZWW vertex (Gentle) intrinsically as precise as only v_e exchange (Gentle) direct reconstruction 0 but only 3% of statistics 160 180 200 near threshold √s (GeV)

W pair cross section

30 LEP ${}_{\sf J}W^+$ Dramatic evidence for 20 non-Abelian nature of electro-weak interaction σ_{WW} (pb) without Z exchange cross section would violate unitarity 10 Rise ~ $\beta = \sqrt{(1 - 4m^2_W/s)}$ YFSWW/RacoonWW mass measurement no ZWW vertex (Gentle) - intrinsically as precise as only v_e exchange (Gentle) direct reconstruction 0 but only 3% of statistics 160 180 200 near threshold √s (GeV)

• No ZZZ or γZZ vertex

Single W, single Z production

- Powerful constraints also from WW angular distributions and correlations
- Putting everything together, constrain anomalous triple gauge couplings

κ _γ	= 0.982	+0.042
		-0.042
λ_{γ}	= -0.022	+0.019
		-0.019
g_1^Z	= 0.984	+0.018
		-0.020

e+e- Physics

W boson mass

- Cross section threshold
- Direct reconstruction
 - hadronic or semileptonic
- Limited by jet energy resolution
- Use kinematic constraints:
 - energy,
 momentum: 4C
 - 2 masses in 1 event equal: 5C
 - in s.l. case: reconstruct neutrino momentum and perform 2C fit
 - 1C in the case of T e+e- Physics

Felix Sefkow 10.-14. Oktober 2016

W mass results

• indirect: $\cos \theta_W = m_W / m_Z$

W mass results

• indirect: $\cos \theta_W = m_W / m_Z$

Constraints on the standard model

Testing the Standard Model

Testing the Standard Mode

10³

Sensitivity to M_H

e+e- Physics

Felix Sefkow 10.-14. Oktober 2016

QCD and Heavy Quarks

Running coupling constants

Measurements of running couplings

- Confirmed with precision over wide energy range
- alpha-s at LEP:
 - jet rates: common analysis with JADE data
 - event shapes, Z hadronic width, tau decay rates and spectra

Felix Sefkow 10.-14. Oktober 2016

3-jet rates

- Historically already seen et f^{PF} -jet production rates (R₃):
- Jet algorithm must reflect parton configuration² $_{2}(\mu)$
 - "hadronisation correction

JADE Jet finder: small and (almost) energy independent hadronisation corrections:

 $R_3(y_{cut} = 0.08) [\%]$

 $\alpha_{\mathfrak{s}}$

Felix Sefkow 10.-14. Oktober 2016

3-jet rates

- Historically, already seen at PETRA production nattes (IR3)):
- Jet algorithm must reflect parton configuration?(())
 - "hadronisation correction

JADE Jet finder: small and (almost) energy independent hadronisation corrections:

 $R_3(y_{cut} = 0.08) [\%]$

all s

Felix Sefkow 10.-14. Oktober 2016

B mixing again: time dependence

- Boost allows observation of decay length
- Need to convert to proper time: reconstruct momentum event by event
 - use tracks from secondary vertex, missing energy techniques for the neutrino plus an estimator for the neutral energy of B decay products
- Observe B_d oscillations vs time
- Set stringent limits on B_s oscillations

Wrap-up LEP:

- LEP and SLC were a triumph for the Standard Model.
- Tests with per-mil precision prove that it is correct at the one-loop quantum level.
- This IS a discovery.
- The precision resulted in quantitative predictions for the discovery of new particles, which were confirmed.
- Many text book experiments made electro-weak and QCD.
- Clean environment, well defined initial state, polarisation, kinematic fits made that possible.
- New experimental techniques vertex detectors unfolded the potential of heavy flavour observables.
- In the end, the redundancy of using many observables and the possibility to perform internal cross-checks were crucial for the success.